WO2001048114A1 - Composition for polishing magnetic disk substrate and polishing method, and magnetic disk substrate polished thereby - Google Patents

Composition for polishing magnetic disk substrate and polishing method, and magnetic disk substrate polished thereby Download PDF

Info

Publication number
WO2001048114A1
WO2001048114A1 PCT/JP2000/009230 JP0009230W WO0148114A1 WO 2001048114 A1 WO2001048114 A1 WO 2001048114A1 JP 0009230 W JP0009230 W JP 0009230W WO 0148114 A1 WO0148114 A1 WO 0148114A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
magnetic disk
disk substrate
composition according
polishing composition
Prior art date
Application number
PCT/JP2000/009230
Other languages
French (fr)
Japanese (ja)
Inventor
Norihiko Miyata
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to AU22252/01A priority Critical patent/AU2225201A/en
Publication of WO2001048114A1 publication Critical patent/WO2001048114A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a magnetic disk substrate polishing composition and a polishing method, and more particularly to a magnetic disk substrate polishing method capable of obtaining a highly accurate magnetic disk surface suitable for flying a magnetic head with a low flying height.
  • the present invention relates to a composition and a polishing method.
  • the present invention also relates to a magnetic disk substrate obtained using such a composition or method. Background art
  • Magnetic disks are widely used as a means of high-speed access in the external storage devices of computer-type processors.
  • a typical example of this magnetic disk is a substrate obtained by electrolessly plating NiP on the surface of an A1 alloy substrate, and after polishing this substrate surface, a Cr alloy base film, a Co alloy magnetic The film and the carbon protective film were formed sequentially by sputtering.
  • the magnetic head flying at a high speed while flying at a predetermined height will collide with the protrusion and be damaged.
  • the magnetic disk substrate has protrusions or polishing scratches, when Cr alloy base film or Co alloy magnetic film is formed, protrusions appear on the surface of those films, and defects due to polishing scratches occur.
  • the surface of the magnetic disk does not become a smooth surface with high accuracy, it is necessary to precisely polish the substrate in order to increase the accuracy of the disk surface.
  • polishing compositions which eliminate projections or reduce the height thereof as much as possible and which hardly cause polishing scratches.
  • Japanese Patent Laid-Open No. H10-2012 (using a composition obtained by adding aluminum nitrate to titania) is used to grind titanium oxide particles in the sub-micron mouth. Since they are used as particles, they achieve higher surface accuracy and higher polishing rate than conventional products. However, achieving the recently required level of surface accuracy is difficult because of the hardness of the abrasive material.
  • Japanese Patent Application Laid-Open No. Hei 9-2012 using a composition obtained by adding aluminum nitrate and an anti-gelling agent to the colloidal silica force) and The composition described in 2) uses aluminum oxide fine particles with low hardness for the abrasive grains, so that surface accuracy can be easily obtained. It was difficult to achieve a usable polishing rate.
  • the quality required of an aluminum magnetic disk substrate polishing composition that enables high-density magnetic recording is the achievement of a high-precision disk surface that enables low flying of the head.
  • a magnetic disk substrate polishing composition and a polishing method that enable this, and a magnetic disk substrate obtained using the same is a demand for a magnetic disk substrate polishing composition and a polishing method that enable this, and a magnetic disk substrate obtained using the same. Disclosure of the invention
  • an object of the present invention to provide a magnetic disk substrate capable of achieving high-density recording without causing surface roughness of the magnetic disk substrate, generating protrusions and polishing scratches, and capable of polishing at an economical speed.
  • An object of the present invention is to provide a polishing composition of the present invention.
  • Another object of the present invention is to provide a magnetic disk substrate method using such a composition.
  • Still another object of the present invention is to provide a magnetic disk substrate obtained by using such a composition or a polishing method.
  • the present inventors have conducted intensive studies on an abrasive for achieving a high-accuracy polished surface required for a low-flying-type aluminum magnetic disk.
  • the present inventors have found a polishing composition exhibiting excellent performance for polishing a disk, and have reached the present invention. That is, the present invention basically includes the following inventions.
  • a composition for polishing a magnetic disk substrate comprising water, silicon oxide, a metal coordination compound, and an oxidizing agent.
  • polishing composition according to any one of the above (1) to (6), wherein the silicon oxide is at least one selected from colloidal silica, fumed silica, and white carbon.
  • the phosphonic acid compound is at least one selected from phosphoric acid, 1-hydroxyxetane-11,1-diphosphonic acid, and aminotrimethylenephosphonic acid. Composition.
  • a method for polishing a magnetic disk substrate provided with a Ni-P plating A method for polishing a magnetic disk substrate, which suppresses conversion of trivalent Fe ions to oxides or hydroxides.
  • the silicon oxide contained as an abrasive in the polishing composition of the present invention is not particularly limited, and may be colloidal silica, fumed silica, or white carbon. These may be used alone or in combination of two or more. It is preferred that the average particle size of the secondary particles of oxide Kei element is 0. 0 3 ⁇ 0. 5 ⁇ ⁇ .
  • the average particle diameter of the secondary particles is a value measured by a laser-Doppler frequency analysis type particle size distribution analyzer, Microtrac UPA150 (manufactured by oneywe 11).
  • the average particle diameter of the secondary particles of silicon oxide contained as an abrasive in the polishing composition of the present invention is preferably in the range of 0.3 to 0.5 ⁇ , more preferably 0.03 to 0.5 ⁇ . Those having 4 to 0.2 ⁇ m are more preferable.
  • the metal coordination compound used in the present invention is a complex salt such as a metal chelate compound in a broad sense.
  • the metal chelate compound include, but are not limited to, EDTA (ethylenediaminetetraacetic acid) and N-diaminetriacetic acid hydroxy.
  • examples include metal salts having ligands such as ethylene (NHEDTA) and ammonia triacetic acid (NTA).
  • NHEDTA ethylenediaminetetraacetic acid
  • NTA ammonia triacetic acid
  • As a metal of the metal salt it has a high oxidizing ability with respect to Ni, and it can exist in at least two or more different valence states other than zero valence. A metal having an oxidation number higher than the oxidation number in another valence state is suitable, and iron (F e) is particularly preferable. The possible reasons are as follows.
  • Fe is more stable than trivalent than divalent ions, and the trivalent Fe ions oxidize Ni to become divalent Fe ions.
  • the oxidized Ni becomes a hydrate or an oxide in the presence of water. Polishing proceeds by removing the hydrate or oxide with abrasive grains.
  • the divalent Fe ion is converted to a trivalent ion by the oxidizing agent described below, and is retained as a metal chelate compound, for example, an iron salt of EDTA. It is assumed that these reactions are performed repeatedly.
  • the metal chelate compound used in the present invention is not particularly limited, but is preferably an iron salt of EDTA, and more preferably a monoammonium salt or a monosodium salt. It is effective to add a large amount of iron nitrate, iron chloride, etc. if only increasing the polishing rate. It can be tricky.
  • the oxidizing agent used in the present invention is not particularly limited, but may be an ammonium salt, a potassium salt, a sodium salt, an ammonium salt of sodium peroxoborate, a sodium salt, or a sodium salt of peroxodisulfuric acid.
  • Peroxo acid salts such as lithium salts and potassium salts, peroxides such as permanganate, dichromate, nitrate, sulfate, and hydrogen peroxide, and perchlorates, etc. Salts are preferred, and ammonium peroxodisulfate is particularly preferred. These may be used alone or in combination of two or more.
  • the oxidizing agent oxidizes not only Fe which has become divalent by oxidizing Ni but also Ni, the polishing rate is increased by a synergistic effect of these.
  • the Fe ions returned from divalent to trivalent by the oxidizing agent also change to hydroxides or oxides in the absence of a complex such as a chelate compound. In this state, the trivalent Fe ions are effectively used. Does not work.
  • the abrasive is colloidal silica
  • gelation may occur.
  • EDTA iron salt the dispersibility becomes better and gelation can be suppressed.
  • EDTA iron salt is used as the Fe source, a high polishing rate can be obtained even when the pH of the polishing composition is set to 1 to 8, so the use of EDTA iron salt is trivalent. It is very useful in terms of iron stability, gelation prevention, and pH.
  • the concentration of silicon oxide in the polishing composition of the present invention is 3% by mass. /. (Hereinafter, unless otherwise specified,% is expressed by mass./.) If it is less than 10%, the polishing rate is significantly reduced. The polishing rate increases as the concentration increases. However, when the concentration exceeds 30%, not only the polishing rate does not increase but also gelation tends to occur particularly in colloidal silica. Therefore, considering the economic efficiency, the upper limit of the silicon oxide concentration is practically 30%. Therefore, the concentration of silicon oxide in the composition is preferably in the range of 3 to 30%, more preferably 5 to 15%.
  • the amount of the metal coordination compound used in the polishing composition of the present invention is preferably from 1 to 10%, more preferably from 2 to 6%.
  • the amount of the oxidizing agent used in the polishing composition of the present invention is preferably from 1 to 10%, more preferably from 3 to 7%.
  • the amount of the oxidizing agent is less than 1%, the effect of accelerating the polishing is reduced. In addition, even if the added amount of the oxidizing agent exceeds 10%, the effect of promoting the polishing is not increased.
  • the pH adjuster used in the present invention is not particularly limited, but may be nitric acid, At least one member selected from the group consisting of sulfonic acid compounds is preferred.
  • Specific examples of the phosphonic acid compound include phosphoric acid, 1-hydroxylethane 1,1,1-diphosphonic acid (C 2 H 6 ⁇ 7 P 2) Moshiku is ⁇ Mi Roh Application Benefits Mechirenhosuho phosphate (C 2 H 1 2 ⁇ 9 P 3 N) can be exemplified. These may be used alone or in combination of two or more. These are preferably added within 2%. This allows the pH in the composition to be adjusted preferably to 1-8.
  • the concentrations of the above-mentioned components are those at the time of polishing the magnetic disk substrate.
  • the polishing composition for a magnetic disk substrate of the present invention may contain, in addition to the above components, additives usually used in the polishing composition, such as a surfactant and a preservative. However, careful attention must be paid to the type and amount of addition so as not to cause gelation.
  • the polishing composition of the present invention is prepared by suspending silicon oxide in water, adding a metal coordination compound such as iron salt of EDTA, an oxidizing agent such as ammonium peroxodisulfate, a pH adjusting agent, and the like. can do. When used, the mixture of all components may be diluted and used.However, two sets of additive components, for example, water, silicon oxide, metal coordination compound and water, oxidizing agent, pH adjustment Prepare the ingredients separately and mix the two sets.
  • the polishing composition of the present invention can be used for a substrate for high recording density (typically, a recording density of 3 Gbit / inch 2 or more, typified by a magnetic disk for magnetic head utilizing the magnetoresistance (MR) effect). However, it can also be applied to magnetic disks having a recording density lower than that, from the viewpoint of improving reliability.
  • MR magnetoresistance
  • the magnetic hard disk substrate to which the polishing composition of the present invention is applied is not particularly limited, but an aluminum (including alloy) substrate, in particular, NiP is plated by, for example, electroless plating.
  • an aluminum (including alloy) substrate in particular, NiP is plated by, for example, electroless plating.
  • the polishing method is generally a method in which a polishing pad used for a slurry-like abrasive is rubbed on a magnetic disk substrate, and the pad or the substrate is rotated while supplying slurry between the pad and the substrate.
  • a magnetic disk made from a substrate polished with the polishing composition of the present invention has a very low frequency of occurrence of minute defects such as micropits and microcracks, and has a low surface roughness (Ra). About 3 A, very excellent in smoothness.
  • Table 1 shows silicon oxide (silica) and titania used in Examples and Comparative Examples.
  • White carbon (E-150 J) manufactured by Nippon Silica Kogyo Co., Ltd. and fumed silica (AERO SIL 50) manufactured by Nihon Aerosil Co., Ltd. are pulverized by a medium stirring mill, and coarse particles are formed by sizing. After removal, silicon oxide having an average secondary particle diameter of 0.1 ⁇ m was first obtained. Next, water, EDTA iron ammonium, ammonium peroxodisulfate, and a pH adjuster were added at the ratios shown in Table 2 to prepare various aqueous polishing compositions. The polishing apparatus and polishing conditions shown below were used. Was polished. The results are shown in Table 2.
  • Polishing pad Suede type (Polytex DG, Dale mouth)
  • Polishing rate ⁇ Calculated from weight loss before and after polishing of aluminum disk
  • the depth of the polishing flaws and polishing pits was determined by three-dimensional mode analysis using a stylus-type surface analyzer P-12 (manufactured by TENCOR).
  • Table 2 shows the evaluation results of the polishing characteristics.
  • the polishing flaw A in Table 2 has a polishing flaw depth of 5 nm or less, and the pit A has a pit depth of 5 nm or less.
  • Polishing scratch B has a polishing scratch depth of 5 to 10 nm, and pit B has a pit depth of 5 to 10 nm. Those having a polishing scratch depth of more than 10 nm and those having a pit depth of more than 10 nm did not occur in both Examples and Comparative Examples. (Comparative Examples 1 to 5)
  • Titanium oxide (Super Titania F-12) manufactured by Showa Titanium Co., Ltd. is pulverized by a medium stirring mill and coarse particles are removed by sizing to obtain titanium oxide having an average secondary particle diameter of 1.3 m. Was. Next, water and aluminum nitrate were added at the ratios shown in Table 2 to prepare an aqueous polishing composition, and polished in the same manner as in the examples. The results are shown in Table 2.
  • the surface roughness of the disk can be extremely reduced, and the polishing can be performed at a high speed.
  • Magnetic disks using polished disks are useful as low-floating-type hard disks, and enable high-density recording.

