WO2006030054A1 - Espuma de fosfato de calcio autofraguable e inyectable - Google Patents

Espuma de fosfato de calcio autofraguable e inyectable Download PDF

Info

Publication number
WO2006030054A1
WO2006030054A1 PCT/ES2005/070119 ES2005070119W WO2006030054A1 WO 2006030054 A1 WO2006030054 A1 WO 2006030054A1 ES 2005070119 W ES2005070119 W ES 2005070119W WO 2006030054 A1 WO2006030054 A1 WO 2006030054A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium
phosphate
liquid phase
foam
cement
Prior art date
Application number
PCT/ES2005/070119
Other languages
English (en)
French (fr)
Inventor
Maria Pau Ginebra Molins
Josep Antoni Planell Estany
Francesc Xavier Gil Mur
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Priority to PL05782615T priority Critical patent/PL1787626T3/pl
Priority to EP05782615.8A priority patent/EP1787626B1/en
Publication of WO2006030054A1 publication Critical patent/WO2006030054A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0052Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with an inorganic matrix
    • A61L24/0063Phosphorus containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • A61K6/69Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • A61K6/864Phosphate cements

Definitions

  • the present invention relates to biomaterials for bone surgery and dentistry, bone regeneration, filling of bone cavities, stabilization of bone fractures, covering of prostheses or implants, fixation of prostheses or implants, drug delivery systems (Drug Delivery systems) and supports of cell growth in tissue engineering (Tissue Engineering scaffolds).
  • the present invention also relates to methods for obtaining said biomaterials and a kit that allows its obtaining.
  • This invention is part of the field of biomaterials for bone tissue regeneration, and more specifically of calcium phosphate cements. Since in 1985 Brown and Chow filed the first patent on this type of materials (US4518430), different cement formulations based on calcium phosphates have been developed. This type of materials is based on the mixture of one or more calcium salts, with an aqueous solution, so that a cement capable of setting over time under physiological conditions is obtained, and a calcium phosphate is obtained as a result of the setting reaction of composition very similar to the mineral phase that forms the bone tissue. During setting, the plastic paste is transformed into a solid body.
  • the setting of cement is the result of a process of dissolving the reagents and precipitation of a new phase, which takes place at room or body temperature.
  • the reaction product is a hydroxyapatite very similar to the biological one: nanocrystalline, non-stoichiometric, and which can incorporate different ions depending on the composition of the reagents and the medium.
  • the development of cement-like materials, especially for bone defect treatments has two important advantages associated with the use of calcium phosphates in the form of granules or blocks. In the first place, injectability, which allows cement to be implanted by minimally invasive techniques. Second, the perfect adaptation to the defect in which it is implanted, which ensures a perfect material-bone tissue apposition even in complicated geometries. This allows the defect to stabilize better and, therefore, the healing process is faster.
  • the setting and hardening properties of a cement can be adjusted by modifying different processing variables, such as the chemical composition of the reagents, the particle size, the addition of seeds, etc. This makes calcium phosphate cements very versatile materials, which can be adapted to different clinical requirements for different applications.
  • apatitic cements which are mainly reabsorbed by active reabsorption processes, mediated by cellular activity, macroporosity plays an especially important role.
  • active reabsorption processes are based on the fact that osteoclasts (bone cells) are degrading the material in layers from the bone-cement interface, from the outside to the inside. This process is very slow if it is a dense or microporous material. Indeed, several studies establish that in order for this process of colonization by bone tissue to be possible, it is necessary have pores larger than 70 ⁇ m.
  • Conventional calcium phosphate cements although micro or nanoporous after setting, do not have macroporosity in this range in which bone growth is stimulated.
  • Constantz et al. (US Pat. 5,820,632) proposes the generation of a porous structure by the addition of a soluble phase that is eliminated. Specifically, the addition of sodium chloride and sodium or potassium hydroxide is suggested, which are soluble in water and can be released into the physiological medium, resulting in porosity within the cement.
  • Hirano et al. JP 5,023,387 proposes the incorporation of a biodegradable polymer, specifically polylactic acid, which is reabsorbed once the cement is implanted and set, in a relatively short period of time.
  • a biodegradable polymer specifically polylactic acid
  • Bohner (EP 1150722, US Pat 6,642,285) developed porous implants based on calcium phosphate cements mixed with a hydrophobic liquid.
  • the cement paste is mixed with the hydrophobic liquid, obtaining an emulsion.
  • a surfactant as an additive, but only in order to reduce the surface tension and facilitate the formation of the emulsion from the two phases (the cement paste and the hydrophobic liquid).
  • the setting of the cement results in obtaining a macroporous hydroxyapatite structure.
  • Edwards et al. (US Pat. 6,670,293) propose a method to obtain a porous cement, in which the porosity is produced by mixing a source of calcium and a phosphate, with a carbonate, in the powder phase, and mixing this phase solid with a liquid phase that is an aqueous solution with an acid component.
  • the acid and carbonate react, leading to the formation of carbon dioxide and producing an interconnected porosity.
  • the method requires only a small proportion of acid and base in the cement components.
  • Calcium phosphate cements form when setting a mesh of calcium phosphate crystals, formed by precipitation from the dissolution of the reagents.
  • This structure has a very high porosity, in the micro or nanometric range, which can reach values of up to 60%.
  • this micro or nanoporosity is not enough to allow the growth of bone tissue into the material, nor angiogenesis, this being a crucial aspect if you want to achieve a genuine regeneration of the bone.
  • This regeneration demands the progressive colonization of the material by neoformed tissue, and the simultaneous reabsorption of the material by the action of osteoclastic cells.
  • This invention is about foams of calcium phosphate cements that set after mixing a powder phase consisting of one or more compounds as sources of calcium and phosphate with an aqueous phase. Specifically, it describes the appropriate composition and the process for obtaining foams based on calcium phosphate cements. Said foams can be injected and set within the human body, giving rise to a macroporous structure of calcium phosphate, mostly hydroxyapatite, with a high macroporosity produced during the foaming process, superimposed on the micro / nanoporesity inherent in phosphate cements. calcium.
  • the object of this invention is to propose a new method of obtaining macroporous calcium phosphate cements, which allow rapid bone growth and have an adequate rate of resorption, which makes it possible to gradually replace it with neoformed bone tissue.
  • a first aspect of the invention relates to a self-binding calcium phosphate foam, characterized in that it comprises a calcium phosphate cement and at least one biocompatible surfactant.
  • a second aspect of the invention relates to a process for the preparation of a self-binding calcium phosphate foam, characterized in that it comprises the mixture of two phases: a) a liquid phase consisting of one or two aqueous solutions, one of which comprises at least one biocompatible surfactant, responsible for obtaining the foam, and b) a solid phase in powder form, comprising one or more compounds such as sources of calcium and phosphate, capable of reacting with the water of the liquid phase to form a cement, where the liquid phase is mixed after undergoing a foaming process, or the foaming process is performed after mixing.
  • a third aspect of the invention relates to a self-binding calcium phosphate foam obtainable by the procedure described above.
  • a fourth aspect of the invention relates to a solid structure obtainable by setting the foam of the present invention, which has a total porosity between 25 and 90% by volume and a macroporosity between 2 and 80% in volume.
  • calcium phosphate foams can be both to be injected directly into the human body, as bone regeneration materials, as to obtain pre-bonded foams, which can be implanted in a solid state or that can be used as a support or substrate for tissue engineering
  • a fifth aspect of the invention relates to the use of the foam of the present invention for the manufacture of a solid structure for bone regeneration, both in a pasty and pre-shaped state, or for the manufacture of a support or substrate for tissue engineering
  • kits for the preparation of the self-binding calcium phosphate foam of the present invention characterized in that it comprises: a) a liquid phase consisting of one or two aqueous solutions, one of which comprises at least a biocompatible surfactant, responsible for obtaining the foam, and b) a solid phase in powder form, comprising one or more compounds such as calcium and phosphate sources, capable of reacting with the water of the liquid phase to form a cement .
  • a liquid phase consisting of one or two aqueous solutions, one of which comprises at least a biocompatible surfactant, responsible for obtaining the foam
  • a solid phase in powder form comprising one or more compounds such as calcium and phosphate sources, capable of reacting with the water of the liquid phase to form a cement .
  • a calcium phosphate foam that is injectable and macroporous, from the foaming of the liquid phase or the paste of a cement.
  • the proposed route is the addition of surfactant molecules in the cement, as a way to stabilize air bubbles in the paste, obtaining the foaming of the cement. It has been verified that the addition of the surfactant is really effective as a blowing agent in the cement matrix, achieving a high macroporosity, with a high degree of interconnection between macropores.
  • pastes can be obtained in the form of calcium phosphate foams, which maintain macroporosity even after being injected.
  • surfactant molecules perform their foaming effect at very low concentrations, close to the critical micellar concentration (CMC), which necessitates a small amount of additive to ensure foaming of the cement paste.
  • the foaming process is carried out by agitation or mechanical whipping, following one of the following protocols: i) foaming of the liquid phase, followed by mixing with the solid powder phase, ii) foaming of the aqueous solution containing the surfactant, followed by mixing it with the paste previously obtained from the mixing of the solid phase with the other aqueous solution that together with the first constitutes the liquid phase, or iii) foaming the paste resulting from the mixing of the solid phase and the liquid phase