Abstract

A composition for polishing a magnetic disk substrate containing water, silicon oxide, a metal coordination compound, and an oxidizing agent. The composition may further contain a pH adjusting agent. A magnetic disk substrate polishing method using such compositions and a magnetic disk substrate polished using such compositions by the polishing method are also disclosed. The surface roughness of the magnetic disk substrate is made small using such compositions or by the method. Therefore high-density recording is possible without producing any projections and polishing flaws. A magnetic disk substrate can be polished at an economical speed.

Description

明 細 書 磁気ディスク基板研磨用組成物および研磨方法、 ならびにそれにより研 磨された磁気ディスク基板 技術分野  Description Magnetic disk substrate polishing composition and polishing method, and magnetic disk substrate polished thereby
本発明は磁気ディスク基板研磨用組成物および研磨方法に関し、 さら に詳しくは、 磁気へッ ドが低浮上量で飛行するのに適した精度の高い磁 気ディスク表面が得られる磁気ディスク基板研磨用組成物および研磨 方法に関する。 本発明はまた、 そのような組成物または方法を用いて得 られた磁気ディスク基板に関する。 背景技術  The present invention relates to a magnetic disk substrate polishing composition and a polishing method, and more particularly to a magnetic disk substrate polishing method capable of obtaining a highly accurate magnetic disk surface suitable for flying a magnetic head with a low flying height. The present invention relates to a composition and a polishing method. The present invention also relates to a magnetic disk substrate obtained using such a composition or method. Background art
コンピューターゃヮードプロセッサ一の外部記憶装置の中で高速で アクセス出来る手段として磁気ディスク (メモリーハードディスク) が 広く使われている。 この磁気ディスクの代表的な一例は、 A 1合金基板 の表面に N i Pを無電解メ ツキしたものを基板とし、 この基板を表面研 磨した後、 C r合金下地膜、 C o合金磁性膜、 カーボン保護膜を順次ス パッターで形成したものである。  Magnetic disks (memory hard disks) are widely used as a means of high-speed access in the external storage devices of computer-type processors. A typical example of this magnetic disk is a substrate obtained by electrolessly plating NiP on the surface of an A1 alloy substrate, and after polishing this substrate surface, a Cr alloy base film, a Co alloy magnetic The film and the carbon protective film were formed sequentially by sputtering.
一般に、 磁気ディスク表面に磁気へッ ド浮上量以上の高さを有する突 起が残っていると、 所定高さで浮上しながら高速で飛行する磁気へッ ド がその突起に衝突して損傷する原因になる。 また、 磁気ディスク基板に 突起や研磨傷などがあると C r合金下地膜や C o合金磁性膜などを形 成したとき、 それらの膜の表面に突起が現れ、 また研磨傷に基づく欠陥 が生じ、 磁気ディスク表面が精度の高い平滑面にならないので、 デイス ク表面の精度を上げるには基板を精密に研磨する必要がある。  Generally, if a protrusion with a height greater than the magnetic head flying height remains on the surface of a magnetic disk, the magnetic head flying at a high speed while flying at a predetermined height will collide with the protrusion and be damaged. Cause. Also, if the magnetic disk substrate has protrusions or polishing scratches, when Cr alloy base film or Co alloy magnetic film is formed, protrusions appear on the surface of those films, and defects due to polishing scratches occur. However, since the surface of the magnetic disk does not become a smooth surface with high accuracy, it is necessary to precisely polish the substrate in order to increase the accuracy of the disk surface.
このため、 磁気ディスク基板の研磨において、 突起物をなく し、 また はその高さをできるだけ低く し、 かつ研磨傷が生じ難い研磨用組成物と して多くのものが提案されてきた。  For this reason, in polishing a magnetic disk substrate, many polishing compositions have been proposed as polishing compositions which eliminate projections or reduce the height thereof as much as possible and which hardly cause polishing scratches.
なかでも特開平 1 0— 1 2 1 0 3 5 (チタニアに硝酸アルミニウムを 添加してなる組成物を使用) はサブミク口ンの酸化チタニウム粒子を砥 粒と して使用しているので従来に比較して高い面精度、 研磨速度は達成 しゃすい。 しかしながら、 最近求められる面精度のレベルを達成するの は、 砥粒物質の硬度の影響があるため、 困難な状況である。 Among them, Japanese Patent Laid-Open No. H10-2012 (using a composition obtained by adding aluminum nitrate to titania) is used to grind titanium oxide particles in the sub-micron mouth. Since they are used as particles, they achieve higher surface accuracy and higher polishing rate than conventional products. However, achieving the recently required level of surface accuracy is difficult because of the hardness of the abrasive material.
また、 特開平 9一 2 0 4 6 5 7 (コロイダルシリ力に硝酸アルミニゥ ム、 ゲル化防止剤を添加してなる組成物を使用)、 特開平 9 一 2 0 4 6 5 8 (ヒユーム ドシリ力に硝酸アルミニウムを添加してなる組成物を使 用) に記載の組成物は、 砥粒に硬度の小さい酸化ケィ素微粒子を使用し ているため面精度は得られやすいが、 現状の実生産に使用できる研磨速 度の達成が困難であった。  Further, Japanese Patent Application Laid-Open No. Hei 9-2012 (using a composition obtained by adding aluminum nitrate and an anti-gelling agent to the colloidal silica force) and The composition described in 2) uses aluminum oxide fine particles with low hardness for the abrasive grains, so that surface accuracy can be easily obtained. It was difficult to achieve a usable polishing rate.
研磨速度を高めるため、 一つには多くの酸化剤の使用が過去に提案さ れ実用化されてきており、 二つには F e塩の使用も提案されてきた (特 開平 1 0— 2 0 4 4 1 6 )。 しかし、 これらについても現状の実生産に 使用できる研磨速度に比べ不十分であった。  In order to increase the polishing rate, the use of many oxidizing agents has been proposed and put into practical use in the past, and the use of Fe salts has been proposed in two cases. 0 4 4 16). However, these were also insufficient compared with the polishing rates that can be used for actual production at present.
高密度磁気記録を可能とするアルミユウム磁気ディスク基板研磨用 組成物に要求される品質は、 へッ ドの低浮上を可能とする高精度ディス. ク面の達成である。 これを可能にする磁気ディスク基板研磨用組成物お よび研磨方法ならびにそれを用いて得られる磁気ディスク基板が望ま れている。 発明の開示  The quality required of an aluminum magnetic disk substrate polishing composition that enables high-density magnetic recording is the achievement of a high-precision disk surface that enables low flying of the head. There is a demand for a magnetic disk substrate polishing composition and a polishing method that enable this, and a magnetic disk substrate obtained using the same. Disclosure of the invention
従って、 本発明の目的は、 磁気ディスク基板の表面粗さが小さく、 か つ突起や研磨傷を発生させず、 高密度記録が達成可能であり、 しかも経 済的な速度で研磨できる磁気ディスク基板の研磨用組成物を提供する ことにある。  Accordingly, it is an object of the present invention to provide a magnetic disk substrate capable of achieving high-density recording without causing surface roughness of the magnetic disk substrate, generating protrusions and polishing scratches, and capable of polishing at an economical speed. An object of the present invention is to provide a polishing composition of the present invention.
本発明の別の目的はそのよ うな組成物を用いた磁気ディスク基板方 法を提供することにある。  Another object of the present invention is to provide a magnetic disk substrate method using such a composition.
本発明のさらに別の目的はそのよ うな組成物または研磨方法を用い て得られる磁気ディスク基板を提供することである。  Still another object of the present invention is to provide a magnetic disk substrate obtained by using such a composition or a polishing method.