  • the foam obtained sets after mixing giving rise to a solid structure.
  • the selection of the surfactant that is used as a foaming agent is a very important point. There are a large number of molecules that can be used as surfactants, anionic, cationic or non-ionic. However, since the designed material must be injected into the human body, and specifically into the bone tissue, it is necessary to select a surfactant that is biocompatible.
  • non-ionic surfactants such as sorbitan esters, such as sorbitan monooleate or sorbitan monopalmitate, polyoxysorbitan esters, such as polyoxyethylene sorbitan monooleate (Tween 80, Polysorbate 80) and are especially useful for this application.
  • polyoxyethylene sorbitan monolaurate Tween 20
  • the non-ionic surfactant is selected from sorbitan monooleate, sorbitan monopalmitate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monolaurate, ethylene polyoxide polyoxide copolymers, phosphatidylcholine (lecithin), phosphatidylsulfidyl ethanoyl phosphatidylethanolamide lysophosphatidylethanolamine, sphingomyelin, sucrose monolaurate, sucrose monooleate and other sucrose esters.
  • the nonionic surfactant is polyoxyethylene sorbitan monooleate in a concentration in the liquid phase of less than or equal to 20%, preferably less than or equal to 10% and preferably less than or equal to 5% by weight.
  • the size of the pores can be controlled through different parameters, such as the concentration of added surfactant, and the particle size of the cement powder. This is a key aspect to facilitate angiogenesis and colonization of the material by neoformed bone.
  • any mixture and composition of calcium phosphate cements is possible.
  • the main reagents for the cement powder phase include a source of calcium and a source of phosphate, which may be present as a single compound or as two or more compounds.
  • a single calcium phosphate can be the main reagent of the solid phase, as a source of calcium and phosphate.
  • two or more compounds may be present in the solid phase of the cement, and each of them may contain calcium, phosphate, or calcium and phosphate.
  • Some calcium phosphates of interest may be selected from the following: tetracalcium phosphate, anhydrous dicalcium phosphate, dihydrated dicalcium phosphate, alpha tricalcium phosphate, tricalcium beta phosphate, monocalcium phosphate monohydrate, hydroxyapatite, calcium deficient monoxyacite, fluoroapatite, fluoroapatite amorphous calcium phosphate, calcium, sodium and potassium phosphate, calcium and sodium phosphate, calcium and potassium phosphate and calcium pyrophosphate.
  • Other compounds of interest as calcium sources are the following: calcium carbonate, calcium sulfate, calcium sulfate hemihydrate, calcium oxide or calcium hydroxide.
  • Phosphoric acid and all soluble phosphates can be mentioned among the sources of phosphate.
  • the reagents must set after mixing with the liquid phase, which is an aqueous solution. This requires a precise selection of calcium phosphates that are part of the powder phase, their proportions and their characteristics, as shown in various patents (for example, Brown and Chow US Pat No. RE 33,161, US Pat. No. RE 33,221, Chow and Takagi US Pat. No. 5,525,148, Constant US Pat. No. 4,880,610, US Pat. 5,820,632, US Pat. No. 6,375,935, among others).
  • the solid phase comprises alpha tricalcium phosphate, with an average particle size of less than 100 micrometers, preferably less than 50 micrometers, preferably less than 30 micrometers, preferably less than 15 micrometers.
  • the solid phase may also contain additives that act as a seed, such as precipitated tricalcium phosphate, which facilitates the nucleation of the phase that precipitates in the cement.
  • the amount is usually less than 10% by weight, and preferably less than 5% by weight with respect to the solid phase.
  • the solid phase may additionally contain granules of a biodegradable substance to increase the interconnectivity between the pores of the foam. The dimensions of these granules should be between 10 and 500 micrometers, and they can be polymeric in nature, or inorganic in nature, such as calcium salts or soluble glasses.
  • the liquid phase comprises an aqueous solution that can incorporate one or more phosphate, carbonate or silicate ions in solution, as accelerators or retarders of the setting reaction, which can be obtained by dissolving various compounds.
  • Accelerators include the following: Na 2 HPO 4 , NaH 2 PO 4 , KH 2 PO 4 ,
  • the setting reaction accelerator is Na 2 HPO 4 in a concentration between 0.1 and 10% by weight, and more preferably even between 1 and 5% by weight of the liquid phase.
  • the liquid phase may also incorporate one or more oligomeric or polymeric compounds dissolved or suspended in the liquid phase of the cement, such as sodium alginate, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl starch, soluble starch, cyclodextrin, dextran sulfate, polyvinyl pyrrolidone, chitosan or hyaluronic acid, to increase the injectability and cohesion of the cement paste, preventing its disintegration by immersing it in the physiological medium , as mentioned in Driessens et al. US Pat. No. 6,206,957.
  • the liquid phase comprises sodium alginate, as a cohesion promoting agent, in a concentration between
  • the liquid phase contains at least one biocompatible surfactant, which acts as a foaming agent.
  • the ratio between the liquid phase and the solid phase is greater than 0.25 ml / g, preferably greater than 0.32 ml / g and preferably greater than 0.35 ml / g.
  • the calcium phosphate foam may also incorporate one or more biologically active agents, such as growth factors and / or anticancer substances and / or antibiotics and / or antioxidants.
  • biologically active agents such as growth factors and / or anticancer substances and / or antibiotics and / or antioxidants.
  • the obtained mixture can be injected using a syringe with a diameter between 1 and 15 mm in diameter, after less than 60 minutes after mixing, preferably less than 30 minutes, preferably less than 15, preferably less to 10, and preferably equal to or less than 5 minutes.
  • the foam according to the present invention after setting, allows to obtain a solid structure of a total porosity between 25 and 90% by volume and a macroporosity between 2 and 80% by volume.
  • Said solid structure comprises macroporos of a diameter of between 20 and 800 ⁇ m, preferably between 100 and 700 ⁇ m, constituting a macroporosity superimposed on the intrinsic porosity of the set cement, which is at the micro and / or nanoscopic level.
  • FIG. 1 An illustrative example shows a micrograph obtained by scanning electron microscopy of a section of a foamed calcium phosphate foam, obtained from the addition of 5% by weight of a non-surfactant Biocompatible ionic in the liquid phase of an alpha tricalcium phosphate cement, using a liquid powder ratio of 0.45 ml / g.
  • a solution containing 10% by weight of non-ionic surfactant Pluronic F68 (Polyoxyethyl-polyoxypropylene copolymer) was prepared, either in double-distilled water, or in a 2.5% by weight aqueous solution of Na 2 HPO 4 . 2 ml of the solution was taken and a foam was prepared by mechanical stirring. Once the foam was prepared, it was mixed with the powder phase of the cement, in a liquid powder ratio of 0.38 ml / g. The powder phase consisted of 5,155 g of alpha tricalcium phosphate ( ⁇ -TCP) with a median size of 6.2 ⁇ m and 0.105 g of precipitated tricalcium phosphate (Merck, ref. No.
  • Another foam was also prepared using 5% by weight of surfactant in the liquid phase. All series were repeated using an ⁇ -TCP with smaller particle size, with a median size of 3.6 ⁇ m. As a reference, cements without surfactant were prepared. The initial setting time was measured with the Gillmore needle method. 6 mm diameter and 12 mm high cylinders were prepared for all series, injecting the foam into Teflon molds, and immersed in Ringer's solution (0.9% NaCl aqueous solution) at 37 ° C for 64 h , to simulate physiological conditions. The phase composition was determined X-ray diffraction.
  • the bulk density of the samples was measured by immersion in mercury, and the macroporosity and microporosity of the foam was calculated by comparison with a non-foamed cement.
  • the microstructure was examined on fractured surfaces of the foams set by scanning electron microscopy.
  • the foam For the preparation of the foam, it was started from an aqueous solution containing 2.5% by weight of Na 2 HPO 4 , and 20% by weight of Tween 80 nonionic surfactant (Polyoxyethylene sorbitan monooleate). 2 ml of the solution was taken and a foam was prepared by mechanical stirring. Once the foam was prepared, it was mixed with the powder phase of the cement, in a liquid powder ratio of 0.32 ml / g. The powder phase consisted of 6,127 g of alpha tricalcium phosphate ( ⁇ -TCP) and 0.125 g of precipitated tricalcium phosphate (Merck catalog No. 2143) that had been previously mixed.
  • ⁇ -TCP alpha tricalcium phosphate
  • Merck catalog No. 2143 precipitated tricalcium phosphate
  • foams were also prepared using different concentrations of surfactant in the liquid phase (10 and 5% by weight) as well as a control series without surfactant, and different powder liquid ratios (0.38 and 0.45 ml / g).
  • a cement without surfactant was prepared in the liquid phase. 6 mm diameter and 12 mm high cylinders were prepared for all series, injecting the foam into Teflon molds, and immersed in Ringer's solution (0.9% NaCl aqueous solution) at 37 ° C for 64 h .
  • the phase composition was determined by X-ray diffraction.
  • the bulk density of the samples was measured by immersion in mercury, and macroporosity and microporosity of the foam was calculated by comparison with an unfoamed cement. Compressive strength was determined in a universal mechanical testing machine, applying a head displacement speed of 1 mm / minute. The microstructure was examined on fractured surfaces of the foams set by scanning electron microscopy.
  • the macroporosity varied between 10 and 30%, the macropore size being between 70 and 700 micrometers.
  • An increase in both macroporosity and macropore size was observed by increasing the liquid powder ratio and by decreasing the concentration of surfactant in the liquid phase.
  • the more porous samples also showed high interconnectivity between the pores.
  • Foams were prepared using Tween 80 surfactant, according to the protocol indicated in example 2, with a concentration of 5 and 20% by weight and a liquid / powder ratio of 0.40 and 0.45 ml / g. Injectability was measured using a mechanical testing machine. Foamed cement paste was placed in a 5 ml syringe, with a 2 mm diameter outlet hole. Injectability was calculated after 5 minutes of mixing the powder with the foam, as the percentage of extruded paste mass, when the syringe plunger is compressed at a speed of 15 mm / min to a maximum force of 100N. The results obtained are summarized in Table 3.

Abstract

Se propone la obtención una espuma de fosfato de calcio autofraguable e inyectable para ser utilizada como biomaterial para regeneración ósea y/o como sustrato para la ingeniería de tejidos. La vía que se propone es el espumado de un cemento de fosfato de calcio mediante la adición de surfactantes y la agitación o batido mecánico del mismo. La adición del surfactante permite estabilizar burbujas de aire en la matriz del cemento, conseguiéndose una elevada macroporosidad, con interconexión entre los poros. La obtención de macroporosidad es de gran importancia para la regeneración ósea, porque facilita la angiogénesis, la colonización del material por el tejido óseo y su reabsorción. Teniendo en cuenta las aplicaciones del material, es especialmente relevante la selección de surfactantes biocompatibles. En este sentido se proponen surfactantes aprobados para sistemas de dosificación de fármacos por vía parenteral.

Description

ESPUMA DE FOSFATO DE CALCIO AUTOFRAGUABLE E INYECTABLE
Sector de la técnica
La presente invención se refiere a biomateriales para cirugía ósea y odontología, regeneración ósea, relleno de cavidades óseas, estabilización de fracturas óseas, recubrimiento de prótesis o implantes, fijación de prótesis o implantes, sistemas de liberación de fármacos (Drug Delivery systems) y soportes de crecimiento celular en ingeniería de tejidos (Tissue Engineering scaffolds). La presente invención se refiere asimismo a procedimientos para la obtención de dichos biomateriales y a un kit que permite su obtención.
Estado de la técnica
Esta invención se enmarca dentro del ámbito de los biomateriales para regeneración del tejido óseo, y más concretamente de los cementos de fosfatos de calcio. Desde que en el año 1985 Brown y Chow presentaron la primera patente sobre este tipo de materiales (US4518430), se han desarrollado distintas formulaciones de cementos basados en fosfatos de calcio. Este tipo de materiales se basa en la mezcla de una o más sales calcicas, con una solución acuosa, de forma que se obtiene un cemento capaz de fraguar con el tiempo en condiciones fisiológicas, y obteniéndose como producto de la reacción de fraguado un fosfato calcico de composición muy similar a la fase mineral que forma el tejido óseo. Durante el fraguado, la pasta plástica se transforma en un cuerpo sólido.
El fraguado del cemento es resultado de un proceso de disolución de los reactivos y precipitación de una nueva fase, que tiene lugar a temperatura ambiente o corporal. En la mayoría de los cementos desarrollados en los último años, el producto de la reacción es una hidroxiapatita muy similar a la biológica: nanocristalina, no estequiométrica, y que puede incorporar distintos iones en función de la composición de los reactivos y del medio. El desarrollo de materiales de tipo cemento, en especial para tratamientos de defectos óseos, lleva asociadas dos ventajas importantes en comparación con la utilización de fosfatos de calcio en forma de granulos o bloques. En primer lugar, la inyectabilidad, que permite implantar el cemento mediante técnicas de mínima invasión. En segundo lugar, la perfecta adaptación al defecto en el que se implanta, que asegura una perfecta aposición material- tejido óseo incluso en geometrías complicadas. Esto permite que el defecto se estabilice mejor y, por lo tanto, el proceso de curación sea más rápido.
Las propiedades de fraguado y endurecimiento de un cemento pueden ajustarse modificando distintas variables de procesado, como la composición química de los reactivos, el tamaño de partícula, la adición de semillas, etc. Esto hace de los cementos de fosfato de calcio materiales muy versátiles, que se pueden adaptar a distintos requisitos clínicos para distintas aplicaciones.
Diversos estudios llevados a cabo con los cementos de fosfato de calcio han puesto de manifiesto que se trata de materiales extremadamente biocompatibles, osteoconductores y que estimulan la regeneración ósea. No obstante, además de ser osteoconductor, el cemento ideal debería ser capaz de reabsorberse a la misma velocidad a la que el tejido óseo puede crecer, siendo reemplazado progresivamente por tejido óseo neoformado. Sin embargo, la mayor parte de los cementos desarrollados hasta la actualidad, especialmente los apatíticos, aunque son más reabsorbibles que las apatitas sinterizadas obtenidas a alta temperatura, presentan una cinética de reabsorción excesivamente lenta, y en muchos casos el cemento permanece íntegro en el tejido óseo circundante durante años.
En los cementos apatíticos, que se reabsorben mayoritariamente por procesos de reabsorción activa, mediados por la actividad celular, la macroporosidad juega un papel especialmente importante. Estos procesos de reabsorción activa se basan en que los osteoclastos (células óseas) van degradando el material por capas a partir de la interíaz hueso-cemento, desde el exterior hacia el interior. Este proceso es muy lento si se trata de un material denso o microporoso. En efecto, diversos estudios establecen que para que este proceso de colonización por el tejido óseo sea posible, es necesario tener poros mayores de 70 μm. Los cementos de fosfato de calcio convencionales, aunque son micro o nanoporosos después del fraguado, no tienen macroporosidad en este rango en el que se estimula el crecimiento óseo. Esto dificulta su reabsorción y transformación en tejido óseo en un periodo de tiempo adecuado. Por el contrario, si se consigue obtener un material macroporoso, con una macroporosidad interconectada, se permite la angiogénesis y el crecimiento del tejido dentro del material. Si los macrófagos y los osteoclastos pueden penetrar hacia el interior del material, la reabsorción será en volumen y por lo tanto más rápida. Por otra parte, el crecimiento de tejido puede ser estimulado mediante el llenado de los poros con factores osteoinductores o osteoconductores, como las proteínas morfogenéticas (BMPs). Estos factores son bien conocidos por los entendidos en este campo. Otros agentes terapéuticos, como antibióticos u otros medicamentos pueden también ser introducidos en el material, mezclándolos con la fase líquida o la fase polvo.
Se han desarrollado diversos métodos para conseguir porosidad en cementos de fosfato de calcio. Chow et al. (US Pat. 5,525,148) proponen generar la porosidad mediante la incorporación de una fase sólida insoluble en el cemento, que puede ser eliminada por disolución en los fluidos fisiológicos, por disolución en distintos disolventes o mediante sinterización una vez el cemento ha fraguado. Entre los agentes porogénicos se proponen el azúcar, el bicarbonato de sodio o sales de fosfato.
Constantz et al. (US Pat. 5,820,632) propone la generación de una estructura porosa mediante la adición de una fase soluble que sea eliminada. Específicamente se sugiere la adición de cloruro sódico y hidróxido de sodio o de potasio, que son solubles en agua y pueden ser liberados al medio fisiológico, dando lugar a porosidad dentro del cemento.
Hirano et al. (JP 5,023,387) propone la incorporación de un polímero biodegradable, concretamente ácido poliláctico, que se reabsorbe una vez implantado y fraguado el cemento, en un periodo de tiempo relativamente corto. Sin embargo, en los casos citados, para obtener una porosidad interconectada se necesita una cantidad elevada de agente porogénico (del orden del 50% en volumen). Esto afecta de forma importante a las propiedades del material.
Bohner (EP 1150722, US Pat 6,642,285) desarrolló implantes porosos basados en cementos de fosfato de calcio mezclados con un líquido hidrofóbico. La pasta del cemento se mezcla con el líquido hidrofóbico, obteniéndose una emulsión. Se propone utilizar como aditivo un agente surfactante, pero únicamente con el fin de disminuir la tensión superficial y facilitar la formación de la emulsión a partir de las dos fases (la pasta del cemento y el líquido hidrofóbico). Seleccionando adecuadamente el líquido hidrofóbico, y las proporciones adecuadas, el fraguado del cemento da lugar a la obtención de una estructura de hidroxiapatita macroporosa.
Edwards et al. (US Pat. 6,670,293) proponen un método para obtener un cemento poroso, en el cual la porosidad se produce mediante la mezcla de una fuente de calcio y una de fosfato, con una de carbonato, en la fase en polvo, y mezclando esta fase sólida con una fase líquida que es una solución acuosa con un componente ácido. El ácido y el carbonato reaccionan, dando lugar a la formación de dióxido de carbono y produciendo una porosidad interconectada. El método requiere solamente una pequeña proporción de ácido y de base en los componentes del cemento.
Los cementos de fosfato de calcio forman al fraguar una malla de cristales de fosfato de calcio, formados por precipitación a partir de la disolución de los reactivos. Esta estructura tiene una porosidad muy elevada, en el rango micro o nanométrico, que puede alcanzar valores de hasta un 60%. Sin embargo, esta micro o nanoporosidad no es suficiente para permitir el crecimiento del tejido óseo hacia el interior del material, ni la angiogénesis, siendo este un aspecto crucial si se desea conseguir una auténtica regeneración del hueso. Esta regeneración exige la progresiva colonización del material por tejido neoformado, y la simultánea reabsorción del material por acción de las células osteoclásticas. Breve explicación de la invención
Esta invención trata sobre espumas de cementos de fosfato de calcio que fraguan después de mezclar una fase en polvo consistente en uno o más compuestos como fuentes de calcio y fosíato con una fase acuosa. Concretamente, describe la composición adecuada y el procedimiento para obtener espumas basadas en cementos de fosfato de calcio. Dichas espumas pueden ser inyectadas y fraguar dentro del cuerpo humano, dando lugar a una estructura macroporosa de fosíato de calcio, mayoritariamente hidroxiapatita, con una elevada macroporosidad producida durante el proceso de espumado, superpuesta a la micro/nanoporosidad inherente a los cementos de fosfato de calcio.
El objeto de esta invención es proponer un nuevo método de obtención de cementos de fosfato de calcio macroporosos, que permitan el rápido crecimiento óseo y que tengan una tasa adecuada de reabsorción, lo que haga posible su progresiva sustitución por tejido óseo neoformado.