本発明者らは、 低浮上量型アルミニウム磁気ディスクに要求される高 精度の研磨面を達成するための研磨剤について鋭意研究した結果、 特に N i — Pメ ツキを施したアルミ二ゥム磁気ディスクの研磨に優れた性 能を示す研磨用組成物を見出し本発明に至った。 即ち、 本発明は基本的には以下の各発明からなる。 The present inventors have conducted intensive studies on an abrasive for achieving a high-accuracy polished surface required for a low-flying-type aluminum magnetic disk. The present inventors have found a polishing composition exhibiting excellent performance for polishing a disk, and have reached the present invention. That is, the present invention basically includes the following inventions.
( 1 ) 水、 酸化ケィ素、 金属配位化合物、 酸化剤を含む、 磁気ディスク 基板研磨用組成物。  (1) A composition for polishing a magnetic disk substrate, comprising water, silicon oxide, a metal coordination compound, and an oxidizing agent.
( 2) さらに p H調整剤を含む上記 ( 1 ) に記載の研磨用組成物。  (2) The polishing composition according to the above (1), further comprising a pH adjuster.
( 3) 金属配位化合物が金属キレー ト化合物である上記 ( 1 ) 〜 ( 2) のいずれかに記載の研磨用組成物。  (3) The polishing composition according to any one of the above (1) and (2), wherein the metal coordination compound is a metal chelate compound.
(4) 金属キレート化合物が E DT A鉄塩である上記 ( 3 ) に記載の研 磨用組成物。  (4) The polishing composition according to the above (3), wherein the metal chelate compound is an EDTA iron salt.
( 5) E D T A鉄塩がモノアンモニゥム塩あるいはモノ ソジゥム塩から 選ばれた少なく とも 1種である上記 (4) に記載の研磨用組成物。  (5) The polishing composition according to (4), wherein the EDTA iron salt is at least one selected from a monoammonium salt and a monosodium salt.
(6) 酸化剤がペルォキソ二硫酸アンモニゥムである上記 ( 1 ) 〜 ( 5 (のいずれかに記載の研磨用組成物。  (6) The polishing composition according to any one of (1) to (5) above, wherein the oxidizing agent is ammonium peroxodisulfate.
( 7 ) 酸化ケィ素がコロイダルシリカ、 ヒューム ドシリカ、 およびホヮ イ ト力一ボンから選ばれた少なく とも 1種である上記 ( 1 ) 〜 ( 6) の いずれかに記載の研磨用組成物。  (7) The polishing composition according to any one of the above (1) to (6), wherein the silicon oxide is at least one selected from colloidal silica, fumed silica, and white carbon.
( 8 ) 酸化ケィ素の二次粒子の平均粒子経が、 0. 0 3〜 0. 5 μ ηιで ある上記 ( 1 ) 〜 ( 7) のいずれかに記載の研磨用組成物。  (8) The polishing composition according to any one of the above (1) to (7), wherein the average particle diameter of the secondary particles of silicon oxide is 0.03 to 0.5 μηι.
(9) p Hが 1〜 8である上記 ( 1 ) 〜 ( 8) のいずれかに記載の研磨 用組成物。  (9) The polishing composition according to any one of the above (1) to (8), wherein the pH is 1 to 8.
( 1 0) p H調整剤が硝酸、 ホスホン酸系化合物から選ばれた少なく と も 1種である上記 ( 2) 〜 ( 9 ) のいずれかに記載の研磨用組成物。  (10) The polishing composition according to any one of the above (2) to (9), wherein the pH adjuster is at least one selected from nitric acid and phosphonic acid compounds.
( 1 1 ) ホスホン酸系化合物がリン酸、 1ーヒ ドロキシェタン一 1 , 1 —ジホスホン酸、 およびァミノ トリメチレンホスホン酸から選ばれた少 なく とも 1種である上記 ( 1 0) に記載の研磨用組成物。  (11) The polishing according to (10) above, wherein the phosphonic acid compound is at least one selected from phosphoric acid, 1-hydroxyxetane-11,1-diphosphonic acid, and aminotrimethylenephosphonic acid. Composition.
( 1 2 ) N i Ρメ ツキを施した磁気ディスク基板研磨用である上記( 1 ) ( 1 1 ) のいずれかに記載の研磨用組成物。  (12) The polishing composition according to any one of the above (1) to (11), which is used for polishing a magnetic disk substrate provided with a Ni i plating.
( 1 3) 上記 ( 1 ) 〜 ( 1 2) のいずれかに記載の研磨用組成物を用い て磁気ディスク用基板を研磨する磁気ディスク基板研磨方法。  (13) A magnetic disk substrate polishing method for polishing a magnetic disk substrate using the polishing composition according to any one of the above (1) to (12).
( 1 4) N i — Pメ ツキを施した磁気ディスク基板の研磨方法であって. 3価の F eィオンの酸化物または水酸化物への変化を抑制する磁気デ イスク基板研磨方法。  (14) A method for polishing a magnetic disk substrate provided with a Ni-P plating. A method for polishing a magnetic disk substrate, which suppresses conversion of trivalent Fe ions to oxides or hydroxides.
( 1 5 ) p Hを調節することにより 3価の F eイオンの酸化物または水 酸化物への変化を抑制する上記 ( 1 4 ) に記載の磁気ディスク基板研磨 方法。 (15) Oxide or water of trivalent Fe ion by adjusting pH The method for polishing a magnetic disk substrate according to the above (14), wherein the change to an oxide is suppressed.
( 1 6 ) 錯体により F eイオンを保持することにより 3価の F eイオン の酸化物または水酸化物への変化を抑制する上記 ( 1 4) に記載の磁気 ディスク基板研磨方法。  (16) The method of polishing a magnetic disk substrate according to the above (14), wherein the complex retains Fe ions to suppress the change of trivalent Fe ions into oxides or hydroxides.
( 1 7 ) 上記 ( 1 ) 〜 ( 1 2) に記載の研磨用組成物を用いて研磨して 得た磁気ディスク基板。  (17) A magnetic disk substrate obtained by polishing using the polishing composition according to any one of (1) to (12).
( 1 8 ) 磁気ディスク基板が N i Pメ ツキを施した基板である上記 ( 1 7 ) に記載の磁気ディスク基板。  (18) The magnetic disk substrate according to the above (17), wherein the magnetic disk substrate is a substrate provided with NIP plating.
( 1 9 ) 磁気ディスク基板が無電解メ ツキにより N i Pメ ツキを施した 基板である上記 ( 1 8) に記载の磁気ディスク基板。  (19) The magnetic disk substrate as described in (18) above, wherein the magnetic disk substrate is a substrate subjected to NiP plating by electroless plating.
( 2 0 ) ( 1 3 ) 〜 ( 1 6 ) のいずれかに記載の磁気ディスク基板研磨 方法により研磨して得た磁気ディスク基板。 発明を実施するための最良の形態  (20) A magnetic disk substrate obtained by polishing by the magnetic disk substrate polishing method according to any one of (13) to (16). BEST MODE FOR CARRYING OUT THE INVENTION
本発明の研磨用組成物に研磨材と して含まれる酸化ケィ素は、 特に限 定されるものではなく、 コロイダルシリカ、 ヒュームドシリカ、 ホワイ トカーボンでもよい。 これらは単独で使用してもよく、 二種以上を併用 してもよレ、。 この酸化ケィ素の二次粒子の平均粒子径は 0. 0 3〜 0. 5 μ πιであることが好ましい。 二次粒子の平均粒子径はレーザ一ドップ ラー周波数解析式粒度分布測定器、 マイクロ トラック U PA 1 5 0 (Η o n e y w e 1 1社製) により測定した値である。 The silicon oxide contained as an abrasive in the polishing composition of the present invention is not particularly limited, and may be colloidal silica, fumed silica, or white carbon. These may be used alone or in combination of two or more. It is preferred that the average particle size of the secondary particles of oxide Kei element is 0. 0 3~ 0. 5 μ πι. The average particle diameter of the secondary particles is a value measured by a laser-Doppler frequency analysis type particle size distribution analyzer, Microtrac UPA150 (manufactured by oneywe 11).
酸化ケィ素の二次粒子径が大きくなると細かい粒子のゲル化、 凝集は 抑制しやすくなるが、 粗い粒子の存在確率も高くなるため、 研磨傷発生 の原因となる。 また、 二次粒子径が小さくなると、 前述のゲル化、 凝集 が起きやすくなり、 やはり研磨傷発生の原因となる。 従って、 本発明の 研磨用組成物に研磨材と して含まれる酸化ケィ素の二次粒子の平均粒 子径は 0. 0 3〜 0. 5 μ πιであることが好ましく、 さらに 0. 0 4〜 0. 2 ^ mであるものがより好ましい。  When the secondary particle diameter of silicon oxide is large, gelation and aggregation of fine particles are easily suppressed, but the probability of existence of coarse particles is also high, which causes polishing scratches. In addition, when the secondary particle diameter is small, the above-mentioned gelation and aggregation tend to occur, which also causes polishing scratches. Therefore, the average particle diameter of the secondary particles of silicon oxide contained as an abrasive in the polishing composition of the present invention is preferably in the range of 0.3 to 0.5 μππ, more preferably 0.03 to 0.5 μπι. Those having 4 to 0.2 ^ m are more preferable.
本発明で使用される金属配位化合物は金属キレー ト化合物等の広義 の錯塩である。 金属キレート化合物と しては、 特に限定されないが、 E DTA (エチレンジア ミ ンテ トラ酢酸)、 N—ジァミ ン三酢酸ヒ ドロキ シエチレン (N H E D T A )、 アンモニア三酢酸 (N T A ) などを配位 子とする金属塩を挙げることができる。 金属塩の金属と しては N i に対 し高い酸化能力を有し、 0価以外の少なく とも 2種以上の異なる価数状 態での存在が可能であり、 もっとも安定な価数状態の酸化数が他の価数 状態の酸化数より大きい金属が適しており、特に鉄(F e )が好ましい。 その理由と しては次のようなことが考えられる。 F eはそのイオンが 2 価より 3価が安定であり、 この 3価の F eイオンが N i を酸化し、 2価 の F eイオンとなる。 酸化された N i は水の存在下で水和物あるいは酸 化物となる。 この水和物あるいは酸化物を砥粒で除去することにより研 磨が進行する。 2価の F eイオンは次に述べる酸化剤により 3価のィォ ンとなり、 金属キレート化合物、 例えば E D T Aの鉄塩と して保持され る。 これらの反応が繰り返し行われると推測される。 The metal coordination compound used in the present invention is a complex salt such as a metal chelate compound in a broad sense. Examples of the metal chelate compound include, but are not limited to, EDTA (ethylenediaminetetraacetic acid) and N-diaminetriacetic acid hydroxy. Examples include metal salts having ligands such as ethylene (NHEDTA) and ammonia triacetic acid (NTA). As a metal of the metal salt, it has a high oxidizing ability with respect to Ni, and it can exist in at least two or more different valence states other than zero valence. A metal having an oxidation number higher than the oxidation number in another valence state is suitable, and iron (F e) is particularly preferable. The possible reasons are as follows. Fe is more stable than trivalent than divalent ions, and the trivalent Fe ions oxidize Ni to become divalent Fe ions. The oxidized Ni becomes a hydrate or an oxide in the presence of water. Polishing proceeds by removing the hydrate or oxide with abrasive grains. The divalent Fe ion is converted to a trivalent ion by the oxidizing agent described below, and is retained as a metal chelate compound, for example, an iron salt of EDTA. It is assumed that these reactions are performed repeatedly.
本発明で使用される金属キレート化合物としては、 特に限定されない 、 E D T Aの鉄塩が好ましく、 特に鉄塩がモノアンモニゥム塩あるい はモノ ソジゥム塩が一層好ましい。 研磨速度を高めるだけであれば硝酸 鉄、 塩化鉄などを多量に添加することも有効であるが、 高精度の面が得 られないばかりでなく、 これらを添加すると装置の腐食などの問題が生 ずることがある。  The metal chelate compound used in the present invention is not particularly limited, but is preferably an iron salt of EDTA, and more preferably a monoammonium salt or a monosodium salt. It is effective to add a large amount of iron nitrate, iron chloride, etc. if only increasing the polishing rate. It can be tricky.
本発明で使用される酸化剤は、 特に限定されないが、 ペルォキソニ硫 酸のアンモユウム塩、 カリ ウム塩、 ナト リ ウム塩、 ペルォキソホウ酸の アンモニゥム塩、 ナ トリ ウム塩、 ペルォキソ二リ ン酸のナ ト リ ウム塩、 カリ ウム塩などのペルォキソ酸塩、 過マンガン酸塩、 重クロム酸塩、 硝 酸塩、 硫酸塩、 過酸化水素などの過酸化物、 過塩素酸塩などであるが、 ペルォキソ酸塩が好ましく 、 なかでもペルォキソ二硫酸アンモ-ゥムが 特に好ましい。 これらは単独で使用してもよく、 二種以上を併用しても よい。  The oxidizing agent used in the present invention is not particularly limited, but may be an ammonium salt, a potassium salt, a sodium salt, an ammonium salt of sodium peroxoborate, a sodium salt, or a sodium salt of peroxodisulfuric acid. Peroxo acid salts such as lithium salts and potassium salts, peroxides such as permanganate, dichromate, nitrate, sulfate, and hydrogen peroxide, and perchlorates, etc. Salts are preferred, and ammonium peroxodisulfate is particularly preferred. These may be used alone or in combination of two or more.
酸化剤は、 N i を酸化して 2価となった F eを酸化するだけでなく N i も酸化するので、 これらの相乗効果で研磨速度は高くなる。 しかし酸 化剤により 2価から 3価に戻った F e イオンはキレー ト化合物等の錯 体がないと水酸化物あるいは酸化物にも変化するため、 この状態では有 効に 3価の F eが機能しない。  Since the oxidizing agent oxidizes not only Fe which has become divalent by oxidizing Ni but also Ni, the polishing rate is increased by a synergistic effect of these. However, the Fe ions returned from divalent to trivalent by the oxidizing agent also change to hydroxides or oxides in the absence of a complex such as a chelate compound. In this state, the trivalent Fe ions are effectively used. Does not work.
そのため、 錯体で 3価の F eイオンを保持しておけば水酸化物、 酸化 物には変化せず F eイオンが有効に機能し続ける結果、 さらに高い研磨 速度を得ることが出来る。 ただし、 錯塩と しての安定性が高くなればィ オンを保持し切れない状態となり錯塩と しての効果は低いものとなる が、 3価の E D T A鉄塩は錯化定数が高く極めて安定であるため、 F e を水酸化物、 酸化物に変化させてしまうことなく、 3価の F eイオンと して有効に機能させることが出来るため高い研磨速度を得ることが出 来る。 Therefore, if trivalent Fe ions are retained in the complex, hydroxide and oxidation As a result, the Fe ions continue to function effectively without changing the material, so that a higher polishing rate can be obtained. However, if the stability as a complex salt increases, ions cannot be retained and the effect as a complex salt is low, but the trivalent EDTA iron salt has a high complexation constant and is extremely stable. For this reason, it is possible to effectively function as trivalent Fe ions without changing Fe into a hydroxide or an oxide, and thus obtain a high polishing rate.
砥粒がコロイダルシリカの場合、 ゲル化が起こることがある。 この場 合、 E D T A鉄塩を加えることによりより分散性が良くなり、 ゲル化を 抑制することが出来る。  When the abrasive is colloidal silica, gelation may occur. In this case, by adding EDTA iron salt, the dispersibility becomes better and gelation can be suppressed.
また、 F e源と して E D T A鉄塩を使用すると、 研磨組成物の p Hは 1〜 8に設定しても高い研磨速度を得ることが可能となるから、 E D T A鉄塩の使用は 3価の鉄の安定性、 ゲル化防止、 p Hの点で非常に有用 である。  In addition, if EDTA iron salt is used as the Fe source, a high polishing rate can be obtained even when the pH of the polishing composition is set to 1 to 8, so the use of EDTA iron salt is trivalent. It is very useful in terms of iron stability, gelation prevention, and pH.
本発明の研磨用組成物中の酸化ケィ素の濃度が 3質量。/。 (以下、 特に 断りのない場合、 %は質量。/。とする) 未満の場合は研磨速度が著しく低 下する。 また、 濃度が高くなるにつれて研磨速度は高くなるが、 3 0 % を越えると研磨速度の上昇が見られないだけでなく、 特にコロイダルシ リカではゲル化しやすくなる。 従って、 経済性を加味すると酸化ケィ素 の濃度は実用的には 3 0 %が上限となる。 従って、 酸化ケィ素の組成物 中濃度と しては 3〜 3 0 %の範囲であることが好ましく、 さらに 5〜 1 5 %がより好ましい。  The concentration of silicon oxide in the polishing composition of the present invention is 3% by mass. /. (Hereinafter, unless otherwise specified,% is expressed by mass./.) If it is less than 10%, the polishing rate is significantly reduced. The polishing rate increases as the concentration increases. However, when the concentration exceeds 30%, not only the polishing rate does not increase but also gelation tends to occur particularly in colloidal silica. Therefore, considering the economic efficiency, the upper limit of the silicon oxide concentration is practically 30%. Therefore, the concentration of silicon oxide in the composition is preferably in the range of 3 to 30%, more preferably 5 to 15%.
本発明の研磨用組成物に用いる金属配位化合物の量は 1 〜 1 0 %が 好ましく、 さらに 2〜 6 %がより好ましい。  The amount of the metal coordination compound used in the polishing composition of the present invention is preferably from 1 to 10%, more preferably from 2 to 6%.