Un primer aspecto de la invención se refiere a una espuma de fosfato de calcio autofraguable, caracterizada porque comprende un cemento de fosfato de calcio y al menos un agente surfactante biocompatible.
Un segundo aspecto de la invención se refiere a un procedimiento para la preparación de una espuma de fosfato de calcio autofraguable, caracterizado porque comprende la mezcla de dos fases: a) una fase líquida consistente en una o dos soluciones acuosas, una de las cuales comprende al menos un agente surfactante biocompatible, responsable de la obtención de la espuma, y b) una fase sólida en forma de polvo, que comprende uno o más compuestos como fuentes de calcio y fosfato, capaces de reaccionar con el agua de la fase líquida para formar un cemento, donde la fase líquida se mezcla después de someterse a un proceso de espumado, o el proceso de espumado se realiza después de la mezcla. Un tercer aspecto de la invención se refiere a una espuma de fosfato de calcio autofraguable obtenible mediante el procedimiento descrito anteriormente.
Un cuarto aspecto de la invención se refiere a una estructura sólida obtenible mediante fraguado de la espuma de la presente invención, que presenta una porosidad total comprendida entre el 25 y el 90% en volumen y una macroporosidad comprendida entre el 2 y el 80% en volumen.
La aplicación de estas espumas de fosfato de calcio puede ser tanto para ser inyectadas directamente en el cuerpo humano, como materiales de regeneración ósea, como para obtener espumas prefraguadas, que puedan ser implantadas en estado sólido o que puedan ser utilizadas como soporte o substrato para ingeniería de tejidos.
Por tanto, un quinto aspecto de la invención se refiere al uso de la espuma de la presente invención para la fabricación de un una estructura sólida para la regeneración ósea, tanto en estado pastoso como prefraguado, o para la fabricación de un soporte o sustrato para ingeniería de tejidos.
Otro aspecto de la invención se refiere a un kit para la preparación de la espuma de fosfato de calcio autofraguable de la presente invención, caracterizado porque comprende: a) una fase líquida consistente en una o dos soluciones acuosas, una de las cuales comprende al menos un agente surfactante biocompatible, responsable de la obtención de la espuma, y b) una fase sólida en forma de polvo, que comprende uno o más compuestos como íuentes de calcio y fosfato, capaces de reaccionar con el agua de la fase líquida para formar un cemento. Descripción detallada de la invención
En esta invención se propone obtener una espuma de fosfato de calcio que sea inyectable y macroporosa, a partir del espumado de la fase líquida o de la pasta de un cemento. La vía que se propone es la adición de moléculas suríactantes en el cemento, como un camino para estabilizar burbujas de aire en la pasta del mismo, obteniéndose el espumado del cemento. Se ha verificado que la adición del surfactante es realmente eficaz como agente espumante en la matriz del cemento, llegándose a conseguir una elevada macroporosidad, con un alto grado de interconexión entre macroporos.
Mediante las formulaciones estudiadas se pueden obtener pastas en forma de espumas de fosfato de calcio, que mantienen la macroporosidad incluso después de ser inyectadas. Además, las moléculas surfactantes realizan su efecto espumante a concentraciones muy bajas, cercanas a la concentración micelar crítica (CMC), lo que hace necesaria una pequeña cantidad de aditivo para asegurar el espumado de la pasta del cemento.
Preferentemente, el proceso de espumado se realiza mediante agitación o batido mecánico, siguiendo uno de los siguientes protocolos: i) espumado de la fase líquida, seguida de su mezcla con la fase sólida en polvo, ii) espumado de la solución acuosa que contiene el agente surfactante, seguida de su mezcla con la pasta obtenida previamente de la mezcla de la fase sólida con la otra solución acuosa que constituye junto con la primera la fase líquida, o iii) espumado de la pasta resultante de la mezcla de la fase sólida y la fase líquida.
La espuma obtenida fragua después de la mezcla dando lugar a una estructura sólida. La selección del surfactante que se utiliza como agente espumante es un punto muy importante. Existen un gran número de moléculas que se pueden utilizar como agentes surfactantes, con carácter aniónico, catiónico o no iónico. Sin embargo, dado que el material diseñado debe ser inyectado en el cuerpo humano, y concretamente en el seno del tejido óseo, es necesario seleccionar un surfactante que sea biocompatible.
En este sentido, tienen especial interés, aunque no son los únicos que se proponen, los surfactantes no iónicos, algunos de los cuales poseen buenas propiedades espumantes. Algunos presentan muy buenas propiedades de biocompatibilidad y se utilizan en la actualidad en sistemas de dosificación de íarmacos por via parenteral. En este sentido, son de especial utilidad para esta aplicación surfactantes no iónicos, como los esteres de sorbitan, como el monooleato de sorbitan o el monopalmitato de sorbitan, los esteres de polioxisorbitan, como el polioxietileno sorbitan monooleato (Tween 80, Polisorbato 80) y el polioxietileno sorbitan monolaurato (Tween 20), todos ellos aprobados para utilización en fármacos que se administran por vía parenteral.
Otros surfactantes que pueden tener aplicación, y que también se utilizan para dispensación de fármacos por vía parenteral son algunos surfactantes poliméricos, como los basados en polímeros de bloque óxido de etileno - óxido de propileno (Pluronic F68, Poloxamer 188). Otros compuestos que tienen interés para estas aplicaciones son algunos fosfolípidos, como las lecitinas, que añaden la biodegradabilidad a su buen comportamiento biológico, y algunos esteres de sacarosa.
En una realización preferida, el surfactante no iónico se selecciona entre monooleato de sorbitan, monopalmitato de sorbitan, polioxietileno sorbitan monooleato, polioxietileno sorbitan monolaurato, copolímeros polióxido de etileno-polióxido de propileno, fosfatidilcolina (lecitina), fosfatidiletanolamida, fosfatidilserina, fosfatidilinositol, lisofosíatidilcolina, lisofosfatidiletanolamina, esfingomielina, monolaurato de sacarosa, monooleato de sacarosa y otros esteres de sacarosa.
En una realización más preferida el surfactante no iónico es polioxietileno sorbitan monooleato en una concentración en la fase líquida inferior o igual al 20%, preferentemente inferior o igual al 10% y preferentemente inferior o igual al 5% en peso.
El tamaño de los poros puede controlarse a través de distintos parámetros, como la concentración de surfactante añadido, y el tamaño de partícula del polvo del cemento. Este es un aspecto clave para facilitar la angiogénesis y la colonización del material por hueso neoformado.
Como un modo de aumentar la interconectividad de los macroporos obtenidos en el proceso de espumado, se propone incorporar en la fase sólida del cemento partículas de compuestos que sean sustancialmente insolubles en el cemento pero que se disuelvan en condiciones fisiológicas después que la espuma de cemento ha fraguado. Estas partículas pueden ser las mencionadas por Chow et al. (US Pat. No. 5,525,148), Constantz et al. (US Pat. No. 5,820,632) o Hirano et al. (JP5,023,387).
Para la preparación de las espumas, cualquier mezcla y composición de cementos de fosfato de calcio es posible. El producto final del cemento fraguado puede variar desde fosfato dicálcico dihidratado (CaZP=I), hidroxiapatita deficiente en calcio (Ca/P entre 1,33 y 1,67), fosfato octacálcico (Ca/P = 1,33), hidroxiapatita estequiométrica (Ca/P = 1,67), o carbonatoapatita (Ca/P =1,7). Los principales reactivos para la fase en polvo del cemento incluyen una fuente de calcio y una fuente de fosfato, que pueden estar presentes como un único compuesto o como dos o más compuestos. Así, un único fosfato de calcio puede ser el reactivo principal de la fase sólida, como fuente de calcio y de fosíato. Alternativamente, dos o más compuestos pueden estar presentes en la fase sólida del cemento, y cada uno de ellos puede contener calcio, fosíato, o calcio y fosfato. Algunos fosfatos de calcio de interés pueden seleccionarse entre los siguientes: el fosfato tetracálcico, el fosfato dicálcico anhidro, el fosfato dicálcico dihidratado, el fosfato tricálcico alfa, el fosfato tricálcico beta, el fosfato monocálcico monohidratado, hidroxiapatita, hidroxiapatita deficiente en calcio, fluoroapatita, fosfato de calcio amorfo, fosfato de calcio, sodio y potasio, fosfato de calcio y sodio, fosfato de calcio y potasio y pirofosíato de calcio. Otros compuestos de interés como fuentes de calcio son los siguientes: carbonato calcico, sulfato calcico, sulfato calcico hemihidratado, óxido de calcio o hidróxido de calcio. Entre las fuentes de fosfato se pueden mencionar el ácido fosfórico y todos los fosfatos solubles. Los reactivos deben fraguar después de mezclarse con la fase líquida, que es una solución acuosa. Esto requiere una selección precisa de fosfatos de calcio que forman parte de la fase en polvo, sus proporciones y sus características, como se muestra en diversas patentes (por ejemplo, Brown y Chow U.S. Pat No. RE 33,161, U.S. Pat. No. RE 33,221, Chow and Takagi US Pat. No. 5,525,148, Constante U.S. Pat. No. 4,880,610, U.S. Pat. 5,820,632, US Pat. No. 6,375,935, entre otras).
En otra realización preferida, la fase sólida comprende fosfato tricálcico alfa, con una tamaño medio de partícula inferior a 100 micrómetros, preferentemente inferior a 50 micrómetros, preferentemente inferior a 30 micrómetros, preferentemente inferior a 15 micrómetros.
La fase sólida también puede contener aditivos que actúan como semilla, como el fosfato tricálcico precipitado, que facilita la nucleación de la fase que precipita en el cemento. La cantidad suele ser inferior al 10% en peso, y preferentemente inferior al 5% en peso respecto a la fase sólida. La fase sólida puede contener adicionalmente granulos de una sustancia biodegradable para aumentar la interconectividad entre los poros de la espuma. Las dimensiones de estos granulos deben estar entre los 10 y 500 micrómetros, y pueden ser de naturaleza polimérica, o de naturaleza inorgánica, como sales calcicas o vidrios solubles.
La fase líquida comprende una solución acuosa que puede incorporar uno o más iones fosfato, carbonato o silicato en disolución, a modo de acelerantes o retardadores de la reacción de fraguado, que se pueden obtener por disolución de diversos compuestos.