金属配位化合物の添加量が 1。/。未満では研磨促進の効果が低くなり、 なおかつゲル化し易くなる。 また、 金属配位化合物の添加量が 1 0 %を 越えても研磨促進効果は高くならない。  1. The amount of metal coordination compound added. /. If it is less than 3, the effect of accelerating polishing is low, and gelation is liable to occur. Further, even if the addition amount of the metal coordination compound exceeds 10%, the polishing promotion effect does not increase.
本発明の研磨用組成物に用いる酸化剤の量は 1 〜 1 0 %が好ましく、 さらに 3〜 7 %がより好ましい。  The amount of the oxidizing agent used in the polishing composition of the present invention is preferably from 1 to 10%, more preferably from 3 to 7%.
酸化剤添加量が 1 %未満では研磨促進の効果が低くなる。 また、 酸化 剤の添加量が 1 0 %を越えても研磨促進への効果は高くならない。  When the amount of the oxidizing agent is less than 1%, the effect of accelerating the polishing is reduced. In addition, even if the added amount of the oxidizing agent exceeds 10%, the effect of promoting the polishing is not increased.
本発明に用いられる p H調整剤は、 特に限定されないが、 硝酸、 ホス ホン酸系化合物から選ばれた少なく とも 1種が好ましく、 具体的には、 ホスホン酸系化合物と しては、 リ ン酸、 1 —ヒ ドロキシェタン一 1 , 1 —ジホスホン酸 (C 2 H 67 P 2 ) 若しく はァミ ノ ト リ メチレンホスホ ン酸 (C 2 H 1 29 P 3 N ) を例示することが出来る。 これらは単独で使 用してもよく、 二種以上を併用してもよい。 これらは 2 %以内で添加す ることが好ましい。 これにより組成物中の p Hを好ましくは 1 〜 8に調 整することができる。 The pH adjuster used in the present invention is not particularly limited, but may be nitric acid, At least one member selected from the group consisting of sulfonic acid compounds is preferred. Specific examples of the phosphonic acid compound include phosphoric acid, 1-hydroxylethane 1,1,1-diphosphonic acid (C 2 H 67 P 2) Moshiku is § Mi Roh Application Benefits Mechirenhosuho phosphate (C 2 H 1 29 P 3 N) can be exemplified. These may be used alone or in combination of two or more. These are preferably added within 2%. This allows the pH in the composition to be adjusted preferably to 1-8.
なお、 上記の各成分の濃度は磁気ディスク基板を研磨する際の濃度で ある。 研磨用組成物を製造し、 運搬等する場合は上記濃度より濃厚な組 成物と し、 使用に際して上記の濃度に薄めて使用するのが効率的である。 本発明の磁気ディスク基板の研磨用組成物は前記の各成分の他に、 界 面活性剤、 防腐剤等の通常研磨用組成物に用いられている添加物を添加 することができる。 しかし、 その種類及び添加量はゲル化を引き起こさ ないよう細心の注意が必要である。  The concentrations of the above-mentioned components are those at the time of polishing the magnetic disk substrate. When a polishing composition is manufactured and transported, it is efficient to use a composition having a concentration higher than the above concentration and dilute it to the above concentration before use. The polishing composition for a magnetic disk substrate of the present invention may contain, in addition to the above components, additives usually used in the polishing composition, such as a surfactant and a preservative. However, careful attention must be paid to the type and amount of addition so as not to cause gelation.
本発明の研磨用組成物は、 水に酸化ケィ素を懸濁し、 これに E D T A 鉄塩等の金属配位化合物、 ペルォキソ二硫酸ァンモニゥム等の酸化剤、 p H調整剤等を添加することによって調製することができる。 使用の際 には、 全ての成分を混合したものを薄めて使用してもよいが、 添加成分 を 2組、 例えば水、 酸化ケィ素、 金属配位化合物と水、 酸化剤、 p H調 整剤に分けて準備しておき、 その 2組を混合する方法をとってもよレ、。 本発明の研磨用組成物は、 例えば磁気抵抗 (M R ) 効果を利用した磁 気ヘッ ド用磁気ディスクに代表される高記録密度用の基板 (通常、 3 G b i t / i n c h 2 以上の記録密度を有する) に有利に適用できるが、 それ以下の記録密度を有する磁気ディスクに対しても信頼性向上とい う見地から効果的に応用できる。 The polishing composition of the present invention is prepared by suspending silicon oxide in water, adding a metal coordination compound such as iron salt of EDTA, an oxidizing agent such as ammonium peroxodisulfate, a pH adjusting agent, and the like. can do. When used, the mixture of all components may be diluted and used.However, two sets of additive components, for example, water, silicon oxide, metal coordination compound and water, oxidizing agent, pH adjustment Prepare the ingredients separately and mix the two sets. The polishing composition of the present invention can be used for a substrate for high recording density (typically, a recording density of 3 Gbit / inch 2 or more, typified by a magnetic disk for magnetic head utilizing the magnetoresistance (MR) effect). However, it can also be applied to magnetic disks having a recording density lower than that, from the viewpoint of improving reliability.
本発明の研磨用組成物を適用する磁気ハ一ドディスク基板は、 特に限 定されるものではないが、 アルミニウム (合金を含む) 基板、 とくに、 N i Pを例えば無電解メ ツキによりメ ツキしたアルミユウム基板に本 発明の組成物を適用すると、 酸化ケィ素によるマイルドな機械的研磨作 用と E D T A鉄塩中の F eの酸化還元能力、 ペルォキソ二硫酸アンモニ ゥムの酸化作用、 E D T A鉄塩の錯体としての F eイオンの安定性が前 述のように機能し、 高品質の研磨面が工業的に有利に得られる。 研磨方法は一般にスラ リ一状研磨材に用いられる研磨パッ ドを磁気 ディスク基板上に摺り合わせ、 パッ ドと基板の間にスラリーを供給しな がらパッ ドまたは基板を回転させる方法である。 The magnetic hard disk substrate to which the polishing composition of the present invention is applied is not particularly limited, but an aluminum (including alloy) substrate, in particular, NiP is plated by, for example, electroless plating. When the composition of the present invention is applied to the prepared aluminum substrate, mild mechanical polishing action by silicon oxide, redox ability of Fe in EDTA iron salt, oxidizing action of ammonium peroxodisulfate, and EDTA iron salt The stability of the Fe ion as a complex of the above functions as described above, and a high-quality polished surface can be industrially advantageously obtained. The polishing method is generally a method in which a polishing pad used for a slurry-like abrasive is rubbed on a magnetic disk substrate, and the pad or the substrate is rotated while supplying slurry between the pad and the substrate.
本発明の研磨用組成物により研磨した基板からつく られた磁気ディ スクは、 マイクロピッ ト、 マイ ク ロスクラツチ等微細な欠陥について発 生頻度が非常に低く、 また表面粗さ (R a ) も 2〜 3 A位であり、 非常 に平滑性に優れている。 実施例  A magnetic disk made from a substrate polished with the polishing composition of the present invention has a very low frequency of occurrence of minute defects such as micropits and microcracks, and has a low surface roughness (Ra). About 3 A, very excellent in smoothness. Example
以下、 本発明の実施例について具体的に説明するが、 本発明はこれら の実施例に限定されるものではない。  Hereinafter, examples of the present invention will be specifically described, but the present invention is not limited to these examples.
実施例、 比較例に用いた酸化ケィ素 (シリカ)、 チタニアを表 1 に示 す。  Table 1 shows silicon oxide (silica) and titania used in Examples and Comparative Examples.
(実施例 1〜 1 1 )  (Examples 1 to 11)
デュポン (株)製のコ口ィダルシリ力 (サイ トン HT— 5 0 F) に水、 EDTA鉄アンモニゥム、 ペルォキソ二硫酸アンモニゥム、 p H調整剤 を表 2に示す割合で添加し、 種々の水性研磨用組成物を調製し、 以下に 示す研磨装置および研磨条件で研磨を行った。 その結果を表 2に示す。 なお、 粒子径はレーザードップラー周波数解析式粒度分布測定器、 マ イクロ トラック U PA 1 5 0 (H o n e y w e l l社製) により測定し た。 粒度測定値を表 1に示す。  Water, EDTA iron ammonium, ammonium peroxodisulfate, and a pH adjuster were added to DuPont Co., Ltd. (Saiton HT-500F) manufactured by DuPont in the ratios shown in Table 2 for various aqueous polishing. A composition was prepared and polished with the following polishing apparatus and polishing conditions. The results are shown in Table 2. The particle size was measured with a laser Doppler frequency analysis type particle size distribution analyzer, Microtrac UPA150 (manufactured by Honeywell). Table 1 shows the measured particle size.
(実施例 1 2、 1 3)  (Examples 12 and 13)
日本シリカ工業 (株) 製のホワイ トカーボン (E— 1 5 0 J ) 及び日 本ァエロジル (株) 製のヒューム ドシリカ (AE RO S I L 5 0) を媒 体攪拌ミルにより粉砕、 整粒により粗粒子を除去し、 二次粒子の平均粒 子径が 0. 1 μ mの酸化ケィ素をまず得た。 次に、 水、 EDTA鉄アン モニゥム、 ペルォキソ二硫酸アンモニゥム、 p H調整剤を表 2に示す割 合で添加し、 種々の水性研磨用組成物を調製し、 以下に示す研磨装置お よび研磨条件で研磨を行った。 その結果を表 2に示す。  White carbon (E-150 J) manufactured by Nippon Silica Kogyo Co., Ltd. and fumed silica (AERO SIL 50) manufactured by Nihon Aerosil Co., Ltd. are pulverized by a medium stirring mill, and coarse particles are formed by sizing. After removal, silicon oxide having an average secondary particle diameter of 0.1 μm was first obtained. Next, water, EDTA iron ammonium, ammonium peroxodisulfate, and a pH adjuster were added at the ratios shown in Table 2 to prepare various aqueous polishing compositions.The polishing apparatus and polishing conditions shown below were used. Was polished. The results are shown in Table 2.
研磨  Polishing
使用した基板  Substrate used
N i Pを無電解メ ッキした 3. 5ィンチサイズのアルミディスク 使用した研磨装置および研磨条件 3.5 inch aluminum disk with electroless NiP Polishing equipment and polishing conditions used
研磨試験機 4 ウェイ式両面ポリシンダマシン  Polishing tester 4-way double-sided polycinder machine
研磨パッ ド スエードタイプ (ポリテックス D G、 口デール 製)  Polishing pad Suede type (Polytex DG, Dale mouth)
下定盤回転速度 6 0 r p m  Lower platen rotation speed 60 rpm
スラ リ一供給速度… ·■ 5 0 m 1 Z分  Slurry supply speed… · ■ 50 m 1 Z min
研磨時間 5分  Polishing time 5 minutes
加工圧力 5 0 g / c m 2 Processing pressure 50 g / cm 2
研磨特性の評価 Evaluation of polishing characteristics
研磨レート ·· ·.アルミディスクの研磨前後の重量減より換算  Polishing rate ······ Calculated from weight loss before and after polishing of aluminum disk
表面粗さ タ リステップ、 タ リデータ 2 0 0 0 (ランクテーラ一 ホブソン社製) を使用  Uses surface roughness tally step and tally data 20000 (rank tailor made by Hobson)
研磨傷および研磨ピッ トの深さは触針式表面解析装置 P— 1 2 (T E N C O R社製) の 3次元モードにより形状解析し深さを求めた。 研磨特性の評価結果を表 2に示す。 表 2中の研磨傷 Aは研磨傷深さが 5 n m以下であり、 またピッ ト Aはピッ ト深さが 5 n m以下である。 研 磨傷 Bは研磨傷深さが 5〜 1 0 n mであり、 またピッ ト Bはピッ ト深さ が 5〜1 0 n mである。 研磨傷深さが 1 0 n mより大なもの、 またピッ ト深さが 1 0 n mより大なものは、実施例、比較例共に発生しなかった。 (比較例 1 〜 5 )  The depth of the polishing flaws and polishing pits was determined by three-dimensional mode analysis using a stylus-type surface analyzer P-12 (manufactured by TENCOR). Table 2 shows the evaluation results of the polishing characteristics. The polishing flaw A in Table 2 has a polishing flaw depth of 5 nm or less, and the pit A has a pit depth of 5 nm or less. Polishing scratch B has a polishing scratch depth of 5 to 10 nm, and pit B has a pit depth of 5 to 10 nm. Those having a polishing scratch depth of more than 10 nm and those having a pit depth of more than 10 nm did not occur in both Examples and Comparative Examples. (Comparative Examples 1 to 5)
デュポン(株)製のコロイダルシリ力 (サイ トン HT— 5 O F ) に水、 E D T A鉄塩、 ペルォキソ二硫酸アンモニゥム、 硝酸鉄を表 2に示す割 合で添加し、 水性研磨用組成物を調製し、 実施例と同様に研磨した。 そ の結果を表 2に示す。  Water, EDTA iron salt, ammonium peroxodisulfate, and iron nitrate were added to a colloidal silicide (Cyton HT-5 OF) manufactured by DuPont at a ratio shown in Table 2 to prepare an aqueous polishing composition. Polishing was performed in the same manner as in Examples. The results are shown in Table 2.
(比較例 6 )  (Comparative Example 6)
昭和タイタニゥム (株) 製の酸化チタニウム (スーパータイタニア F 一 2 ) を媒体攪拌ミルにより粉砕、 整粒により粗粒子を除去し、 二次粒 子の平均粒子径◦ . 3 mの酸化チタニウムをまず得た。 次に、 水、 硝 酸アルミニウムを表 2に示す割合で添加し、 水性研磨用組成物を調製し 実施例と同様に研磨した。 その結果を表 2に示す。 □α 名 ー 圣 Titanium oxide (Super Titania F-12) manufactured by Showa Titanium Co., Ltd. is pulverized by a medium stirring mill and coarse particles are removed by sizing to obtain titanium oxide having an average secondary particle diameter of 1.3 m. Was. Next, water and aluminum nitrate were added at the ratios shown in Table 2 to prepare an aqueous polishing composition, and polished in the same manner as in the examples. The results are shown in Table 2. □ α name ー 圣
(urn) ( m) 酸化ケィ删 ①) サイ卜ン ΗΤ— 50F 0. 05 0. 05 酸化ケィ糊 m② ) Ε- 150 J 0. 03 0. 1 酸化ケィ糊 ③ ) AEROS Iし 50 0. 05 0. 1 酸化チタニウム ( ニァ) F-2 0. 06 0. 3  (urn) (m) Oxidized key (1) Sitton 50— 50F 0. 05 0. 05 Oxidized key (m②) Ε-150 J 0.03 03. 0.1 Titanium oxide (Nya) F-2 0.06 0.3
(以下余白 (Below margin
研 EOTA-妷 そニゥ λ H 研 ト 表 ffifiさ 研 8WI ビット Lab EOTA- 妷 ゥ its λH lab table ffifisa lab 8WI bit
( Ra)  (Ra)
^Kift( wa ) (nm) 魏 w 1 シリ 2 4. 0 5. o HEDP 0. 2 0. 20 0. 2 A A  ^ Kift (wa) (nm) Wei w 1 Siri 2 4.0 5.o HEDP 0.20 0.20 0.2 A A
2 6 4. 0 6. 0 JJ 0. 2 0. 22 0. 2 A A 2 6 4.0 6.00 JJ 0.2 0.22 0.2 A A
3 15 4. 0 5. O 0- 2 0. 23 0. 2 A A3 15 4. 0 5.O 0-2 0.23 0.2 A A
4 6 I. 0 5. 0 0. 2 0. 20 0. 2 A A4 6 I. 0 5.0 0 0.2 0 0.20 0.2 A A
5 » 6 10. 0 5. 0 » 0. 2 0. 22 0. 2 A A5 »6 10. 0 5. 0» 0.2 0 0.22 0.2 A A
6 6 4. 0 1. 0 ) 0. 2 0. 20 0- 2 A A6 6 4. 0 1. 0) 0.2 0. 20 0-2 A A
7 6 4. 0 0. 0 0. 2 0. 23 0. 2 A A a 6 4. 0 5. 0 0. 20 0. 2 A A 7 6 4. 0 0. 0 0. 2 0. 23 0.2 A A a 6 4. 0 5.0 0. 20 0.2 A A
9 6 4. 0 5. 0 v o. 3 0. 20 0. 2 A A 10 6 4. 0 5. O リン酸 0. 2 0. 21 0. 2 A A 1 1 6 4. 0 5. O o. l 0. 22 0. 2 A A 9 64.0 5.0 v o.30.20 0.2 AA 10 64.0.O Phosphoric acid 0.2 0.20.20 0.2 AA 1 16.4.05 Oo. l 0.22 0.2 AA
1 2 シリ 4<2) 6 4. 0 5. 0 HEDP 0. 2 0. 22 0. 2 A A 1 2 Siri 4 <2) 6 4.0.0 5.0 HEDP 0.2 0.22 0.2 A A
1 3 シリ 6 4. 0 6. O " 0. 2 0. 21 0. 2 A A 比較伊 I 1 シリ D 6 4. 0 0. 12 0. 2 B A  1 3 Series 6 4. 0 6. O "0.2 0.22 0.2 A A Comparison I 1 Series D 6 4.0 0.12 0.2 B A
2 6 5. 0 0. 15 0. 2 A A  2 6 5.0 0.15 0.2 A A
3 6 2. o 0. 18 0. 2 A A  3 6 2.o 0.18 0.2 A A
4 6 m, o. 3 0. 09 0. 2 A A  4 6 m, o. 3 0.09 0.2 A A
5 6 si o. 3 5. 0 0. 16 0. 2 A A  5 6 si o. 3 5.0 0.16 0. 2 A A
6 rr- 6 纖 Al B. o 0. 21 0. 4 B B  6 rr-6 Fiber Al B. o 0.21 0.2 0.4 B B
HEDP: -\L\'^XTI-\,\-V HEDP:-\ L \ '^ XTI-\, \-V
≠ 2 産業上の利用分野 ≠ 2 Industrial applications
本発明の研磨用組成物を用いてディスクの研磨を行う と、 ディスクの 表面粗さを非常に小さくすることができ、 しかも高い速度で研磨するこ とが出来る。 研磨したディスクを用いた磁気ディスクは低浮上型ハード ディスクと して有用であり、 高密度記録が可能である。  When a disk is polished using the polishing composition of the present invention, the surface roughness of the disk can be extremely reduced, and the polishing can be performed at a high speed. Magnetic disks using polished disks are useful as low-floating-type hard disks, and enable high-density recording.
特に、 研磨したディスクを用いた磁気ディスク磁気抵抗効果を利用し た M Rへッ ド用メディアに代表される高記録密度媒体 ( 3 G b i t / i n c h 2以上の記録密度を有する) と して有用度が高いが、 それ以下の メディアにおいても高信頼性媒体であるという点で有用である。 In particular, its usefulness as a high-density medium (having a recording density of 3 Gbit / inch 2 or more) typified by an MR head medium utilizing the magnetoresistance effect of a magnetic disk using a polished disk. However, it is useful for media of lower quality because it is a highly reliable media.