Entre los acelerantes cabe mencionar los siguientes: Na2HPO4, NaH2PO4, KH2PO4,
K2HPO4. Preferentemente, el acelerante de la reacción de fraguado es Na2HPO4 en una concentración entre el 0,1 y el 10% en peso, y más preferentemente aún entre el 1 y el 5% en peso de la fase líquida. La fase líquida también puede incorporar uno o más compuestos oligoméricos o poliméricos disueltos o en suspensión en la fase líquida del cemento, como alginato de sodio, hidroxipropil metil celulosa, hidroxietil celulosa, hidroxipropil celulosa, metil celulosa, hidroxietil almidón, almidón soluble, ciclodextrina, dextran sulfato, polivinil pirrolidona, quitosano o ácido hialurónico, para aumentar la inyectabilidad y la cohesión de la pasta del cemento, evitando la disgregación de la misma al sumergirla en el medio fisiológico, como se menciona en Driessens et al. U.S. Pat. No. 6,206,957. Preferentemente la fase líquida comprende alginato de sodio, como agente promotor de la cohesión, en una concentración entre el 0,05 y el 10% en peso, y más preferentemente aún entre el 0,1 y el 5% en peso.
Además, para obtener la espuma la fase líquida contiene al menos un surfactante biocompatible, que actúa como agente espumante.
En una realización preferida, la relación entre la fase líquida y la fase sólida es superior a 0,25 ml/g, preferentemente superior a 0,32 ml/g y preferentemente superior a 0,35 ml/g.
La espuma de fosfato de calcio puede incorporar además uno o más agentes biológicamente activos, tales como factores de crecimiento y/o substancias anticancerígenas y/o antibióticos y/o antioxidantes.
Una vez espumada, la mezcla obtenida se puede inyectar utilizando una jeringa con un diámetro de entre 1 y 15 mm de diámetro, transcurrido un tiempo inferior a 60 minutos después de la mezcla, preferentemente inferior a 30 minutos, preferentemente inferior a 15, preferentemente inferior a 10, y preferentemente igual o inferior a 5 minutos.
La espuma según la presente invención, después de fraguar, permite obtener una estructura sólida de una porosidad total comprendida entre el 25 y el 90% en volumen y una macroporosidad comprendida entre el 2 y el 80% en volumen. Dicha estructura sólida comprende macroporos de un dimámetro de entre 20 y 800 μm, preferiblemente entre 100 y 700 μm, constituyendo una macroporosidad superpuesta a la porosidad intrínseca del cemento fraguado, que está en el nivel micro y/o nanoscópico. Descripción de los dibujos
Fig. 1. Se muestra, a modo de ejemplo ilustrativo, una micrografía obtenida por microscopía electrónica de barrido de una sección de una espuma de fosfato de calcio fraguada, obtenida a partir de la adición de un 5% en peso de un agente surfactante no iónico biocompatible en la fase líquida de un cemento de fosfato tricálcico alfa, utilizando una relación líquido polvo de 0,45 ml/g.
Modo de realización de la invención
A continuación se describe la invención con más detalle en algunos ejemplos, aunque hay que entender que la invención no se restringe a las composiciones específicas que se recogen en los ejemplos.
Ejemplo 1
Para la preparación de la espuma, se preparó una disolución conteniendo un 10% en peso de surfactante no iónico Pluronic F68 (Copolímero polioxietilieno- polioxipropileno), bien en agua bidestilada, bien en una solución acuosa al 2,5% en peso de Na2HPO4. Se tomaron 2 mi de la solución y se preparó una espuma mediante agitación mecánica. Una vez preparada la espuma, se mezcló con la fase en polvo del cemento, en una relación líquido polvo de 0,38 ml/g. La fase en polvo consistía en 5,155 g de fosíato tricálcico alfa (α-TCP) con un tamaño mediano de 6,2 μm y 0,105 g de fosfato tricálcico precipitado (Merck, ref N°. 2143) que se habían mezclado previamente. Se preparó además otra espuma utilizando un 5% en peso de surfactante en la fase líquida. Se repitieron todas las series utilizando un α-TCP con menor tamaño de partícula, con un tamaño mediano de 3,6 μm. Como referencia, se prepararon cementos sin agente surfactante. Se midió el tiempo inicial de fraguado con el método de las agujas de Gillmore. Se prepararon para todas las series cilindros de 6 mm de diámetro y 12 mm de altura, inyectando la espuma en moldes de Teflón, y se sumergieron en solución de Ringer (solución acuosa al 0,9% NaCl) a 37°C durante 64 h, para simular las condiciones fisiológicas. Se determinó la composición de fases mediante difracción de rayos X. Se midió la densidad aparente de las muestras por inmersión en mercurio, y por comparación con un cemento sin espumar se calculó la macroporosidad y la microporosidad de la espuma. La microestructura se examinó en superficies de fractura de las espumas fraguadas mediante microscopía electrónica de barrido.
Se observó que para todas las series preparadas se obtuvo una pasta con una consistencia macroporosa al mezclar la espuma con el polvo del cemento. Una vez sumergida en la solución de Ringer, las pastas de cemento espumadas mantuvieron su cohesión, dando como resultado espumas sólidas de hidroxiapatita con distintos grados de porosidad. Los tiempos de fraguado, la porosidad total y macroporosidad se presentan en la Tabla 1.
TABLA 1. Tiempo inicial de fraguado, porosidad total y macroporosidad de las distintas espumas preparadas. Entre paréntesis se da la desviación estándar. N.M. no medido.
Pluronic F68 Na2HPO4 Tamaño Tiempo Porosidad Macroporosidad (% peso) (% peso) polvo fraguado total (%)
(min) (%)
10 0 Fino 38 57,7 (1,0) 15,3 (1,9)
10 0 Grueso 42 63,0 (3,4) 27,9 (6,7)
10 2,5 Fino 12 58,6 (0,5) 15,8 (0,9)
10 2,5 Grueso 15 57,1 (1,3) 13,4 (2,6)
5 0 Fino 42 54,8 (1,8) 9,5 (3,2)
5 0 Grueso 47 60,6 (3,2) 23,1 (6,2)
5 2,5 Fino 13 55,9 (1,1) 10,4 (2,2)
5 2,5 Grueso 14 59,7 (0,9) 18,8 (1,7)
0 0 Fino N.M. 50,1 (0,1) -
0 0 Grueso M.M. 48,8 (1,3) -
0 2,5 Fino N.M. 50,8 (0,7) -
0 2,5 Grueso N.M. 50,4 (0,9) - Se observó que la concentración de surfactante, en los rangos estudiados, no tuvo efecto sobre la macroporosidad obtenida. La adición de Na2HPO4 redujo los tiempos de fraguado de las espumas, aunque también produjo una disminución de la macroporosidad obtenida. En general se obtuvieron espumas más porosas cuando se utilizó el polvo de α-TCP grueso.
Ejemplo 2
Para la preparación de la espuma, se partió de una solución acuosa conteniendo un 2,5% en peso de Na2HPO4, y un 20% en peso de suríactante no iónico Tween 80 (Polioxietileno sorbitan monooleato). Se tomaron 2 mi de la solución y se preparó una espuma mediante agitación mecánica. Una vez preparada la espuma, se mezcló con la fase en polvo del cemento, en una relación líquido polvo de 0,32 ml/g. La fase en polvo consistía en 6,127 g de fosfato tricálcico alfa (α-TCP) y 0,125 g de fosfato tricálcico precipitado (Merck catalogue N°. 2143) que se habían mezclado previamente. Se prepararon además otras espumas utilizando distintas concentraciones de surfactante en la fase líquida (10 y 5% en peso) así como una serie control sin surfactante, y distintas relaciones líquido polvo (0,38 y 0,45 ml/g). Como referencia, se preparó un cemento sin agente surfactante en la fase líquida. Se prepararon para todas las series cilindros de 6 mm de diámetro y 12 mm de altura, inyectando la espuma en moldes de Teflón, y se sumergieron en solución de Ringer (solución acuosa al 0,9% NaCl) a 37°C durante 64 h. Se determinó la composición de fases mediante difracción de rayos X. Se midió la densidad aparente de las muestras por inmersión en mercurio, y por comparación con un cemento sin espumar se calculó la macroporosidad y la microporosidad de la espuma. Se determinó la resistencia a la compresión en una máquina universal de ensayos mecánicos, aplicando una velocidad de desplazamiento del cabezal de 1 mm/minuto. La microestructura se examinó en superficies de fractura de las espumas fraguadas mediante microscopía electrónica de barrido.
Se observó que para todas las series preparadas se obtuvo una pasta con una consistencia macroporosa al mezclar la espuma con el polvo del cemento. Una vez sumergida en la solución de Ringer, las pastas de cemento espumadas mantuvieron su cohesión y fraguaron, dando como resultado espumas sólidas de hidroxiapatita con distintos grados de porosidad, entre 51 y 69%, tal como se muestra en la Tabla 2.
TABLA 2. Porosidad total, macroporosidad y resistencia a la compresión de las distintas espumas preparadas. Entre paréntesis se da la desviación estándar. N.M.: no medido.
Relación Tween 80 Porosidad Macroporosidad Resistencia a la L/P (% peso) total (%) compresión
(ml/g) (%) (MPa)
0,32 20 51,2(0,4) 10,1 (0,8) 10,40 (±1,99)
10 51,2(0,5) 10,1 (1,0) 18,14 (±4,27)
5 51,4(0,2) 10,5 (0,4) 16,46 (±3,68)
0 45,7(0,5) - N.M.
0,38 20 55,1 (1,2) 9,3 (2,5) 14,19 (±1,85)
10 54,9(1,0) 9,1 (1,7) 7,51 (±1,60)
5 59,0(1,8) 17,2(3,7) 5,97 (±0,99)
0 50.4(0,5) - N.M.
0,45 20 64,1 (0,7) 19,5 (1,6) 2,99 (±0,89)
10 67,3 (±1,4) 26,8(3,0) 1,36 (±0,24)
5 68,9 (±0,5) 30,3 (1,0) 1,80 (±0,63)
0 55.4(0.6) - N.M.
La macroporosidad varió entre el 10 y el 30%, estando el tamaño de los macroporos comprendido entre 70 y 700 micrómetros. Se observó un aumento tanto de la macroporosidad como del tamaño de los macroporos al aumentar la relación líquido polvo y al disminuir la concentración de surfactante en la fase líquida. Las muestras más porosas mostraron también una alta interconectividad entre los poros. En todos los casos, las muestras presentaron además de la macroporosidad producida durante el espumado, una gran micro/nanoporosidad, intrínseca a los cementos de fosfato de calcio.
Ejemplo 3
Se prepararon espumas utilizando el surfactante Tween 80, según el protocolo indicado en el ejemplo 2, con una concentración de 5 y 20 % en peso y una relación líquido/polvo de 0,40 y 0,45 ml/g. Se midió la inyectabilidad utilizando una máquina de ensayos mecánicos. Se colocó la pasta espumada del cemento en una jeringa de 5 mi, con un orificio de salida de 2 mm de diámetro. Se calculó la inyectabilidad después de 5 minutos de mezclar el polvo con la espuma, como el porcentaje de masa de pasta extruída, cuando se comprime el émbolo de la jeringa a una velocidad de 15 mm/min hasta una fuerza máxima de 100N. Los resultados obtenidos se resumen en la Tabla 3.
TABLA 3. Inyectabilidad de distintas espumas en estado pastoso.
Tween 80 Relación L/P Inyectabilidad (% peso) (ml/g) (%)
5 40 48,2
5 45 78,4
20 40 35,9
20 45 65,8

Claims

REIVINDICACIONES
1. Espuma de fosfato de calcio autofraguable, caracterizada porque comprende un cemento de fosfato de calcio y al menos un agente surfactante biocompatible.
2. Procedimiento para la preparación de una espuma de fosfato de calcio autofraguable, caracterizado porque comprende la mezcla de dos fases: a) una fase líquida consistente en una o dos soluciones acuosas, una de las cuales comprende al menos un agente surfactante biocompatible, responsable de la obtención de la espuma, y b) una fase sólida en forma de polvo, que comprende uno o más compuestos como íuentes de calcio y fosfato, capaces de reaccionar con el agua de la fase líquida para formar un cemento, donde la fase líquida se mezcla después de someterse a un proceso de espumado, o el proceso de espumado se realiza después de la mezcla.
3. Procedimiento según la reivindicación 2, caracterizado porque el proceso de espumado se realiza mediante agitación o batido mecánico, siguiendo uno de los siguientes protocolos: i) espumado de la fase líquida, seguida de su mezcla con la fase sólida en polvo, ii) espumado de la solución acuosa que contiene el agente surfactante, seguida de su mezcla con la pasta obtenida previamente de la mezcla de la fase sólida con la otra solución acuosa que constituye junto con la primera la fase líquida, o iii) espumado de la pasta resultante de la mezcla de la fase sólida y la fase líquida, donde la espuma obtenida fragua después de la mezcla dando lugar a una estructura sólida.
4. Procedimiento según la reivindicación 2 ó 3, caracterizado porque el agente surfactante es un surfactante no iónico.
5. Procedimiento según la reivindicación 4, caracterizado porque el surfactante no iónico se selecciona entre monooleato de sorbitan, monopalmitato de sorbitan, polioxietileno sorbitan monooleato, polioxietileno sorbitan monolaurato, copolímeros polióxido de etileno-polióxido de propileno, fosíatidilcolina, fosfatidiletanolamida, fosfatidilserina, fosfatidilinositol, lisofosfatidilcolina, lisofosíatidiletanolamina, esfíngomielina, monolaurato de sacarosa, monooleato de sacarosa y otros esteres de sacarosa.
6. Procedimiento según la reivindicación 5, caracterizado porque el surfactante no iónico es polioxietileno sorbitan monooleato en una concentración en la fase líquida inferior o igual al 20% en peso.
7. Procedimiento según la reivindicación 6, donde la concentración en la fase líquida es inferior o igual al 10% en peso.
8. Procedimiento según la reivindicación 6, donde la concentración en la fase líquida es inferior o igual al 5% en peso.
9. Procedimiento según cualquiera de las reivindicaciones 2 a 8, caracterizado porque la relación entre la fase líquida y la fase sólida es superior a 0,25 ml/g.
10. Procedimiento según la reivindicación 9, donde la relación entre la fase líquida y la fase sólida es superior a 0,32 ml/g.
11. Procedimiento según la reivindicación 9, donde la relación entre la fase líquida y la fase sólida es superior a 0,35 ml/g.
12. Procedimiento según cualquiera de las reivindicaciones 2 a 11, caracterizado porque la fase líquida comprende además un acelerante de la reacción de fraguado seleccionado entre Na2HPO4, NaH2PO4, KH2PO4 y K2HPO4.
13. Procedimiento según la reivindicación 12, caracterizado porque dicho acelerante de la reacción de fraguado es Na2HPO4 en una concentración entre el 0,1 y el 10% en peso de la fase líquida.
14. Procedimiento según la reivindicación 13, donde la concentración de Na2HPO4 es de entre el 1 y el 5% en peso de la fase líquida.
15. Procedimiento según cualquiera de las reivindicaciones 2 a 14, caracterizado porque la fase líquida comprende además al menos un agente promotor de la cohesión del cemento seleccionados entre alginato de sodio, hidroxipropil metil celulosa, hidroxietil celulosa, hidroxipropil celulosa, metil celulosa, hidroxietil almidón, almidón soluble, ciclodextrina, dextran sulfato, polivinil pirrolidona, quitosano y ácido hialurónico.
16. Procedimiento según la reivindicación 15, caracterizado porque dicho agente promotor de la cohesión es alginato de sodio en una concentración entre el 0,05 y el 10% en peso.
17. Procedimiento según la reivindicación 16, donde la concentración de alginato de sodio es de entre el 0,1 y el 5% en peso.
18. Procedimiento según cualquiera de las reivindicaciones 2 a 17 caracterizado porque la fase sólida comprende como fuente de calcio y fosfato: i) al menos un compuesto de calcio y fosfato seleccionado entre fosfato tetracálcico, fosfato dicálcico anhidro, fosfato dicálcico dihidratado, fosfato tricálcico alfa, fosfato tricálcico beta, fosfato monocálcico monohidratado, hidroxiapatita, hidroxiapatita deficiente en calcio, fluoroapatita, fosfato de calcio amorfo, fosfato de calcio, sodio y potasio, fosfato de calcio y sodio, fosfato de calcio y potasio y pirofosfato de calcio; o alternativamente ii) al menos un compuesto de calcio seleccionado entre carbonato calcico, sulfato calcico, sulfato calcico hemihidratado, óxido de calcio y hidróxido de calcio, y al menos un compuesto de fosfato seleccionado entre ácido fosfórico y todos los fosfatos solubles; o alternativamente iii) una mezcla de al menos un compuesto definido en la opción i) y al menos un compuesto definido en la opción iii).
19. Procedimiento según la reivindicación 18, caracterizado porque la fase sólida comprende fosfato tricálcico alfa de una tamaño medio de partícula inferior a 100 micrómetros.
20. Procedimiento según reivindicación 19, donde el tamaño medio de partícula es inferior a 50 micrómetros.
21. Procedimiento según reivindicación 19, donde el tamaño medio de partícula es inferior a 30 micrómetros.
22. Procedimiento según reivindicación 19, donde el tamaño medio de partícula es inferior a 15 micrómetros.
23. Procedimiento según cualquiera de las reivindicaciones 2 a 22, caracterizado porque la fase sólida comprende además fosfato tricálcico precipitado como aditivo que actúa como semilla, en una cantidad inferior al 10% en peso respecto a la fase sólida.
24. Procedimiento según la reivindicación 23, donde la cantidad de fosfato tricálcico es inferior al 5% en peso respecto a la fase sólida.
25. Procedimiento según cualquiera de las reivindicaciones 2 a 24, caracterizado porque la fase sólida comprende además granulos de una sustancia biodegradable para aumentar la interconectividad entre los poros de la espuma estando comprendidas las dimensiones de estos granulos entre los 10 y los 500 micrómetros.
26. Procedimiento según la reivindicación 25, donde caracterizado porque los granulos son de naturaleza polimérica.
27. Procedimiento según la reivindicación 25, donde caracterizado porque los granulos son de sales calcicas.
28. Procedimiento según la reivindicación 25, donde caracterizado porque los granulos son de vidrios solubles.
29. Procedimiento según cualquiera de las reivindicaciones 2 a 28, caracterizado porque la fase líquida comprende además uno o más agentes para mejorar la inyectabilidad.
30. Espuma de fosíato de calcio autofraguable obtenible mediante el procedimiento de cualquiera de las reivindicaciones 2 a 29.
31. Espuma según las reivindicaciones 1 y 30, caracterizada porque comprende uno o más agentes biológicamente activos.
32. Espuma según la reivindicación 31, donde los agentes biológicamente activos se seleccionan entre factores de crecimiento, substancias anticancerígenas, antibióticos y antioxidantes, o una mezcla de los mismos.
33. Estructura sólida obtenible mediante fraguado de la espuma según cualquiera de las reivindicaciones 1 y 30 a 32, con una porosidad total comprendida entre el 25 y el 90% en volumen y una macroporosidad comprendida entre el 2 y el 80% en volumen.
34. Estructura sólida según la reivindicación 33, que comprende macroporos de un dimámetro de entre 20 y 800 μm.
35. Estructura sólida según la reivindicación 34, donde el diámetro de los macroporos es de entre 100 y 700 μm.
36. Uso de la espuma de las reivindicaciones 1 y 30 a 32 para la fabricación de un una estructura sólida para la regeneración ósea, tanto en estado pastoso como prefraguado.
37. Uso de la espuma de las reivindicaciones 1 y 30 a 32 para la fabricación de un soporte o sustrato para ingeniería de tejidos.
38. Un kit para la preparación de una espuma de fosfato de calcio autofraguable según cualquiera de las reivindicaciones 1 y 30 a 32, caracterizado porque comprende: a) una fase líquida consistente en una o dos soluciones acuosas, una de las cuales comprende al menos un agente surfactante biocompatible, responsable de la obtención de la espuma, y b) una fase sólida en forma de polvo, que comprende uno o más compuestos como íuentes de calcio y fosfato, capaces de reaccionar con el agua de la fase líquida para formar un cemento.
PCT/ES2005/070119 2004-08-12 2005-08-11 Espuma de fosfato de calcio autofraguable e inyectable WO2006030054A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL05782615T PL1787626T3 (pl) 2004-08-12 2005-08-11 Wstrzykiwalna, samowiążąca piana fosforanowo-wapniowa
EP05782615.8A EP1787626B1 (en) 2004-08-12 2005-08-11 Injectable, self-setting calcium phosphate foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200402045 2004-08-12
ES200402045A ES2246726B2 (es) 2004-08-12 2004-08-12 Espuma de fosfato de calcio autofraguable e inyectable.

Publications (1)

Publication Number Publication Date
WO2006030054A1 true WO2006030054A1 (es) 2006-03-23

Family

ID=35883640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070119 WO2006030054A1 (es) 2004-08-12 2005-08-11 Espuma de fosfato de calcio autofraguable e inyectable

Country Status (4)

Country Link
EP (1) EP1787626B1 (es)
ES (1) ES2246726B2 (es)
PL (1) PL1787626T3 (es)
WO (1) WO2006030054A1 (es)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1891984A1 (en) * 2006-08-24 2008-02-27 Graftys Macroporous and highly resorbable apatitic calcium-phosphate cement
US20090028960A1 (en) * 2007-07-25 2009-01-29 Alain Leonard Calcium phosphate-based adhesive formulation for bone filling
US7910124B2 (en) 2004-02-06 2011-03-22 Georgia Tech Research Corporation Load bearing biocompatible device
US8002830B2 (en) 2004-02-06 2011-08-23 Georgia Tech Research Corporation Surface directed cellular attachment
US8998866B2 (en) 2010-07-02 2015-04-07 Smith & Nephew Plc Provision of wound filler
US9155543B2 (en) 2011-05-26 2015-10-13 Cartiva, Inc. Tapered joint implant and related tools
US9907663B2 (en) 2015-03-31 2018-03-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
US9956121B2 (en) 2007-11-21 2018-05-01 Smith & Nephew Plc Wound dressing
US10071190B2 (en) 2008-02-27 2018-09-11 Smith & Nephew Plc Fluid collection
US10143784B2 (en) 2007-11-21 2018-12-04 T.J. Smith & Nephew Limited Suction device and dressing
US10159604B2 (en) 2010-04-27 2018-12-25 Smith & Nephew Plc Wound dressing and method of use
US10350072B2 (en) 2012-05-24 2019-07-16 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10537657B2 (en) 2010-11-25 2020-01-21 Smith & Nephew Plc Composition I-II and products and uses thereof
US10675392B2 (en) 2007-12-06 2020-06-09 Smith & Nephew Plc Wound management
US10758374B2 (en) 2015-03-31 2020-09-01 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US11045598B2 (en) 2007-11-21 2021-06-29 Smith & Nephew Plc Vacuum assisted wound dressing
US11253399B2 (en) 2007-12-06 2022-02-22 Smith & Nephew Plc Wound filling apparatuses and methods
US11638666B2 (en) 2011-11-25 2023-05-02 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
US11931226B2 (en) 2013-03-15 2024-03-19 Smith & Nephew Plc Wound dressing sealant and use thereof
US11938231B2 (en) 2010-11-25 2024-03-26 Smith & Nephew Plc Compositions I-I and products and uses thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116321A2 (en) * 2009-04-06 2010-10-14 Universitat Politecnica De Catalunya Biopolymer-containing calcium phosphate foam, process for obtaining thereof and use for bone regeneration
ES2714701T3 (es) 2010-11-10 2019-05-29 Stryker European Holdings I Llc Proceso para la preparación de una espuma ósea polimérica
US9561961B2 (en) 2011-08-19 2017-02-07 Pioneer Surgical Technology, Inc. Injectable fillers for aesthetic medical enhancement and for therapeutic applications
CN113499482B (zh) * 2021-06-23 2022-11-25 西安理工大学 一种应用于骨创伤固定发泡材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880610A (en) 1988-04-20 1989-11-14 Norian Corporation In situ calcium phosphate minerals--method and composition
USRE33161E (en) 1982-04-29 1990-02-06 American Dental Association Health Foundation Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements
USRE33221E (en) 1982-04-29 1990-05-22 American Dental Association Health Foundation Dental restorative cement pastes
US5525148A (en) 1993-09-24 1996-06-11 American Dental Association Health Foundation Self-setting calcium phosphate cements and methods for preparing and using them
CN1193614A (zh) * 1998-02-05 1998-09-23 华东理工大学 含有成孔剂的多孔磷酸钙骨水泥
US6206957B1 (en) 1998-04-16 2001-03-27 Merck Patent Gesellschaft Mit Beschrankter Haftung Tricalcium phosphate-containing biocement pastes comprising cohesion promoters
US6375935B1 (en) 2000-04-28 2002-04-23 Brent R. Constantz Calcium phosphate cements prepared from silicate solutions
US6642285B1 (en) * 1999-02-02 2003-11-04 Robert Mathys Stiftung Implant comprising calcium cement and hydrophobic liquid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007639A1 (en) * 1998-08-07 2000-02-17 Tissue Engineering, Inc. Bone precursor compositions
NZ537093A (en) * 2002-06-19 2006-01-27 Dr Hydraulic cement based on calcium phosphate for surgical use

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33161E (en) 1982-04-29 1990-02-06 American Dental Association Health Foundation Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements
USRE33221E (en) 1982-04-29 1990-05-22 American Dental Association Health Foundation Dental restorative cement pastes
US4880610A (en) 1988-04-20 1989-11-14 Norian Corporation In situ calcium phosphate minerals--method and composition
US5820632A (en) 1988-04-20 1998-10-13 Norian Corporation Prepared calcium phosphate composition and method
US5525148A (en) 1993-09-24 1996-06-11 American Dental Association Health Foundation Self-setting calcium phosphate cements and methods for preparing and using them
CN1193614A (zh) * 1998-02-05 1998-09-23 华东理工大学 含有成孔剂的多孔磷酸钙骨水泥
US6206957B1 (en) 1998-04-16 2001-03-27 Merck Patent Gesellschaft Mit Beschrankter Haftung Tricalcium phosphate-containing biocement pastes comprising cohesion promoters
US6642285B1 (en) * 1999-02-02 2003-11-04 Robert Mathys Stiftung Implant comprising calcium cement and hydrophobic liquid
US6375935B1 (en) 2000-04-28 2002-04-23 Brent R. Constantz Calcium phosphate cements prepared from silicate solutions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SARDA S. ET AL: "Influence of air-entraining agent on bone cement macroporosity", KEY ENGINEERING MATERIALS, vol. 218-220, 2002, pages 335 - 338, XP008137554 *
SARDA S. ET AL: "Influence of surfactant molecules as air-entraining agent for bone cement macroporosity", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, PART A, vol. 65A, no. 2, 2003, pages 215 - 221, XP002546856 *
See also references of EP1787626A4 *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910124B2 (en) 2004-02-06 2011-03-22 Georgia Tech Research Corporation Load bearing biocompatible device
US8002830B2 (en) 2004-02-06 2011-08-23 Georgia Tech Research Corporation Surface directed cellular attachment
US8486436B2 (en) 2004-02-06 2013-07-16 Georgia Tech Research Corporation Articular joint implant
US8895073B2 (en) 2004-02-06 2014-11-25 Georgia Tech Research Corporation Hydrogel implant with superficial pores
US9642939B2 (en) 2006-08-24 2017-05-09 Graftys Macroporous and highly resorbable apatitic calcium-phosphate cement
WO2008023254A1 (en) * 2006-08-24 2008-02-28 Graftys Macroporous and highly resorbable apatitic calcium-phosphate cement
EP1891984A1 (en) * 2006-08-24 2008-02-27 Graftys Macroporous and highly resorbable apatitic calcium-phosphate cement
US20090028960A1 (en) * 2007-07-25 2009-01-29 Alain Leonard Calcium phosphate-based adhesive formulation for bone filling
US20090028949A1 (en) * 2007-07-25 2009-01-29 Alain Leonard Calcium phosphate-based adhesive formulation for bone filling with swelling properties
US11364151B2 (en) 2007-11-21 2022-06-21 Smith & Nephew Plc Wound dressing
US11766512B2 (en) 2007-11-21 2023-09-26 T.J.Smith And Nephew, Limited Suction device and dressing
US11701266B2 (en) 2007-11-21 2023-07-18 Smith & Nephew Plc Vacuum assisted wound dressing
US11351064B2 (en) 2007-11-21 2022-06-07 Smith & Nephew Plc Wound dressing
US11344663B2 (en) 2007-11-21 2022-05-31 T.J.Smith And Nephew, Limited Suction device and dressing
US9956121B2 (en) 2007-11-21 2018-05-01 Smith & Nephew Plc Wound dressing
US10016309B2 (en) 2007-11-21 2018-07-10 Smith & Nephew Plc Wound dressing
US10555839B2 (en) 2007-11-21 2020-02-11 Smith & Nephew Plc Wound dressing
US10143784B2 (en) 2007-11-21 2018-12-04 T.J. Smith & Nephew Limited Suction device and dressing
US11179276B2 (en) 2007-11-21 2021-11-23 Smith & Nephew Plc Wound dressing
US10231875B2 (en) 2007-11-21 2019-03-19 Smith & Nephew Plc Wound dressing
US11129751B2 (en) 2007-11-21 2021-09-28 Smith & Nephew Plc Wound dressing
US11045598B2 (en) 2007-11-21 2021-06-29 Smith & Nephew Plc Vacuum assisted wound dressing
US10744041B2 (en) 2007-11-21 2020-08-18 Smith & Nephew Plc Wound dressing
US11253399B2 (en) 2007-12-06 2022-02-22 Smith & Nephew Plc Wound filling apparatuses and methods
US10675392B2 (en) 2007-12-06 2020-06-09 Smith & Nephew Plc Wound management
US10071190B2 (en) 2008-02-27 2018-09-11 Smith & Nephew Plc Fluid collection
US11141520B2 (en) 2008-02-27 2021-10-12 Smith & Nephew Plc Fluid collection
US10159604B2 (en) 2010-04-27 2018-12-25 Smith & Nephew Plc Wound dressing and method of use
US11058587B2 (en) 2010-04-27 2021-07-13 Smith & Nephew Plc Wound dressing and method of use
US11090195B2 (en) 2010-04-27 2021-08-17 Smith & Nephew Plc Wound dressing and method of use
US8998866B2 (en) 2010-07-02 2015-04-07 Smith & Nephew Plc Provision of wound filler
US9801761B2 (en) 2010-07-02 2017-10-31 Smith & Nephew Plc Provision of wound filler
US10537657B2 (en) 2010-11-25 2020-01-21 Smith & Nephew Plc Composition I-II and products and uses thereof
US11938231B2 (en) 2010-11-25 2024-03-26 Smith & Nephew Plc Compositions I-I and products and uses thereof
US11730876B2 (en) 2010-11-25 2023-08-22 Smith & Nephew Plc Composition I-II and products and uses thereof
US10376368B2 (en) 2011-05-26 2019-08-13 Cartiva, Inc. Devices and methods for creating wedge-shaped recesses
US11278411B2 (en) 2011-05-26 2022-03-22 Cartiva, Inc. Devices and methods for creating wedge-shaped recesses
US11944545B2 (en) 2011-05-26 2024-04-02 Cartiva, Inc. Implant introducer
US9526632B2 (en) 2011-05-26 2016-12-27 Cartiva, Inc. Methods of repairing a joint using a wedge-shaped implant
US9155543B2 (en) 2011-05-26 2015-10-13 Cartiva, Inc. Tapered joint implant and related tools
US11638666B2 (en) 2011-11-25 2023-05-02 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
US10350072B2 (en) 2012-05-24 2019-07-16 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US11931226B2 (en) 2013-03-15 2024-03-19 Smith & Nephew Plc Wound dressing sealant and use thereof
US10973644B2 (en) 2015-03-31 2021-04-13 Cartiva, Inc. Hydrogel implants with porous materials and methods
US11717411B2 (en) 2015-03-31 2023-08-08 Cartiva, Inc. Hydrogel implants with porous materials and methods
US11839552B2 (en) 2015-03-31 2023-12-12 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US10758374B2 (en) 2015-03-31 2020-09-01 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US9907663B2 (en) 2015-03-31 2018-03-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
US11701231B2 (en) 2015-04-14 2023-07-18 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10952858B2 (en) 2015-04-14 2021-03-23 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US11020231B2 (en) 2015-04-14 2021-06-01 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods

Also Published As

Publication number Publication date
EP1787626A1 (en) 2007-05-23
ES2246726B2 (es) 2007-11-01
ES2246726A1 (es) 2006-02-16
EP1787626B1 (en) 2013-10-16
EP1787626A4 (en) 2009-12-02
PL1787626T3 (pl) 2014-05-30

Similar Documents

Publication Publication Date Title
WO2006030054A1 (es) Espuma de fosfato de calcio autofraguable e inyectable
Lodoso-Torrecilla et al. Calcium phosphate cements: Optimization toward biodegradability
Almirall et al. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste
Dorozhkin Self-setting calcium orthophosphate formulations: cements, concretes, pastes and putties
AU2007287334B2 (en) Macroporous and highly resorbable apatitic calcium-phosphate cement
EP1301219B1 (en) A composition for an injectable bone mineral substitute material
CA2487994C (en) Hydraulic cement based on calcium phosphate for surgical use
AU777599B2 (en) Porous calcium phosphate cement
US6425949B1 (en) Hydraulic surgical cement
Vezenkova et al. Sudoku of porous, injectable calcium phosphate cements–Path to osteoinductivity
Dorozhkin Self-setting calcium orthophosphate (CaPO4) formulations and their biomedical applications
Ginebra et al. Injectable biomedical foams for bone regeneration
ES2755421T3 (es) Nuevo procedimiento de fabricación en una única etapa de biomateriales alveolares
US20120115780A1 (en) Porogen Containing Calcium Phosphate Cement Compositions
WO2010116321A2 (en) Biopolymer-containing calcium phosphate foam, process for obtaining thereof and use for bone regeneration
EP1023032B1 (en) Hydraulic surgical cement
WO2002041844A2 (en) Chemotherapeutic composition using nanocrystalline calcium phosphate paste
Hablee et al. Recent developments on injectable calcium phosphate bone cement
Dorozhkin Self-Setting Calcium Orthophosphate (CaPO 4) Formulations
Dorozhkin Self-Setting Formulations Calcium Orthophosphate (CaPO4)
Tsuru et al. Bone cements utilised for the reconstruction of hard tissue: basic understanding and recent topics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005782615

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005782615

Country of ref document: EP