Claims

請求の範囲 The scope of the claims
1. 水、 酸化ケィ素、 金属配位化合物、 酸化剤を含む、 磁気ディスク 基板研磨用組成物。  1. A composition for polishing a magnetic disk substrate, comprising water, silicon oxide, a metal coordination compound, and an oxidizing agent.
2. さらに p H調整剤を含む請求項 1に記載の研磨用組成物。  2. The polishing composition according to claim 1, further comprising a pH adjuster.
3. 金属配位化合物が金属キレート化合物である請求項 1〜 2のいず れかに記載の研磨用組成物。  3. The polishing composition according to claim 1, wherein the metal coordination compound is a metal chelate compound.
. 金属キレート化合物が E D T A鉄塩である請求項 3に記載の研磨 用組成物。  4. The polishing composition according to claim 3, wherein the metal chelate compound is an EDTA iron salt.
5. E DT A鉄塩がモノアンモニゥム塩あるいはモノ ソジゥム塩から 選ばれた少なく とも 1種である請求項 4に記載の研磨用組成物。  5. The polishing composition according to claim 4, wherein the EDTA iron salt is at least one selected from a monoammonium salt and a monosodium salt.
6. 酸化剤がペルォキソ二硫酸アンモニゥムである請求項 1〜 5のい ずれかに記載の研磨用組成物。  6. The polishing composition according to any one of claims 1 to 5, wherein the oxidizing agent is ammonium peroxodisulfate.
7. 酸化ケィ素がコロイダルシリカ、 ヒュームドシリカ、 およびホヮ ィ トカ一ボンから選ばれた少なく とも 1種である請求項 1〜 6のいず れかに記載の研磨用組成物。  7. The polishing composition according to any one of claims 1 to 6, wherein the silicon oxide is at least one selected from colloidal silica, fumed silica, and white carbon.
8. 酸化ケィ素の二次粒子の平均粒子経が、 0. 0 3〜 0. 5 /z mで ある請求項 1〜 7のいずれかに記載の研磨用組成物。  8. The polishing composition according to any one of claims 1 to 7, wherein the average particle diameter of the secondary particles of silicon oxide is 0.03 to 0.5 / zm.
9. p Hが 1〜 8である請求項 1〜 8のいずれかに記載の研磨用組成 物。  9. The polishing composition according to any one of claims 1 to 8, wherein the pH is 1 to 8.
1 0. p H調整剤が硝酸、 ホスホン酸系化合物から選ばれた少なく と も 1種である請求項 2〜 9のいずれかに記載の研磨用組成物。  10. The polishing composition according to any one of claims 2 to 9, wherein the pH adjuster is at least one selected from nitric acid and phosphonic acid compounds.
1 1. ホスホン酸系化合物がリ ン酸、 1—ヒ ドロキシェタン一 1 , 1 ージホスホン酸、 およびァミノ トリメチレンホスホン酸から選ばれた少 なく とも 1種である請求項 1 0に記載の研磨用組成物。  11. The polishing composition according to claim 10, wherein the phosphonic acid-based compound is at least one selected from the group consisting of phosphoric acid, 1-hydroxyxanthane, 1,1-diphosphonic acid, and aminotrimethylenephosphonic acid. object.
1 2. N i Pメ ツキを施した磁気ディスク基板研磨用である請求項 1 〜 1 1のいずれかに記載の研磨用組成物。  12. The polishing composition according to any one of claims 1 to 11, which is used for polishing a magnetic disk substrate provided with NiP plating.
1 3. 請求項 1〜 1 2のいずれかに記載の研磨用組成物を用いて磁気 ディスク用基板を研磨する磁気ディスク基板研磨方法。  13. A magnetic disk substrate polishing method for polishing a magnetic disk substrate using the polishing composition according to any one of claims 1 to 12.
1 4. N i — Pメ ツキを施した磁気ディスク基板の研磨方法であって. 3価の F eィオンの酸化物または水酸化物への変化を抑制する磁気デ ィスク基板研磨方法。  1 4. This is a method for polishing a magnetic disk substrate provided with a Ni—P plating. A method for polishing a magnetic disk substrate that suppresses the conversion of trivalent Fe ions to oxides or hydroxides.
1 5. p Hを調節することにより 3価の F eイオンの酸化物または水 酸化物への変化を抑制する請求項 1 4に記載の磁気ディスク基板研磨 方法。 1 5. Oxide or water of trivalent Fe ion by adjusting pH 15. The method for polishing a magnetic disk substrate according to claim 14, wherein a change to an oxide is suppressed.
1 6 . 錯体により F eィオンを保持することにより 3価の F eイオン の酸化物または水酸化物への変化を抑制する請求項 1 4に記載の磁気 ディスク基板研磨方法。  16. The method of polishing a magnetic disk substrate according to claim 14, wherein the Fe ions are held by the complex to suppress the change of trivalent Fe ions into oxides or hydroxides.
1 7 . 請求項 1〜 1 2に記載の研磨用組成物を用いて研磨して得た磁 気ディスク基板。  17. A magnetic disk substrate obtained by polishing using the polishing composition according to any one of claims 1 to 12.
1 8 . 磁気ディスク基板が N i Pメ ツキを施した基板である請求項 1 7に記載の磁気ディスク基板。  18. The magnetic disk substrate according to claim 17, wherein the magnetic disk substrate is a substrate provided with a NiP plating.
1 9 . 磁気ディスク基板が無電解メ ツキにより N i Pメ ツキを施した 基板である請求項 1 8に記載の磁気ディスク基板。  19. The magnetic disk substrate according to claim 18, wherein the magnetic disk substrate is a substrate subjected to NiP plating by electroless plating.
2 0 · 請求項 1 3〜 1 6のいずれかに記載の磁気ディスク基板研磨方 法により研磨して得た磁気ディスク基板。  20. A magnetic disk substrate obtained by polishing by the magnetic disk substrate polishing method according to any one of claims 13 to 16.
PCT/JP2000/009230 1999-12-27 2000-12-26 Composition for polishing magnetic disk substrate and polishing method, and magnetic disk substrate polished thereby WO2001048114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU22252/01A AU2225201A (en) 1999-12-27 2000-12-26 Composition for polishing magnetic disk substrate and polishing method, and magnetic disk substrate polished thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP36909599 1999-12-27
JP11/369095 1999-12-27
JP2000016614A JP2004127327A (en) 1999-12-27 2000-01-26 Composition for polishing magnetic disk substrate
JP2000/16614 2000-01-26

Publications (1)

Publication Number Publication Date
WO2001048114A1 true WO2001048114A1 (en) 2001-07-05

Family

ID=26582068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009230 WO2001048114A1 (en) 1999-12-27 2000-12-26 Composition for polishing magnetic disk substrate and polishing method, and magnetic disk substrate polished thereby

Country Status (3)

Country Link
JP (1) JP2004127327A (en)
AU (1) AU2225201A (en)
WO (1) WO2001048114A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021259A (en) * 2004-07-06 2006-01-26 Fuji Electric Device Technology Co Ltd Polishing method of magnetic disk base board and magnetic disk medium
JP2014101518A (en) * 2014-01-06 2014-06-05 Fujimi Inc Polishing composition, polishing method and elasticity deterioration preventing method of polishing pad
JP6480139B2 (en) * 2014-09-30 2019-03-06 株式会社フジミインコーポレーテッド Polishing composition

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366542A (en) * 1990-08-29 1994-11-22 Fujimi Incorporated Polishing composition
WO1994028194A1 (en) * 1993-05-26 1994-12-08 Rodel, Inc. Improved compositions and methods for polishing
EP0811666A2 (en) * 1996-06-06 1997-12-10 Cabot Corporation Fluoride additive containing chemical mechanical polishing slurry and method for use of same
EP0831136A2 (en) * 1996-09-24 1998-03-25 Cabot Corporation Multi-oxidizer slurry for chemical mechanical polishing
JPH10102037A (en) * 1996-10-02 1998-04-21 Kao Corp Abrasive composition and production of substrate using the same
WO1998021289A1 (en) * 1996-11-14 1998-05-22 Kao Corporation Abrasive composition for the base of magnetic recording medium and process for producing the base by using the same
JPH10176164A (en) * 1996-10-17 1998-06-30 Showa Denko Kk Abrasive composition for polishing glass and its production
JPH10219300A (en) * 1997-02-03 1998-08-18 Mitsubishi Chem Corp Detergent composition for abrasive liquid
JPH1121545A (en) * 1997-06-30 1999-01-26 Fujimi Inkooporeetetsudo:Kk Polishing composition
JPH11188614A (en) * 1997-12-24 1999-07-13 Kao Corp Workpiece polishing method
JPH11256142A (en) * 1998-03-16 1999-09-21 Kao Corp Grinding liquid composition
EP0967260A1 (en) * 1998-06-22 1999-12-29 Fujimi Incorporated Polishing composition and surface treating composition
JP2000053948A (en) * 1998-08-07 2000-02-22 Kao Corp Abrasive solution composition
JP2000063806A (en) * 1998-08-17 2000-02-29 Okamoto Machine Tool Works Ltd Abrasive slurry and preparation thereof
JP2000063804A (en) * 1998-08-25 2000-02-29 Okamoto Machine Tool Works Ltd Abrasive slurry
JP2000073049A (en) * 1998-09-01 2000-03-07 Fujimi Inc Abrasive composition
JP2000136375A (en) * 1998-10-30 2000-05-16 Okamoto Machine Tool Works Ltd Abrasive slurry
JP2000144109A (en) * 1998-11-10 2000-05-26 Okamoto Machine Tool Works Ltd Polishing agent slurry for polishing chemical machinery
EP1006166A1 (en) * 1998-12-01 2000-06-07 Fujimi Incorporated Polishing composition and polishing method employing it
JP2000252244A (en) * 1998-12-28 2000-09-14 Hitachi Chem Co Ltd Polishing liquid for metal and polishing method using the same
JP2000315667A (en) * 1999-04-28 2000-11-14 Kao Corp Abrasive composition
JP2000340532A (en) * 1999-05-31 2000-12-08 Mitsubishi Materials Corp Slurry for polishing and polishing method using the same
JP2001031950A (en) * 1999-07-19 2001-02-06 Tokuyama Corp Polishing agent for metallic film
JP2001049031A (en) * 1999-06-04 2001-02-20 Asahi Chem Ind Co Ltd Inorganic particle dispersion composition

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366542A (en) * 1990-08-29 1994-11-22 Fujimi Incorporated Polishing composition
WO1994028194A1 (en) * 1993-05-26 1994-12-08 Rodel, Inc. Improved compositions and methods for polishing
EP0811666A2 (en) * 1996-06-06 1997-12-10 Cabot Corporation Fluoride additive containing chemical mechanical polishing slurry and method for use of same
EP0831136A2 (en) * 1996-09-24 1998-03-25 Cabot Corporation Multi-oxidizer slurry for chemical mechanical polishing
JPH10102037A (en) * 1996-10-02 1998-04-21 Kao Corp Abrasive composition and production of substrate using the same
JPH10176164A (en) * 1996-10-17 1998-06-30 Showa Denko Kk Abrasive composition for polishing glass and its production
WO1998021289A1 (en) * 1996-11-14 1998-05-22 Kao Corporation Abrasive composition for the base of magnetic recording medium and process for producing the base by using the same
JPH10219300A (en) * 1997-02-03 1998-08-18 Mitsubishi Chem Corp Detergent composition for abrasive liquid
JPH1121545A (en) * 1997-06-30 1999-01-26 Fujimi Inkooporeetetsudo:Kk Polishing composition
JPH11188614A (en) * 1997-12-24 1999-07-13 Kao Corp Workpiece polishing method
JPH11256142A (en) * 1998-03-16 1999-09-21 Kao Corp Grinding liquid composition
EP0967260A1 (en) * 1998-06-22 1999-12-29 Fujimi Incorporated Polishing composition and surface treating composition
JP2000053948A (en) * 1998-08-07 2000-02-22 Kao Corp Abrasive solution composition
JP2000063806A (en) * 1998-08-17 2000-02-29 Okamoto Machine Tool Works Ltd Abrasive slurry and preparation thereof
JP2000063804A (en) * 1998-08-25 2000-02-29 Okamoto Machine Tool Works Ltd Abrasive slurry
JP2000073049A (en) * 1998-09-01 2000-03-07 Fujimi Inc Abrasive composition
JP2000136375A (en) * 1998-10-30 2000-05-16 Okamoto Machine Tool Works Ltd Abrasive slurry
JP2000144109A (en) * 1998-11-10 2000-05-26 Okamoto Machine Tool Works Ltd Polishing agent slurry for polishing chemical machinery
EP1006166A1 (en) * 1998-12-01 2000-06-07 Fujimi Incorporated Polishing composition and polishing method employing it
JP2000252244A (en) * 1998-12-28 2000-09-14 Hitachi Chem Co Ltd Polishing liquid for metal and polishing method using the same
JP2000315667A (en) * 1999-04-28 2000-11-14 Kao Corp Abrasive composition
JP2000340532A (en) * 1999-05-31 2000-12-08 Mitsubishi Materials Corp Slurry for polishing and polishing method using the same
JP2001049031A (en) * 1999-06-04 2001-02-20 Asahi Chem Ind Co Ltd Inorganic particle dispersion composition
JP2001031950A (en) * 1999-07-19 2001-02-06 Tokuyama Corp Polishing agent for metallic film

Also Published As

Publication number Publication date
JP2004127327A (en) 2004-04-22
AU2225201A (en) 2001-07-09

Similar Documents

Publication Publication Date Title
JP4273475B2 (en) Polishing composition
JP4707311B2 (en) Magnetic disk substrate
US6569215B2 (en) Composition for polishing magnetic disk substrate
JP4439755B2 (en) Polishing composition and method for producing memory hard disk using the same
JP3997152B2 (en) Polishing liquid composition
JP3106339B2 (en) Polishing composition
JP4202157B2 (en) Polishing composition
JP4202201B2 (en) Polishing composition
US5935278A (en) Abrasive composition for magnetic recording disc substrate
WO2003020839A1 (en) Polishing composition
JP3877924B2 (en) Magnetic disk substrate polishing composition
JP2005001019A (en) Method of manufacturing substrate
TW528645B (en) Composition for polishing magnetic disk substrate
US6152976A (en) Abrasive composition for disc substrate, and process for polishing disc substrate
JP4373776B2 (en) Polishing liquid composition
JP2004253058A (en) Polishing liquid composition
JP6688129B2 (en) Polishing composition, method for producing magnetic disk substrate, and method for polishing magnetic disk substrate
WO2001048114A1 (en) Composition for polishing magnetic disk substrate and polishing method, and magnetic disk substrate polished thereby
JP3997154B2 (en) Polishing liquid composition
JP4074126B2 (en) Polishing composition
JP3997153B2 (en) Polishing liquid composition
JPH10121034A (en) Composition for polishing magnetic disk substrate
US20010029705A1 (en) Composition and method for polishing magnetic disk substrate, and magnetic disk polished therewith
JP2009181690A (en) Method of manufacturing substrate
JP2005008875A (en) Abrasive composition and abrasion method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP