WO1995009910A1 - Gene that identifies sterile plant cytoplasm and process for preparing hybrid plant by using the same - Google Patents

Gene that identifies sterile plant cytoplasm and process for preparing hybrid plant by using the same Download PDF

Info

Publication number
WO1995009910A1
WO1995009910A1 PCT/JP1994/001625 JP9401625W WO9509910A1 WO 1995009910 A1 WO1995009910 A1 WO 1995009910A1 JP 9401625 W JP9401625 W JP 9401625W WO 9509910 A1 WO9509910 A1 WO 9509910A1
Authority
WO
WIPO (PCT)
Prior art keywords
cms
plant
gene
cytoplasm
rape
Prior art date
Application number
PCT/JP1994/001625
Other languages
French (fr)
Japanese (ja)
Inventor
Mari Iwabuchi
Takako Sakai
Hong Jun Liu
Jun Imamura
Original Assignee
Mitsubishi Corporation
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corporation, Mitsubishi Chemical Corporation filed Critical Mitsubishi Corporation
Priority to CA002150667A priority Critical patent/CA2150667C/en
Priority to EP94927811A priority patent/EP0675198A4/en
Priority to US08/454,115 priority patent/US5866782A/en
Priority to DE0675198T priority patent/DE675198T1/en
Publication of WO1995009910A1 publication Critical patent/WO1995009910A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/14Plant cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S47/00Plant husbandry
    • Y10S47/01Methods of plant-breeding and including chromosome multiplication

Definitions

  • the present invention is used plants such crucifers, relates to a method to create a gene and Haipuri' de plants using the same identifying sterile cytoplasm, in particular for the development of F 1 varieties definitive plants
  • the present invention relates to a male sterile cytoplasmic gene and a method for producing a hybrid plant using the same.
  • Hybrid hybrids are used in many major crops such as cereals and vegetables.
  • the first-generation hybrid varieties are characterized by 1) excellent agricultural traits due to heterosis, 2) uniformity of crops, and 3) the separation of genetic traits in the next generation, thereby protecting the interests of breeders.
  • c ms cytoplasmic male sterility
  • a seeding system was required.
  • a seeding system using the polymer cms has been put to practical use, but improvement is required in that male sterility is unstable, and that the shape of the vase is bad and affects the yield.
  • Ogura cms derived from radish has been used in rapeseed instead of polymer cms.
  • Ogura cms is stable in male sterility and can be restored to fertility by a single fertility restoring gene (hereinafter abbreviated as “Rf gene”).
  • the Ogura R f gene has already been introduced into rape from radish.
  • the radish cms and Rf genes introduced into rapeseed could be used without problems in rapeseed.
  • the cms cytoplasm may not only render the pollen sterile but also affect other traits of the plant.
  • T-cms cytoplasm a kind of corn cytoplasm, was once widely used for seeding F !, but its cytoplasm was susceptible to two major diseases, sesame leaf blight and yellow leafbright. They were also vulnerable to damage.
  • sesame leaf blight broke out on first-generation hybrid corn, which was hit hard. This has made it very dangerous to use only one type of cytoplasm for seed collection.
  • the cms cytoplasm can affect flower morphology.
  • oilseed rape there may be mentioned examples of the polymer cms cytoplasm.
  • Rape with polymer cms cytoplasm is known to have large gaps at the base of petals. Because this bee sucks nectar, there are few flowers left for pollination, and the polymer cms has a problem in terms of seed yield.
  • Ogura ems cytoplasm is smaller in radish than in fertile flowers and secretes less nectar. This makes it difficult for insects to visit, and radish with ogra cm s cytoplasm is problematic in terms of seed yield.
  • cytoplasm and nuclei generated when the cms cytoplasm is introduced into other species The negative effects of harmonization can be partially resolved by cell fusion.
  • Cytoplasmic hybrids made by cell fusion (Saipuri' de) cytoplasm genome of the plant (chloroplasts and mitochondria) is, by using the c This phenomenon often with a recombinant between parents genome, only cms gene What is necessary is to sort out the introduced hybrids.
  • cms cytoplasm which originally had no problem with petals and nectar quantity, would increase the probability of obtaining a breeding advantage in breeding.
  • the present inventors have conducted a search for cytoplasm that is genetically different from ogra cms, and as a result, have found that cms derived from Kosena radish is extremely useful for the development of plant species, and obtained the gene.
  • the present invention has been completed.
  • an object of the present invention is to provide a gene encoding the polypeptide represented by the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, and a method for producing a hybrid plant using the same.
  • FIG. 1 is a photograph instead of a drawing showing pollen development in cms-KA, cms-KAC and cms-OGU.
  • KAC indicates cms-KAC
  • KA indicates cms-KA
  • ⁇ GURA indicates cms-0 GU.
  • FIG. 2 is a photograph replacing the drawing in which the identification of the cms cytoplasm by the PCR method is represented by an electrophoresis pattern.
  • SW18 is cms rape
  • OGU RA is cms- OGU
  • KAC is cms- KAC
  • KOS B is Kose Nadaikon normal mitochondria
  • KA stands for cms-KA.
  • FIG. 3 is a photograph replacing the drawing in which Southern hybridization of mitochondrial DNA of cms-KA and cms-KAC using rrn26 as a probe is represented by an electrophoresis pattern.
  • KA represents cms-KA
  • KAC represents cms-KAC.
  • FIG. 4 is a photograph replacing the drawing in which Northern hybridization of cms-KA and cms-KAC using rrn26 as a probe is represented by an electrophoresis pattern.
  • KA indicates cms-KA
  • KAC indicates cms-KAC
  • F and S indicate fertility and sterility, respectively.
  • FIG. 5 is a drawing showing a physical map of a mitochondrial DNA region containing 0 rf 125 or orf 138.
  • 0 gura indicates the approximately 2.5 kb N_co_I DNA fragment of the ogla radish cms-type mitochondria
  • Kosena indicates the approximately 2.5 kb NcoI DNA fragment of the kosena radish cms-type mitochondria.
  • Cybrid is a DNA fragment of about 3.2 kb containing 0 rf 125 of the mitochondria of cms rape, 125 represents orf 125, 138 represents orf 138, B represents 0 rf B, and N c Represents the restriction site of NcoI, Hc represents HincII, and Xb represents the restriction site of XbaI.
  • the arrow indicates the part where the difference in the 0 rf 125 region between cms rape and Kosena radish occurs.
  • the base sequence downstream from the 34th base downstream of the stop codon of 0 rf 125 indicated by the arrow is different between the two.
  • FIG. 6 is a photograph replacing the drawing in which the identification of the mitochondrial genome by the PCR method is represented by an electrophoresis pattern.
  • A shows the results obtained by PCR using SEQ ID NOS: 3 and 6 in the sequence listing as primers
  • B shows the results obtained by PCR using SEQ ID NOs: 3 and 5 in the sequence listing as primers.
  • FIG. 7 is a photograph instead of a drawing in which each mitochondrial DNA is cut with a restriction enzyme Nc0I, and Southern hybridization using 0 rf 125 as a probe is represented by an electrophoresis pattern.
  • KOSB is Kosena radish with normal mitochondria
  • KA is cms-KA
  • KAC is cms-KAC
  • SW18 is cms rape
  • FW18 is rapeseed fertility return line
  • SW12 is cms-rape.
  • Wes represents rapeseed with normal mitochondria.
  • FIG. 8 is a photograph instead of a drawing in which Northern hybridization using 0 rf 125 as a probe is represented by an electrophoresis pattern.
  • KOSB is Kosena radish with normal mitochondria
  • KA is cms—KA
  • KAC is cms—KAC
  • SW18 is cms rape
  • Wes is rape with normal mitochondria
  • F and S are each acceptable. Represents fertility and sterility.
  • FIG. 9 is a photograph instead of a drawing showing the result of Western analysis of mitochondrial proteins using a pit against 0 r ⁇ 125.
  • is an analysis of all mitochondrial proteins.
  • SW18 is a cms rape
  • WES is a fertile rape with normal mitochondria
  • FW18 is a rapeseed return line.
  • B shows the analysis of the mitochondrial protein of cms rape.
  • TOTAL represents the total mitochondria
  • SOL represents the soluble fraction
  • MB represents the protein of the membrane fraction.
  • FIG. 10 is a diagram showing the structure of the binary vector used for the transformation.
  • A is the binary vector pKM424.
  • pKCMl 25 and P KCMD 125 is obtained by linking the promoter sequence, gene, and terminator sequence shown in B to the HindIII (H) and EcoRI (E) cleavage sites of the multiple cloning site (MCS) of PKM424.
  • 35S is the force reflower mosaic virus 35S promoter sequence
  • 125 is the 0 rf125 gene
  • D is the mitochondrial translocation sequence
  • NOS and NOST are the nopaline synthase gene terminator sequence
  • RB is the light border sequence
  • NPT II is a neomycin phosphotransferase gene
  • NOSP is a nopaline synthase gene promoter sequence
  • SpecR is a spectinomycin resistance gene
  • TcR is a tetracycline resistance gene.
  • the genetic characteristics of the cms cytoplasm and the Rf gene of a population of Kosena radish are investigated by crossing.
  • male sterile (cms) kosena radish R. sativus, CMS 1 ine
  • fertile cosena radish or cultivated radish varieties, such as sono (R. sati Vus, cv. nhong) etc. are used as pollen parents.
  • sono R. sati Vus, cv. nhong
  • the cms of Kosena radish is introduced into a plant having the Rf gene whose correspondence has been clarified as described above, for example, by cell fusion (Japanese Patent Application Laid-Open No. 11-218530).
  • mitochondria are extracted from young plants germinated from seeds of R. sativa rs (CMS line) having cms cytoplasm in accordance with a conventional method, and further DNA is extracted from the mitochondria in a conventional manner. Extract according to. After the obtained mitochondrial DNA is cleaved with an appropriate restriction enzyme, it is ligated to a cloning vector such as pUC19, which is then introduced into a competent cell of Escherichia coli. The grown E.
  • CMS line R. sativa rs
  • the nucleotide sequence of the DNA fragment thus obtained includes, for example, those encoding the polypeptide represented by the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, and preferably the nucleotide sequence shown in the sequence listing. It is represented by an array.
  • the DNA fragment is derived from radish and modified by removing, inserting, modifying, or adding some bases within a range that does not impair the function of restoring the fertility of plants, especially cruciferous plants. No problem.
  • the cms mitochoncon which has the property that fertility is restored by a single nuclear gene, Find genes specific to such mitochondrial genomes to distinguish doria from others. As a result, it is possible to develop a method that can easily distinguish the cytoplasm using such a gene.
  • a recombinant mitochondrial genome can be obtained by introducing the gene obtained as described above into a nuclear genome by a known method, or by directly introducing the gene into the mitochondrial genome.
  • a transformed plant or a cytoplasmic hybrid plant containing a male sterile cytoplasm having the mitochondrial genome can be obtained, and a hybrid plant can be produced using the plant.
  • a method for introducing and regenerating DNA via agrobacterium as a transformation method Japanese Patent Laid-Open Publication No. Hei 11-500718, is a method for transforming protoplasts into a protoplast using a cytoplasmic hybrid.
  • a method of introducing a DNA with a shion and regenerating a plant through culture is known (Plant Science, 5_2, 111-116, 1987).
  • Plants to be transformed include cruciferous plants, solanaceous plants, etc., preferably rape, tobacco, etc., and more preferably rape.
  • the hybrid plant is, for example, a method described in EP-A-599042, in which the transformed plant or the cytoplasmic hybrid plant is used as a pollination line, and the pollen fertility is restored to the cytoplasmic male sterility of the plant. This can be obtained by crossing a plant into which a fertility restoring gene has been introduced as a pollination line by a known method.
  • Example 1 Analysis of hereditary mode of cms of Kosena radish Kosena radish (R. sativus, cv. Kosena C MS 1 ine; KosA) is arbitrarily selected, and 10 fertile cosena radish (R. sati vu s. c. v. Ko sen a) or cultivated radish varieties, R. sati vu s, c v. Y uanhong, zo, R. sati vu s., c v. X in 1 imei The parents crossed each other. The 16 individuals who were pollen parents obtained seeds by self-pollination.
  • Ko s A The cms line of Kosena radish (R. sativus, cv. Kosena). -
  • cms—KACJ cms cytoplasm
  • cms-KA and cms-KAC also differed in pollen regression time from cms-OGU (Fig. 1).
  • Fig. 1 bud length and pollen development of radish with each cytoplasm were examined by acetocamin staining, and it was shown whether pollen regression time and the degree of development differed depending on cytoplasm and genomic composition of different nuclei.
  • cms represents cytoplasm
  • Nuc represents nuclear genomic composition.
  • the genomic composition of the nucleus is as follows. Table 3
  • the numbers shown in the ogu ogura 3 nuclear genome are the individual numbers in the original population (see Table 1).
  • cm s—OGU pollen degeneration had already progressed at a bud length of 3 mm.
  • cm s- KA and cm s- KAC pollen degeneration occurs at a bud length of 4.5 mm, and this difference was the same even when the genomic composition of the nucleus was changed. The difference was thought to be due to cytoplasmic factors.
  • rapeseed a cms cytoplasm recovered by a single R ⁇ gene, by examining the rapeseed rapeseed with the kosena radish produced by cell fusion and the mitochondrial genome of rapeseed (hereinafter “cms (Abbreviated as "rapeseed”).
  • coli colonies are transferred to a nylon membrane, lysed with 10% SDS for 5 minutes on a filter paper containing each solution, denatured with alkaline solution (1.5M NaC1 / 0.5M NaOH), After neutralization (3M sodium acetate, pH 5.2), the sample is dried at 80 ° C for 10 minutes, and then 6 XSSC (lx SSC: l5OmM NaCl, 15mM sodium citrate) For 30 minutes. The surface of the membrane was wiped lightly with a JK wiper containing 6 XSSC, washed with shaking in 6 x SSC, and completely dried at 80 ° C.
  • pKOS2.5 DNA fragment of about 2.5 kb
  • Cleavage with H inc II and Southern hybridization using the above probe detected a band of about 0.65 kb.
  • the 0.65 kb H inc II fragment was converted to a plasmid vector Bluescript. II (S tratagene) was ligated to the Sma I cleavage site.Next, the nucleotide sequence of this Hinc II DNA fragment was sequenced by the dideoxy method. Constant to obtain a nucleotide sequence of 659 bp (SEQ ID NO: 1).
  • a gene consisting of 125 amino acids (hereinafter referred to as “orf 125”) was present in this nucleotide sequence.
  • 0 rf 125 had 39 bases deleted in the nucleotide sequence of 0 rf 138 of Ogura. This deletion was part of the repeated DNA sequence of 0 r f 138.
  • Primers (SEQ ID NOS: 2 and 3 in the Sequence Listing) were prepared to detect the length of this repetitive sequence, and all of cms-KA, cms-KAC, cosena radish with normal cytoplasm, cms rape and cms-OGU were prepared.
  • a PCR reaction was performed using 40 cycles of DNA at 94 ° C for 25 seconds, 52 ° C for 30 seconds, and 72 ° C for 1 minute and 30 seconds (Am. J. Hum. Genet., 37, 172 ( 1985)).
  • the migration pattern is shown in FIG. A band of 278 bp was detected in the Ogura type cms cytoplasm, and a 239 bp band was detected in the Kosena type cms cytoplasm.
  • orf 125 is not present in the normal mitochondria of Kosena radish and cms-OGU
  • cms-KA, cms-KAC and cms rape it was found to be present in cms-KA, cms-KAC and cms rape. From these results, it was found that 0 rf 125 is a gene that specifies the c ms mitochondria of radish.
  • cms-KA and cms-KAC are genetically different cytoplasms, it was thought that there was some difference in the mitochondrial genome, so two cms-type mitochondrial DNAs were extracted. Using a DNA fragment containing the tochondrial gene region, differences were detected by the Southern hybridization method.
  • the DNA fragments used for the probe are as follows. atp A (endow), atp 9 (endow), atp 6 (enotera), cob (corn), cox I, rps l3 and nad1 (enotera), cox ll (corn), cox III (enotera) ), Rrn5, rrnl8 and nad5 (Enotera), and rrn26 (endu).
  • the RNA extraction buffer [4M guanidine ocyanate Z25 mM sodium citrate (pH 7.0) /0.5% N-lauroyl sarcosine acid Sodium 0.1 M EDTA] 10
  • the mitochondrial DNA of cms rape (line SW18) was digested with the restriction enzyme XbaI, ligated to the XbaI site of the plasmid vector ⁇ Bluescript (Stratagene), and introduced into a combinatorial cell of Escherichia coli DH5. And transformed. 0 Colony hybridization was performed using the coding region of rf125 as a probe, and the two positive Buclone was obtained. Plasmid DNA was extracted from them and a physical map was created using restriction enzymes.As a result, the two clones were PSWX2.8 containing the 5 'side of 0 rf125 and pSWXl. Containing the 3' side of orf125. It turns out to be 7
  • the 0 rf 125 region of the cms rape line SW18 had a sequence completely different from that of Kosena radish at the 34th base or less downstream of the stop codon of orf 125, and 0 rfB did not exist.
  • the 0 rf 125 region of the above-mentioned cms rape is referred to as or ⁇ 125 c.
  • the mitochondrial DNA of the cms rape was examined by PCR to determine whether or not the orf 125 region of the mitochondria of the cms radish (FIG. 5) exists in addition to 0 rf 125 c.
  • a combination of two primers was used for PCR.
  • One is the nucleotide sequence 5 'in the coding region of orf 125 — GACATCTAGAGAAGTTAAAAAAT— 3' (SEQ ID NO: 3 in the sequence listing) and the nucleotide sequence 5 'in the downstream region of 0 rf 125 c of pSWVO. 7 — TCTGACAGCTTACGATG— 3' (SEQ ID NO: 5 in the sequence listing).
  • the other is a combination of SEQ ID NO: 3 in the above sequence listing and the base sequence 5′-CTAC C AGAGGTATC TATAGAAT—3 ′ downstream of 0 rf B found in pKOS2.5 (SEQ ID NO: 6 in the sequence listing).
  • c ms rape line SW18 is about 0.55k with the former primer combination Band b was detected, but no band was detected in the latter combination (lane 6 in FIG. 6).
  • cms kosena radish and cms rape line SW12 a band of 0.55 kb was detected in the former combination, which was the same as that of line SW18, and a band of about 0.9 kb was detected in the latter combination (Fig.
  • cms rape line SW18 was derived from Kosena radish cms-type mitochondria. Based on the above, the mitochondrial genome of cms rape line SW18 is the one in which 0r r125c was selectively introduced during cell fusion with Kosena radish, and it can be easily distinguished from the cms-type mitochondrial genome of Kosena radish by PCR. I knew I could do it.
  • Mitochondria were purified from the seedlings 5 days after germination and growth in the dark, and about 1 O ⁇ g of mitochondrial total protein was fractionated on a 12% SDS-polyacrylamide gel.
  • Western analysis using an antibody to the 15th amino acid sequence from the 78th to the 92nd amino acid sequence revealed that cms rape showed about 17 motility, which was not found in fertile rapeseed with normal mitochondria and rapeseed revertible line. A specific band of kDa was detected (Fig. 9A).
  • the mitochondrial protein purified from cms rape was separated into a soluble fraction and a membrane fraction, and Western analysis was performed using the above antibodies.As a result, 17 kDa polypeptide was present in the membrane fraction of cms rape (Fig. 9B). orf 125, like the previously reported maize cms gene product urf 13 protein, is thought to inhibit the normal function of mitochondria by being present in the mitochondrial membrane (Proc. Nat USA, 8, 5374-5378 (1987); Science, 2_3_9, 293-295 (1988); Proc. Natl. Ac ad. Sci. USA, 8_6, 4435-4439 (1989); EMBO J., 9_, 339-347 (1990)).
  • orf 125 was introduced into tobacco by the agrobacterium method, and the effect of 0 rf 125 on plant cells was investigated.
  • 0 rf125 gene or F. of sweet potato.
  • the transfer sequence of the Fi ATPase S subunit to the mitochondrial dryer (Plant Cell Physiol., 3_4, 177-183 (1993)) was added to the chimeric gene added to orf 125 to cauliflower mosaic virus 35, respectively.
  • S promoter (35S) and nopaline synthase gene terminator (NOST) The vector was ligated to the HindIII and EcoRI cleavage sites of the multiple cloning site of the vector pKM424 to obtain pKCM125 and pKCMD125, respectively (FIGS.
  • each of the binary vectors was introduced into Agrobacterium EHA101 strain by a freeze / thaw method. Transformation of tobacco was performed as follows according to the method of Rogers et al. (Methods Enzymo 1., 11_8. 627-640 (1 986)). EHA101 into which the binary vector was introduced was cultured with shaking at 27 ° C.
  • agrobacterium culture solution is added to the MS medium at 1Z50 volume and added at 27 ° C. For 2 days and nights for co-culture.
  • the co-cultured tobacco leaf sections were placed on an MS medium containing 0.2 mg / 16-benzylaminopurine, 200 gZm 1 kanamycin, 500 gZm 1 claforan, 3% sucrose and 0.2% gel light, and placed at 27 ° C. C for about 20 days.
  • the regeneration rate of the plant by this method was determined by calculating the number of adventitious buds formed / the number of whole leaf sections. Table 5 shows the results.
  • the adventitious bud formation rate per leaf section was 0.68 on average, whereas it was 0.22 for PKCM125 and 0.07 for 10? ⁇ 0125.
  • the leaf section of tapaco with adventitious buds was transplanted to a new MS medium having the above composition, and cultivation was continued. When the adventitious buds reached 1-2 cm, the leaf section was cut off, and kanamycin and 6-benzylaminopurine were removed.
  • the cytoplasmic gene of the present invention is effective as a new cms cytoplasmic gene that can be used for hybrid seed production of plants, for example, cruciferous plants, and quickly recognizes a cosena cms cytoplasm, which is a new cytoplasm exhibiting a trait useful for breeding. Useful to distinguish.
  • Sequence type nucleic acid
  • Genomic DNA Organism name Raphanus sativus
  • Sequence type nucleic acid Number of chains: single strand
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Organism name Brassica naps. (Brassic acanapus) Strain name: SW18
  • AAAAAGTCTC ACCTATCATT AAAGGGGAAA TAGAGGGGAA AGAGGCAAAA AAAGAGGGGA 480
  • TATATCCCAT TTTATCCTTC CGCTTTAGGA TTAGCCCAGC TTTTTCGAAA CGGACGGAAG 840
  • GCCTAACTAG AAGCTATTTG GCGCCTTCCC CTCGATGAAT ACTTGGAAAT TTGTCTTGCA 900
  • Sequence type nucleic acid
  • Sequence type nucleic acid

Abstract

A novel gene that identifies a male sterile cytoplasm of a plant such as a crucifer, and a process for preparing a hybrid plant by using the same. This gene is useful as a novel cms cytoplasm gene usable in producing hybrid seeds of a plant and also in discriminating rapidly a Kosena ( Raphanus sativus ) cms cytoplasm which is a novel cytoplasm exhibiting a character useful for breeding. It is possible to add cms to not only a crucifer but also any plant in general by introducing the obtained gene into a nuclear genome or directly into a mitochondrial genome.

Description

明 細 書 植物の不稔細胞質を同定する遺伝子  Description Genes that identify plant sterile cytoplasm
およびそれを用いたハイプリッ ド植物の作成方法 技術分野  And method for producing hybrid plant using the same
本発明は、 植物、 例えばアブラナ科植物、 の不稔細胞質を同定する遺伝 子及びそれを用いたハイプリッ ド植物の作成方法に関し、 詳細には植物に おける F1 品種の開発のために利用される雄性不稔細胞質遺伝子及びそれ を用いたハイプリッ ド植物の作成方法に関するものである。 The present invention is used plants such crucifers, relates to a method to create a gene and Haipuri' de plants using the same identifying sterile cytoplasm, in particular for the development of F 1 varieties definitive plants The present invention relates to a male sterile cytoplasmic gene and a method for producing a hybrid plant using the same.
背景技術  Background art
—代雑種は、 禾穀類、 野菜類等の多くの主要作物で実用化されている。 一代雑種品種は、 1)雑種強勢による優れた農業形質、 2)収穫物の均一 性、 3)次世代で遺伝形質が分離するため品種育成者の利益が保護される、 等を特徴としている。  —Hybrid hybrids are used in many major crops such as cereals and vegetables. The first-generation hybrid varieties are characterized by 1) excellent agricultural traits due to heterosis, 2) uniformity of crops, and 3) the separation of genetic traits in the next generation, thereby protecting the interests of breeders.
アブラナ科では自家不和合性を用いた F, 採種系が広く利用されている c しかし安定な自家不和合性の無いナタネでは細胞質雄性不稔 (以下、 「c ms」 と略す) を利用した Fi 採種系が求められていた。 現在ポリマ cm sを用いた 採種系が実用化されているが、 雄性不稔が不安定であり、 更に花器の形態が悪く収量に影響を及ぼすと言った点で改良が求められて いる。  In Brassicaceae, F using self-incompatibility is widely used. However, in oilseed rape without stable self-incompatibility, fibrosis using cytoplasmic male sterility (hereinafter abbreviated as “c ms”) is used. A seeding system was required. At present, a seeding system using the polymer cms has been put to practical use, but improvement is required in that male sterility is unstable, and that the shape of the vase is bad and affects the yield.
ポリマ cmsに代わって近年ダイコン由来のォグラ cmsがナタネで利 用されようとしている。 ォグラ cmsは、 雄性不稔が安定であり、 単一の 稔性回復遺伝子 (以下、 「Rf遺伝子」 と略す) により稔性を回復するこ とができる。 ォグラ R f遺伝子も既にダイコンからナタネに導入されてお り、 ナタネに導入したダイコンの cmsと R f遺伝子はナタネにおいて実 用上問題なく利用できることが判つた。 In recent years, ogura cms derived from radish has been used in rapeseed instead of polymer cms. Ogura cms is stable in male sterility and can be restored to fertility by a single fertility restoring gene (hereinafter abbreviated as “Rf gene”). The Ogura R f gene has already been introduced into rape from radish. In addition, it was found that the radish cms and Rf genes introduced into rapeseed could be used without problems in rapeseed.
c m s細胞質は花粉を不稔にするだけでなく植物の他の形質にも影響を 及ぼす場合がある。 トウモロコシの細胞質の一種である T一 cms細胞質 はかって F! の採種に広く用いられていたが、 その細胞質は、 ごま葉枯病、 ye l l ow l e a f b r i g h tの 2大病害に感受性であり、 更に ァヮノメイガの食害も受け易かった。 1970年に一代雑種トウモロコシ にごま葉枯病が激発し大きな打撃を受けた。 このことから 1種類の細胞質 だけを 種子の採種に用いることはたいへん危険であると考えられるよ うになった。  The cms cytoplasm may not only render the pollen sterile but also affect other traits of the plant. T-cms cytoplasm, a kind of corn cytoplasm, was once widely used for seeding F !, but its cytoplasm was susceptible to two major diseases, sesame leaf blight and yellow leafbright. They were also vulnerable to damage. In 1970, sesame leaf blight broke out on first-generation hybrid corn, which was hit hard. This has made it very dangerous to use only one type of cytoplasm for seed collection.
c m s細胞質は花の形態に影響を及ぼすことがある。 ナタネではポリマ cms細胞質の例を挙げることができる。 ポリマ c m s細胞質をもつナタ ネは花弁の基部に大きな隙間ができることが知られている。 この隙間か.ら ハチが蜜を吸うため、 授粉に預かる花が少なく、 ポリマ cmsは種子収量 の面で問題がある。 ォグラ em s細胞質はダイコンにおいては花が可稔の ものより小さく、 蜜の分泌量が少ない。 このため訪花昆虫の訪れが悪く、 ォグラ cm s細胞質をもつダイコンは採種量の点で問題がある。 一方、 コ セナダイコンのもつ cm s細胞質を利用した場合、 ダイコンにおいてはォ グラ cmsを利用したときより採種量が多い。 これはコセナのもつ cms 細胞質がォグラと遺伝的に異なるためと考えられる。 つまり細胞質遺伝因 子であるミ トコンドリアや葉緑体と核遺伝子の相互作用により表現型に差 が生じるのである。 この細胞質をダイコン以外の有用作物に交配や細胞融 合で導入する事により、 ォグラ cmsを用いた場合よりも形態的特徴の優 れた品種を選抜できる可能性が高まるものと考えられた。  The cms cytoplasm can affect flower morphology. In oilseed rape there may be mentioned examples of the polymer cms cytoplasm. Rape with polymer cms cytoplasm is known to have large gaps at the base of petals. Because this bee sucks nectar, there are few flowers left for pollination, and the polymer cms has a problem in terms of seed yield. Ogura ems cytoplasm is smaller in radish than in fertile flowers and secretes less nectar. This makes it difficult for insects to visit, and radish with ogra cm s cytoplasm is problematic in terms of seed yield. On the other hand, when the cm s cytoplasm possessed by Kosena radish is used, the seed cultivation of radish is larger than when using the cms cytoplasm. This is thought to be due to genetic differences in the cytoplasm of Kosena from Ogura. In other words, the interaction of nuclear genes with mitochondria and chloroplasts, which are cytoplasmic genetic factors, causes phenotypic differences. By introducing this cytoplasm into useful crops other than radish by crossing or cell fusion, it was thought that the possibility of selecting varieties with more excellent morphological characteristics than using ogra cms would be increased.
また、 cms細胞質を他種植物に導入した場合に生ずる細胞質と核の不 和合による悪影響は、 細胞融合によってある程度解決することができる。 細胞融合により作られた細胞質雑種 (サイプリッ ド) 植物の細胞質ゲノム (葉緑体やミ トコンドリア) は、 両親ゲノム間の組換え型を持つ事が多い c この現象を利用して、 cms遺伝子のみが導入されたサイブリツ ドを選別 すれば良い。 しかしこの作業においても、 もともと花弁や蜜量の点で問題 が無い cms細胞質を導入すれば育種上有利なサイプリッ ドを得る確率が 高くなると考えられた。 In addition, the cytoplasm and nuclei generated when the cms cytoplasm is introduced into other species The negative effects of harmonization can be partially resolved by cell fusion. Cytoplasmic hybrids made by cell fusion (Saipuri' de) cytoplasm genome of the plant (chloroplasts and mitochondria) is, by using the c This phenomenon often with a recombinant between parents genome, only cms gene What is necessary is to sort out the introduced hybrids. However, even in this work, it was thought that the introduction of cms cytoplasm, which originally had no problem with petals and nectar quantity, would increase the probability of obtaining a breeding advantage in breeding.
発明の目的  Purpose of the invention
ナタネに導入されたダイコン細胞質は今のところォグラ c m s細胞質の みである。 しかしトウモロコシの先例を考えると、 ォグラ cmsとは遺伝 的に異なる細胞質を育種に併用することが望まれた。  At present, only radish cytoplasm introduced into rapeseed is ogra cms cytoplasm. However, given the precedent of corn, it was desired to use cytoplasmic genetically different from ogra cms for breeding.
そこで本発明者らは、 ォグラ cm sとは遺伝的に異なる細胞質につき探 索を進めてきた結果、 コセナダイコン由来の cmsが植物における 品 種の開発に極めて有用であることを見出し、 その遺伝子を取得し本発明を 完成するに至った。  Therefore, the present inventors have conducted a search for cytoplasm that is genetically different from ogra cms, and as a result, have found that cms derived from Kosena radish is extremely useful for the development of plant species, and obtained the gene. The present invention has been completed.
すなわち本発明の目的は、 配列表の配列番号 1に記載のァミノ酸配列で 表されるポリべプチドをコ一ドする遺伝子およびそれを用いたハイプリッ ド植物の作成方法を提供することである。  That is, an object of the present invention is to provide a gene encoding the polypeptide represented by the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, and a method for producing a hybrid plant using the same.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 cms— KA、 cm s— KA Cおよび cm s— OGUに於ける 花粉の発達状況を表した図面に代わる写真である。 図中、 KACは cms— KACを、 KAは cms—KAを、 〇 G U R Aは c m s— 0 G Uを表す。 図 2は、 P CR法による cms細胞質の同定を、 電気泳動パターンで表 した図面に代わる写真である。 図中、 SW18は cmsナタネを、 OGU RAは cms— OGUを、 K A Cは c m s— K A Cを、 KOS Bはコセ ナダイコン正常型ミ トコンドリアを、 KAは cms— K Aを表す。 FIG. 1 is a photograph instead of a drawing showing pollen development in cms-KA, cms-KAC and cms-OGU. In the figure, KAC indicates cms-KAC, KA indicates cms-KA, and 〇 GURA indicates cms-0 GU. FIG. 2 is a photograph replacing the drawing in which the identification of the cms cytoplasm by the PCR method is represented by an electrophoresis pattern. In the figure, SW18 is cms rape, OGU RA is cms- OGU, KAC is cms- KAC, KOS B is Kose Nadaikon normal mitochondria, KA stands for cms-KA.
図 3は、 r r n 26をプローブにした c m s— KAと cms— KACの ミ トコンドリア DN Aのサザンハイブリダィゼーションを電気泳動パター ンで表した図面に代わる写真である。 図中、 KAは cms— KAを、 KA Cは cms— KACをそれぞれ表す。  FIG. 3 is a photograph replacing the drawing in which Southern hybridization of mitochondrial DNA of cms-KA and cms-KAC using rrn26 as a probe is represented by an electrophoresis pattern. In the figure, KA represents cms-KA, and KAC represents cms-KAC.
図 4は、 r r n 26をプローブにした c m s— K Aと c m s— K A Cの ノーザンハイプリダイゼーションを電気泳動パターンで表した図面に代わ る写真である。 図中、 KAは cms— KAを、 KACは cms— KACを、 F, Sはそれぞれ可稔と不稔を表す。  FIG. 4 is a photograph replacing the drawing in which Northern hybridization of cms-KA and cms-KAC using rrn26 as a probe is represented by an electrophoresis pattern. In the figure, KA indicates cms-KA, KAC indicates cms-KAC, and F and S indicate fertility and sterility, respectively.
図 5は、 0 r f 125または o r f 138を含むミ トコンドリア DNA 領域の物理地図を表す図面である。 図中、 0 g u r aはォグラダイコンの cms型ミ トコンドリアのもつ約 2. 5 k b N_c o_ I DNA断片を、 K o s e n aはコセナダイコンの cms型ミ トコンドリアのもつ約 2. 5 k b N c o I DNA断片を、 CMS c y b r i d (サイブリツ ド) は cmsナタネのミ トコンドリアのもつ 0 r f 125を含む約 3. 2 k b の DNA断片を、 125は o r f 125、 138は o r f 138、 Bは、 0 r f Bをそれぞれ表し、 N cは N c o I、 H cは H i n c I I、 X bは Xb a Iの制限酵素切断部位をそれぞれ表す。 矢印は c m sナタネとコセ ナダイコンの 0 r f 125領域の違いが生じている部分を表す。 矢印の示 す 0 r f 125のストップコドン下流 34塩基目から下流の塩基配列は 2 者間で異なっている。  FIG. 5 is a drawing showing a physical map of a mitochondrial DNA region containing 0 rf 125 or orf 138. In the figure, 0 gura indicates the approximately 2.5 kb N_co_I DNA fragment of the ogla radish cms-type mitochondria, and Kosena indicates the approximately 2.5 kb NcoI DNA fragment of the kosena radish cms-type mitochondria. Cybrid is a DNA fragment of about 3.2 kb containing 0 rf 125 of the mitochondria of cms rape, 125 represents orf 125, 138 represents orf 138, B represents 0 rf B, and N c Represents the restriction site of NcoI, Hc represents HincII, and Xb represents the restriction site of XbaI. The arrow indicates the part where the difference in the 0 rf 125 region between cms rape and Kosena radish occurs. The base sequence downstream from the 34th base downstream of the stop codon of 0 rf 125 indicated by the arrow is different between the two.
図 6は、 PCR法によるミ トコンドリアゲノムの同定を、 電気泳動バタ ーンで表した図面に代わる写真である。 Aは配列表の配列番号 3と 6をプ ライマーに PC Rを行ったもの、 Bは配列表の配列番号 3と 5をプライマ 一に P CRを行ったものである。 図中、 1は cms— KA (可稔) 、 2は cms -KA (不稔) 、 3は cms— KAC (可稔) 、 4は cms— KA C (不稔) 、 5はコセナダイコン正常型ミ トコンドリア、 6は SW18、 7は SW12、 8は FW18、 9はナタネ正常型ミ トコンドリア、 10は pKOS2.5、 11は pSW18X1.7、 Mはサイズマーカーを表す。 図 7は、 各ミ トコンドリア DNAを制限酵素 N c 0 Iで切断し、 0 r f 125をプローブにしたサザンハイブリダィゼーシヨンを電気泳動パター ンで表した図面に代わる写真である。 図中、 KOSBは正常型ミ トコンド リアをもつコセナダイコンを、 KAは cms— KAを、 KACは cms— KACを、 SW18は cmsナタネを、 FW18はナタネ可稔復帰系統を、 SW12は cmsナタネを、 We sは正常型ミ トコンドリアをもつナタネ を表す。 FIG. 6 is a photograph replacing the drawing in which the identification of the mitochondrial genome by the PCR method is represented by an electrophoresis pattern. A shows the results obtained by PCR using SEQ ID NOS: 3 and 6 in the sequence listing as primers, and B shows the results obtained by PCR using SEQ ID NOs: 3 and 5 in the sequence listing as primers. In the figure, 1 is cms—KA (fertile), 2 is cms-KA (sterility), 3 is cms—KAC (fertility), 4 is cms—KAC (sterility), 5 is normal mitochondria of Kosena radish, 6 is SW18, 7 is SW12, and 8 is FW18, 9 Represents normal rapeseed mitochondria, 10 represents pKOS2.5, 11 represents pSW18X1.7, and M represents a size marker. FIG. 7 is a photograph instead of a drawing in which each mitochondrial DNA is cut with a restriction enzyme Nc0I, and Southern hybridization using 0 rf 125 as a probe is represented by an electrophoresis pattern. In the figure, KOSB is Kosena radish with normal mitochondria, KA is cms-KA, KAC is cms-KAC, SW18 is cms rape, FW18 is rapeseed fertility return line, and SW12 is cms-rape. Wes represents rapeseed with normal mitochondria.
図 8は、 0 r f 125をプローブにしたノーザンハイブリダィゼーショ ンを電気泳動パターンで表した図面に代わる写真である。 図中、 KOSB は正常型ミ トコンドリアをもつコセナダイコンを、 KAは cms— KA、 KACは cms— KAC、 SW18は cmsナタネを、 We sは正常型ミ トコンドリアをもつナタネを、 F, Sはそれぞれ可稔と不稔を表す。  FIG. 8 is a photograph instead of a drawing in which Northern hybridization using 0 rf 125 as a probe is represented by an electrophoresis pattern. In the figure, KOSB is Kosena radish with normal mitochondria, KA is cms—KA, KAC is cms—KAC, SW18 is cms rape, Wes is rape with normal mitochondria, and F and S are each acceptable. Represents fertility and sterility.
図 9は、 0 r ί 125に対する坑体を用いてミ トコンドリアタンパク質 のウェスタン解析を行った結果の図面に代わる写真である。 Αは全ミ トコ ンドリアタンパク質について解析したもので、 図中 SW18は cmsナタ ネ、 WE Sは正常型ミ トコンドリアをもつ可稔ナタネ、 FW18はナタネ 可稔復帰系統である。 Bは cmsナタネのミ トコンドリアタンパク質につ いて解析したもので、 図中 TOTALは全ミ トコンドリア、 SOLは可溶 性画分、 MBは膜画分のタンパク質をそれぞれ表す。  FIG. 9 is a photograph instead of a drawing showing the result of Western analysis of mitochondrial proteins using a pit against 0 rί125. Α is an analysis of all mitochondrial proteins. In the figure, SW18 is a cms rape, WES is a fertile rape with normal mitochondria, and FW18 is a rapeseed return line. B shows the analysis of the mitochondrial protein of cms rape. In the figure, TOTAL represents the total mitochondria, SOL represents the soluble fraction, and MB represents the protein of the membrane fraction.
図 10は、 形質転換に用いたバイナリーベクターの構造を示す図である。 Aはバイナリーべク クー pKM424である。 pKCMl 25ならびに P KCMD 125は Bに示すプロモーター配列、 遺伝子、 およびターミネ一 ター配列を PKM424のマルチクローニング部位 (MC S) の H i n d I I I (H) および E c oR I (E)切断部位に連結したものである。 図 中 35 Sは力リフラワーモザイクウィルス 35 Sプロモーター配列、 12 5は 0 r f 125遺伝子、 Dはミ トコンドリア移行配列、 NOSおよび N OSTはノパリン合成酵素遺伝子ターミネータ一配列、 RBはライ トボー ダー配列、 NPT I Iはネオマイシンフォスフォ トランスフヱラーゼ遺伝 子、 NO S Pはノパリン合成酵素遺伝子プロモーター配列、 Sp e cRは スぺクチノマイシン耐性遺伝子、 T c Rはテトラサイクリン耐性遺伝子を 表す。 FIG. 10 is a diagram showing the structure of the binary vector used for the transformation. A is the binary vector pKM424. pKCMl 25 and P KCMD 125 is obtained by linking the promoter sequence, gene, and terminator sequence shown in B to the HindIII (H) and EcoRI (E) cleavage sites of the multiple cloning site (MCS) of PKM424. In the figure, 35S is the force reflower mosaic virus 35S promoter sequence, 125 is the 0 rf125 gene, D is the mitochondrial translocation sequence, NOS and NOST are the nopaline synthase gene terminator sequence, RB is the light border sequence, NPT II is a neomycin phosphotransferase gene, NOSP is a nopaline synthase gene promoter sequence, SpecR is a spectinomycin resistance gene, and TcR is a tetracycline resistance gene.
発明の開示  Disclosure of the invention
以下、 本発明につき詳細に説明する。  Hereinafter, the present invention will be described in detail.
まず、 コセナダイコン (Rat>ha.nu s s a t i v u s . c v. K o s e n a)集団の c m s細胞質と R f遺伝子の遺伝学的特性を交配によ り調査する。 例えば、 雄性不稔 (cms) コセナダイコン (R. s a t i v u s, CMS 1 i n e) を任意に選び、 稔性のあるコセナダイコンま たは栽培ダイコン品種、 例えば園紅 (R. s a t i V u s, c v. Y u a nhong)等を花粉親にして交配を行う。 不稔個体と可稔個体との交配 の結果得られた次世代の個体について稔性を調べる。 不稔のコセナダイコ ンに交配したものの内、 次世代の全個体が可稔であつた交配の花粉親は R f遺伝子をホモに持っていたと考えられることから、 かかる花粉親を R f 系統と推定する。  First, the genetic characteristics of the cms cytoplasm and the Rf gene of a population of Kosena radish (Rat> hasnusativs.cv.Kosena) are investigated by crossing. For example, male sterile (cms) kosena radish (R. sativus, CMS 1 ine) can be arbitrarily selected, and fertile cosena radish or cultivated radish varieties, such as sono (R. sati Vus, cv. nhong) etc. are used as pollen parents. The fertility of the next-generation individuals obtained as a result of mating between the sterile and fertile individuals is examined. Among the crosses that were crossed to sterile Kosena radish, the pollen parents of the next generation that were all fertile were considered to have the R f gene homozygously, so such pollen parents were assumed to be R f strains. I do.
次に、 コセナダイコン集団の雄性不稔個体を任意に複数選び、 同一の不 稔個体に上記の結果から推定した複数の R f系統を交配し、 次世代の稔性 を調べる。 これによつて cms細胞質と R f遺伝子の対応関係が判明する。 そこで、 コセナダイコンの cmsを、 上記で対応関係が明らかになった R f遺伝子を有する植物に、 例えば細胞融合 (特開平 1一 218530号 公報) 等により導入する。 Next, arbitrarily select a plurality of male sterile individuals of the Kosena radish population, and cross the same sterile individuals with a plurality of Rf lines estimated from the above results to examine fertility of the next generation. This reveals the correspondence between the cms cytoplasm and the Rf gene. Therefore, the cms of Kosena radish is introduced into a plant having the Rf gene whose correspondence has been clarified as described above, for example, by cell fusion (Japanese Patent Application Laid-Open No. 11-218530).
次に、 細胞融合によりコセナダイコンのミ トコンドリアの一部が導入さ れて cmsとなった植物の中から、 交配実験及び染色体の数を解析するこ とによって核の一遺伝子で稔性を完全に回復する植物を選抜する。  Next, fertilization was completely restored with a single nuclear gene by performing a mating experiment and analyzing the number of chromosomes from plants in which a part of the mitochondria of Kosena radish was introduced by cell fusion to cms. Plants to be selected.
次に、 コセナダイコン CMS型細胞質を同定する遺伝子を単離する。 具 体的には、 cms細胞質をもつコセナダイコン (R. s a t i vu s, C MS l i ne) の種子より発芽した幼植物から常法に従ってミ トコンド リアを抽出し、 このミ トコンドリアから更に DNAを常法に従って抽出す る。 得られたミ トコンドリア DNAを適当な制限酵素で切断した後、 pU C 19等のクローニングベクターに連結し、 これを大腸菌のコンビテント セルに導入する。 生育した大腸菌のコロニーをナイロンメンブレン等に写 し取り、 ォグラ cms細胞質遺伝子 (W〇 92/05251号公報) の 断片をプローブとしたときにハイブリダィズするコロニーを選抜する。 か かるコロニーから常法に従ってプラスミ ド DN Aを抽出し、 S ange r らのジデォキシ法等を用いることにより、 目的とする DN A断片の塩基配 列を決定することができる。 かく して得られる DN A断片の塩基配列は、 例えば配列表の配列番号 1に記載のァミノ酸配列で表されるポリべプチド をコードするものが挙げられ、 好ましくは同配列表に示した塩基配列で表 される。 なおかかる DN A断片は、 コセナダイコン由来であり、 植物、 特 にアブラナ科植物の稔性を回復する機能を損なわない範囲において、 一部 の塩基を除去、 挿入、 修飾あるいは追加する等の改変を行っても差し支え ない。  Next, the gene that identifies Kosena radish CMS type cytoplasm is isolated. Specifically, mitochondria are extracted from young plants germinated from seeds of R. sativa rs (CMS line) having cms cytoplasm in accordance with a conventional method, and further DNA is extracted from the mitochondria in a conventional manner. Extract according to. After the obtained mitochondrial DNA is cleaved with an appropriate restriction enzyme, it is ligated to a cloning vector such as pUC19, which is then introduced into a competent cell of Escherichia coli. The grown E. coli colonies are copied onto a nylon membrane or the like, and colonies that hybridize when a fragment of the ogra cms cytoplasmic gene (W92 / 05251) is used as a probe are selected. Plasmid DNA is extracted from such colonies according to a conventional method, and the nucleotide sequence of the desired DNA fragment can be determined by using the dideoxy method of Sanger et al. The nucleotide sequence of the DNA fragment thus obtained includes, for example, those encoding the polypeptide represented by the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, and preferably the nucleotide sequence shown in the sequence listing. It is represented by an array. The DNA fragment is derived from radish and modified by removing, inserting, modifying, or adding some bases within a range that does not impair the function of restoring the fertility of plants, especially cruciferous plants. No problem.
更に、 核の単一遺伝子により稔性が回復する特性を持つ cmsミ トコン ドリアを他と区別するために、 そのようなミ トコンドリアゲノムに特異的 な遺伝子を見つける。 これにより、 かかる遣伝子を利用して細胞質を簡便 に区別できる方法を開発することができる。 Furthermore, the cms mitochoncon, which has the property that fertility is restored by a single nuclear gene, Find genes specific to such mitochondrial genomes to distinguish doria from others. As a result, it is possible to develop a method that can easily distinguish the cytoplasm using such a gene.
本発明においては、 上記の様にして得られた遺伝子を公知の方法で核ゲ ノムに導入することにより、 また、 該遺伝子を直接ミ トコンドリアゲノム に導入することにより組換えミ トコンドリアゲノムを得ることができる。 さらに、 該ミ トコンドリアゲノムを有する雄性不稔細胞質を含む形質転換 植物または細胞質雑種植物を得、 該植物を使用してハイプリッ ド植物を作 成することができる。 例えば植物がナタネの場合、 形質転換法としてはァ グロパクテリゥムを介して DN Aを導入し再生させる方法 (特表平 1一 5 00718号公報) が、 細胞質雑種による方法としてはプロ トプラストに エレク トロポーレーシヨンで DNAを導入し培養を経て植物体を再生させ る方法 (P l an t S c i en c e, 5_2 , 111— 116, 1987) 等が知られている。  In the present invention, a recombinant mitochondrial genome can be obtained by introducing the gene obtained as described above into a nuclear genome by a known method, or by directly introducing the gene into the mitochondrial genome. Can be. Furthermore, a transformed plant or a cytoplasmic hybrid plant containing a male sterile cytoplasm having the mitochondrial genome can be obtained, and a hybrid plant can be produced using the plant. For example, when the plant is rape, a method for introducing and regenerating DNA via agrobacterium as a transformation method (Japanese Patent Laid-Open Publication No. Hei 11-500718) is a method for transforming protoplasts into a protoplast using a cytoplasmic hybrid. A method of introducing a DNA with a shion and regenerating a plant through culture is known (Plant Science, 5_2, 111-116, 1987).
形質転換に供される植物としてはアブラナ科植物、 ナス科植物等、 好ま しくは、 ナタネ、 タバコ等が、 さらに好ましくはナタネが挙げられる。 ハイプリッ ド植物は、 例えば、 欧州特許公開第 599042号公報に記 載の方法により、 上記形質転換植物または細胞質雑種植物を受粉系統とし、 該植物が有する細胞質雄性不稔に対して花粉稔性を回復する稔性回復遺伝 子を導入した植物を授粉系統として公知の方法で交配することにより得ら れる。  Plants to be transformed include cruciferous plants, solanaceous plants, etc., preferably rape, tobacco, etc., and more preferably rape. The hybrid plant is, for example, a method described in EP-A-599042, in which the transformed plant or the cytoplasmic hybrid plant is used as a pollination line, and the pollen fertility is restored to the cytoplasmic male sterility of the plant. This can be obtained by crossing a plant into which a fertility restoring gene has been introduced as a pollination line by a known method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により更に具体的に説明するが本発明はその要旨 を超えない限り以下の実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.
実施例 1 コセナダイコンの cmsの遺伝様式の解析 cmsコセナダイコン (R. s a t i v u s , c v. Ko s ena C MS 1 i n e ; Ko s A) を任意に 10個体選び、 10個体に対して別 々の稔性のあるコセナダイコン (R. s a t i vu s. c v. Ko s en a) または栽培ダイコン品種である園紅 (R. s a t i vu s, c v. Y uanhong) 、ゾ、里美 (R. s a t i vu s., c v. X i n 1 i m e i) を花粉親にして交配を行った。 また花粉親とした 16個体は自家受粉 により種子を得た。 次に、 cmsコセナダイコンと可稔ダイコンの 16交 配組み合わせの次世代、 それぞれ 9一 25個体について稔性を調べた。 結 果を表 1に示す。 ここで全個体が可稔であった組み合わせの花粉親、 すな わち Ko s 6、 Ko s 8、 X i nl、 X i n2、 X i n4、 X i n8、 Y u a n 1 Y u a n 6 Yuan7、 Yu. an8、 Yuan l 0、 Y u a n 13は R f遺伝子をホモに持っていたと考え、 R f系統とした。 Example 1 Analysis of hereditary mode of cms of Kosena radish Kosena radish (R. sativus, cv. Kosena C MS 1 ine; KosA) is arbitrarily selected, and 10 fertile cosena radish (R. sati vu s. c. v. Ko sen a) or cultivated radish varieties, R. sati vu s, c v. Y uanhong, zo, R. sati vu s., c v. X in 1 imei The parents crossed each other. The 16 individuals who were pollen parents obtained seeds by self-pollination. Next, fertility was examined for 9 to 25 individuals of the next generation of 16 cross combinations of cms kosena radish and fertile radish. Table 1 shows the results. Here the pollen parents of all combinations that were fertile, namely Kos 6, Kos 8, Xinl, Xin2, Xin4, Xin8, Yuan 1 Yuan 6 Yuan7 , Yu. An8, Yuan l0, and Yuan 13 were considered to have the Rf gene homozygously, and were designated as Rf strains.
表 1 雄性不稔コセナダイコンに対する回復遺伝子の遺伝様式 交配組み合わせ F!世代の稔性 可稔個体の遺伝子型 不稔 X 可稔 2) 不稳 : 可稔 (推定) ! Table 1 mode of inheritance mating combination F of the generation of fertile fertile individual's genotype sterile X fertility 2 of the recovery gene for male sterility Kosenadaikon) not稳: fertility (estimated)
K 0 s A 2 x Ko s 1 7 15 R f r fK 0 s A 2 x Ko s 1 7 15 R f r f
Ko s A 11 x Ko s 5 25 0 r f r fKo s A 11 x Ko s 5 25 0 r f r f
K o s A 11 x K o s 6 0 22 R f R fKos A 11 x Kos 6 0 22 R f R f
K o s A 8 x K o s 7 6 3 R f r fKos A 8 x Kos 7 6 3 R f r f
K o s A 8 x K o s 8 o 18 R f R fKos A 8 x Kos 8 o 18 R f R f
K o s A 2 x X i n 1 o 25 R f R fKos A 2 x X in 1 o 25 R f R f
K o s A 1 x X i n 2 o 25 R f R fK o s A 1 x X in 2 o 25 R f R f
K o s A 7 x X i n 4 0 25 R f R fKos A 7 x X in 4 0 25 R f R f
Ko s A 11 x X i n 8 0 25 R f R fKo s A 11 x X i n 8 0 25 R f R f
K o s A 2 x Y u a n 1 o 25 f R fK o s A 2 x Y u a n 1 o 25 f R f
K o s A 5 x Y u a n 6 0 25 R f R fK os A 5 x Y u a n 6 0 25 R f R f
K o s A 1 x Y u a n 7 0 25 R f R fKos A 1 x Y u a n 7 0 25 R f R f
K o s A 12 x Yu a n 8 0 25 R f R fKo s A 12 x Yu a n 8 0 25 R f R f
Ko s A 13 x Yu a n 9 11 14 R f r fKo s A 13 x Yu a n 9 11 14 R f r f
K o s A 14 x Yu a n 10 0 25 R f R fKos A 14 x Yu a n 10 0 25 R f R f
K o s A 15 x Yu a n 13 0 25 R f R f Kos A 15 x Yu a n 13 0 25 R f R f
1) Ko s A: コセナダイコン (R. s a t i v u s , c v . K o s e n a) の c m s系統。 -1) Ko s A: The cms line of Kosena radish (R. sativus, cv. Kosena). -
2) コセナ cms細胞質に対する回復遺伝子をもつ系統を示す。 Ko s : コセナダイコン (R. s a t i vu s, cv. Ko s en a) 、 X i n :心里美 (R. s a t i vu s, cv. X i n l ime i) Yuan : 園紅 (R. _ s— a t vu s, c v . Yu anhong) 0 次に、 cmsコセナダイコンを任意に選び、 上記の実験により確認され た R ί系統の中から Ko s 6と Yu a η 10を選び交配し、 次世代の稔性 を調べた。 その結果、 Y u a η 10との交配においてのみ次世代の稔性が 回復する cms細胞質 (以下、 「cms— KACJ と略す) と、 Yuan 10および Ko s 6とのいずれの交配においても次世代の稔性が全て回復 する cms細胞質 (以下、 「cms— KAJ と略す) が存在することが明 らかとなつた。 2) Shows a strain that has a gene that restores the cytoplasm of Kosena cms. Ko s: Kosena radish (R. sati vu s, cv. Ko sen a), X in: Shintomi (R. sati vu s, cv. X inl ime i) Yuan: Sono (R. _ s— at vu) s, cv. Yu anhong) 0 Next, arbitrarily selected cms radish, Ko s 6 and Yu a η 10 were selected and crossed from the R に よ り line confirmed by the above experiment, and fertility of the next generation was examined. As a result, the fertility of the next generation is restored only by crossing with Yua η10. The next generation of cms cytoplasm (hereinafter abbreviated as “cms—KACJ”) and the crossing of both Yuan 10 and Kos 6 It was clarified that there was a cms cytoplasm (hereinafter abbreviated as “cms-KAJ”) whose fertility was fully restored.
次に、 Ko s 6および Yu a n 10をォグラダイコンの不稔系 (R. s a t i v u s , c v. 0 g u r a CMS l i ne) と交配した。 その 結果、 Yu an 10との交配においては次世代の稔性がすべて回復したが、 Ko s 6との交配においては次世代の稔性が回復せず、 cm s— K Aの回 復系統である Ko s 6はォグラ cmsに対する R ί遺伝子をもっていない ことがわかった。 このことから、 コセナ cm s細胞質には従来のォグラ細 胞質 (以下、 「cms— OGU」 と略す) とは遺伝的に異なる細胞質 cm s— KAが存在することが判った。 以上の結果を、 まとめて表 2に示す。 Next, Kos 6 and Yu an 10 were crossed with an ogla radish sterile line (R. sativus, cv. 0 gura CMS line). As a result, the fertility of the next generation was completely restored in the cross with Yu an 10, but the fertility of the next generation was not restored in the cross with Ko s 6, and it was a cm s-KA recovered line. Kos 6 was found not to have the Rί gene for ogra cms. From this, it was found that in the Kosena cm s cytoplasm, there is a cytoplasm cm s-KA that is genetically different from the conventional ogra cytoplasm (hereinafter abbreviated as “cms-OGU”). Table 2 summarizes the above results.
表 2 遺伝的に異なる回復様式を示すコセナ細胞質雄性不稔細胞質及び 回復遺伝子の遺伝解析結果 交配組み合わせ 世代におけ 可稔個体の る稔性の分離 遺伝子型 小 稳 X 可 稔 可稔 :不稔 (推定) cms一 KAC X Yu a n 10 10 0 R f 1 R f 2 cms -KA X Y u a n 10 5 0 R f 1 R f 2 cms -OGU X Y u a n 10 10 0 R f 1 R f 2 cms -KAC X Ko s 6 0 8 r f 1 R f 2 cms -KA X Ko s 6 25 0 r f 1 R f 2 cms一 OGU X Ko s 6 0 15 r f 1 R f 2 Table 2 Results of genetic analysis of Kosena cytoplasmic male sterile cytoplasm showing a genetically different mode of recovery and the recovery gene Genetic isolation of fertile individuals in mating combination generations Genotype small 稳 X Possible Fertility Sterility ( Estimated) cms-KAC X Yu an 10 10 0 R f 1 R f 2 cms -KA XY uan 10 5 0 R f 1 R f 2 cms -OGU XY uan 10 10 0 R f 1 R f 2 cms -KAC X Ko s 6 0 8 rf 1 R f 2 cms -KA X Ko s 6 25 0 rf 1 R f 2 cms OGU X Ko s 6 0 15 rf 1 R f 2
cms— KAおよび cms—K A Cは花粉の退化時期についても cms — OGUと異なっていた (図 1) 。 図 1では、 各細胞質をもつダイコンの 蕾長と花粉の発達状況をァセトカーミン染色によって調べ、 細胞質及び異 なる核のゲノム組成によって花粉の退化時期、 発達の程度に差があるかど うかを示した。 cmsは細胞質を、 Nu cは核のゲノム組成を表す。 核の ゲノム組成は以下のとおりである。 表 3 cms-KA and cms-KAC also differed in pollen regression time from cms-OGU (Fig. 1). In Fig. 1, bud length and pollen development of radish with each cytoplasm were examined by acetocamin staining, and it was shown whether pollen regression time and the degree of development differed depending on cytoplasm and genomic composition of different nuclei. cms represents cytoplasm, and Nuc represents nuclear genomic composition. The genomic composition of the nucleus is as follows. Table 3
細胞質 核の記号 核ゲノム cms-KAC kos/yuan kosena 6 x yuanhong 10 kos kosena 6 cms-KA kos kosena 5 cms-OGU kos/ogu kosena 6 x ogura 3  Cytoplasm Nuclear symbol Nuclear genome cms-KAC kos / yuan kosena 6 x yuanhong 10 kos kosena 6 cms-KA kos kosena 5 cms-OGU kos / ogu kosena 6 x ogura 3
ogu ogura 3 核ゲノムに示す番号は, それぞれもとの集団の中の個体番号である (表 1参照) 。 cm s— OGUでは、 花粉の退化は蕾長 3 mmのところで既に進んでい た。 それに比べて, cm s— KAおよび cm s— KACでは花粉の退化は 蕾長 4. 5mmのところで起きており、 この差は核のゲノム組成を変えて も同じだったので、 核の因子よりむしろ細胞質因子による差異であると思 われた。  The numbers shown in the ogu ogura 3 nuclear genome are the individual numbers in the original population (see Table 1). In cm s—OGU, pollen degeneration had already progressed at a bud length of 3 mm. In contrast, in cm s- KA and cm s- KAC, pollen degeneration occurs at a bud length of 4.5 mm, and this difference was the same even when the genomic composition of the nucleus was changed. The difference was thought to be due to cytoplasmic factors.
実施例 2 一遺伝子により稔性が回復する cms細胞質の探索 Example 2 Search for cms cytoplasm whose fertility is restored by one gene
従来より、 ナタネ (B.^apu s) にコセナダイコンの cm sを細胞 融合により導入する試みが行われている (特開平 1一 218530号、 特 開平 2— 303426号各公報) 。 このナタネは、 ナタネに存在する遺伝 子では稔性が回復しない。 このナタネの稔性は R ί遺伝子をもつダイコン と交配する事により回復したが、 ダイコンから導入された R f遺伝子の数 や遺伝様式は調べられていなかった。 そこで、 かかるナタネの細胞質が単 一の R ί遺伝子で回復する cm s細胞質であるかどうかを、 細胞融合によ り作出したコセナダイコンとナタネのミ トコンドリァゲノムを合わせもつ ナタネ (以下、 「cmsナタネ」 と略す) で検定した。 Conventionally, attempts have been made to introduce kosena radish cm s into rapeseed (B. ^ apus) by cell fusion (JP-A-11-218530, JP-A-2-303426). This rape does not restore fertility with the genes present in the rape. The fertility of this rape was restored by crossing with radish having the Rί gene, but the number of R f genes introduced from radish was reduced. And the mode of inheritance had not been investigated. Therefore, it was determined whether or not the rapeseed cytoplasm was a cms cytoplasm recovered by a single R 、 gene, by examining the rapeseed rapeseed with the kosena radish produced by cell fusion and the mitochondrial genome of rapeseed (hereinafter “cms (Abbreviated as "rapeseed").
cmsナタネに、 コセナダイコン R f系統である Yu a n 10系統を交 配して得られた複半数体のうち、 稔性の回復した個体 (以下、 「 c m s / Rfナタネ」 と略す) に、 cms細胞質を持たない可稔の在来品種である We s t a r (B. napu s, c v. W e s t a r) を戻し交配するこ とを 2度繰り返した。 その後非常に稔性のよい個体を選び、 cmsナタネ と交配を行った (特願平 4一 276069号) 。 結果を表 4に示す。 表 4 cmsナタネを用いたコセナ回復遺伝子の遺伝分析 cmsナタ不 X 回復系統 Fj 世代の稔性  Among the haploids obtained by crossing the Kosena radish R f strain Yu an 10 with the cms rape, the individual with restored fertility (hereinafter abbreviated as “cms / Rf rape”) was given the cms cytoplasm. The backcrossing of the fertile native cultivar Westar (B. napus, cv. Westar) was repeated twice. After that, extremely fertile individuals were selected and crossed with cms rape (Japanese Patent Application No. 4-1 276069). Table 4 shows the results. Table 4 Genetic analysis of Kosena recovery gene using cms rape.
。丁稔 : ィ  . Ding Min: A
SW18 X RF 138 84 89 SW18 X RF 138 84 89
SW18 x RF 88 80 71  SW18 x RF 88 80 71
その結果、 次代では不稔と可稔がほぼ 1 : 1の比で出現した。 また、 c ms/R f ナタネの染色体をァセトカーミンにより染色して調べたところ、 2度の戻し交配で在来のナタネと同じ 38本となっていた。 この時点で c ms/R f ナタネの R f遺伝子は、 転座によりナタネゲノムに組み込まれ ていることがわかった。 ここで、 複数の R f遺伝子が同一の染色体に転座 している可能性は、 非常に低いと考えられた。 よってこの cmsナタネの cms細胞質は、 一遺伝子によって稔性が回復するものと考えられ、 育種 上非常に優れた c m s細胞質であることが判明した。 As a result, in the next generation, sterility and fertility appeared at a ratio of approximately 1: 1. In addition, when the chromosome of the c ms / R f rape was stained with acetocarmine and examined, the number of backcrosses was 38, the same as that of native rape. At this point, it was found that the Rms gene of cms / Rf rape was integrated into the rapeseed genome by translocation. Here, multiple R f genes are translocated to the same chromosome Was considered very unlikely. Therefore, the cms cytoplasm of this cms rape was considered to be restored to fertility by one gene, and it was revealed that the cms cytoplasm was excellent in breeding.
実施例 3 ミ トコンドリア遺伝子による cms細胞質の同定 Example 3 Identification of cms cytoplasm by mitochondrial gene
これまでにォグラ cms細胞質に特異的に存在する遺伝子 (以下、 「o r f 138」と略す) が単離されている (WO 92/05251号公報) c そこでコセナダイコンにおける相同遺伝子の単離を行った。 This gene specifically present in the Ogura cms cytoplasm to (hereinafter, abbreviated as "orf 138") was carried out the isolation of homologous genes in isolated and are (WO 92/05251 discloses) c where Kosenadaikon.
(1) ミ トコンドリア DNAの抽出  (1) Mitochondrial DNA extraction
cms細胞質をもつコセナダイコン (R. s a t i v u s, CMS 1 i n e) の種子 5グラムを暗所で発芽させ、 5日後の幼植物をミ トコンド リア抽出用緩衝液 [組織 l gに対して 2m l : 0. 4M ソルビトール ImM EDTA/0. 1% BSAZO. 1M T r i s— HC 1 (p H8. 0) ] と海砂 C適量を加えて氷冷した乳棒と乳鉢を用いてすりつぶ した。 破砕液を 200 x g、 4°Cで 5分間遠心分離し、 上澄を新しい遠心 管に移した。 これを 1、 500 x g、 4 °Cで 5分間遠心分離した後上澄を 新しい遠心管に移し、 この操作をさらに 2度繰り返した。 次に 15、 00 Ox g、 4 °Cで 5分間遠心分離してミ トコンドリアを沈澱させた。 この沈 澱を、 幼植物 1 gに対して 10 gのデォキシリボヌクレアーゼを含む緩 衝液 [0. 3M ショ糖/ ^δ ΟπιΜ T r i s— HC 1 (pH7. 5) / 1 OmM MgC 12 ] 2m lに静かに懸濁し、 4 °Cで 30分間放置した。 このミ トコンドリア懸濁液を S h e 1 f 緩衝液 [0. 6M ショ糖 20 mM EDTA/1 OmM T r i s - HC 1 (pH7. 2) ] 15m l の上層に置いて 15、 000 x g、 4 °Cで 5分間遠心分離した。 沈澱した ミ トコンドリァを再び S h e 1 f 緩衝液 15m lに静かに懸濁した後、 1 5、 O O O x gs 4°Cで 5分間遠心分離を行った。 沈澱したミ トコンドリ ァに DNA抽出用緩衝液 [1% N—ラウロイルザルコシン 2 OmM EDTA/5 OmM T r i s— HC 1 (pH8. 0) ] 1. 5 m 1を加 えてよく溶かした後、 1. 5 gの C s C 1を加えて溶解させた。 これに 2 00 β g/m 1になるように臭化工チジゥム溶液を加えて混合した後、 3 50、 00 O x gで 14時間遠心分離を行った。 ミ トコンドリア DN Aを 含む分画を取り、 n—ブタノールにより臭化工チジゥムを除いた後、 10 mM T r i s— HC l、 lmM EDTA (pH8. 0) の緩衝液中で 透析し C s C 1を除いた。 5 g of seeds of cosena radish (R. sativus, CMS 1 ine) having cms cytoplasm are germinated in the dark, and after 5 days, the seedlings are subjected to a mitochondrial extraction buffer [2 ml per tissue lg: 0.4 M Sorbitol ImM EDTA / 0.1% BSAZO. 1M Tris-HC 1 (pH 8.0)] and an appropriate amount of sea sand C were added, and the mixture was ground using an ice-cooled pestle and mortar. The lysate was centrifuged at 200 xg at 4 ° C for 5 minutes, and the supernatant was transferred to a new centrifuge tube. This was centrifuged at 1,500 xg, 4 ° C for 5 minutes, and the supernatant was transferred to a new centrifuge tube. This operation was repeated twice more. Then, mitochondria were precipitated by centrifugation at 15,000 Ox g at 4 ° C for 5 minutes. This precipitate was washed with a buffer solution containing 10 g of desoxyribonuclease per 1 g of young plants [0.3 M sucrose / ^ δΟπιΜ Tris—HC 1 (pH 7.5) / 1 OmM MgC 12] 2 m gently, and left at 4 ° C for 30 minutes. Put this mitochondrial suspension on top of 15 ml of She 1 f buffer [0.6 M sucrose 20 mM EDTA / 1 OmM Tris-HC 1 (pH 7.2)] at 15,000 xg, 4 ° C. Centrifuged at C for 5 minutes. The precipitated mitochondria were gently suspended again in 15 ml of Shelf buffer, and then centrifuged at 15, OOO x gs at 4 ° C for 5 minutes. Precipitated mitochondria After adding 1.5 ml of a DNA extraction buffer [1% N-lauroyl sarcosine 2 OmM EDTA / 5 OmM Tris-HC1 (pH 8.0)] to the well CsC1 was added and dissolved. After adding a bromide solution to 200 βg / m 1 and mixing, the mixture was centrifuged at 350 × 00 × g for 14 hours. The fraction containing mitochondrial DNA was collected, the bromide was removed with n-butanol, and dialyzed against a buffer of 10 mM Tris-HCl, lmM EDTA (pH 8.0) to remove CsC1. Removed.
(2) コセナ cms型ミ トコンドリアに特異的 DNAの単離  (2) Isolation of DNA specific to Kosena cms-type mitochondria
ミ トコンドリア DNAを N c 0 Iで切断して平滑末端化した後、 プラス ミ ドベクター pUC 19の Sma I切断部位に連結させた。 これを大腸菌 DH5 のコンビテントセルに導入し、 アンピシリン 50 g Zm 1を含 む LB寒天培地上で培養した。 生育した大腸菌コロニーをナイロンメンブ レンに移し取り、 各溶液を含んだ濾紙上で、 10%SDSで 5分間溶菌、 アルカリ液 (1. 5M N a C 1 /0. 5M NaOH) による DNAの 変性、 中和処理 (3M 酢酸ナトリウム、 pH 5. 2) を行った後、 メ ン プレンを 80°Cで 10分間乾燥させ、 その後 6 X S S C (l x S S C : l 5 OmM Na C l、 15mM クェン酸ナトリウム) の中に 30分間浸 した。 メンブレンの表面を 6 X S S Cを含ませた J Kワイパーでかるく拭 き汚れを落としてから 6 x S S C中で振盪洗浄し、 80°Cで完全に乾燥し た。 次に、 ォグラ cms細胞質特異的遺伝子 0 r f 138を含む H i n c I I断片約 0. 7 kbをランダムプライマ一を用いて標識し、 ハイブリダ ィゼーションのプローブにした。 ハイブリダイゼーシヨンは 5 X S S C P (l x S S CP : 50 mM リ ン酸ナトリウム (pH6. 8)、 120m M N a C 15mM クェン酸ナトリウム) 、 50 % ホルムアミ ド、 100 (i g/m 1 熱変性サケ精子 DNA、 0. o% スキムミルク、 0. 5% SDS中で 42°C、 16時間行った。 次にメンブレンを 2 x S S C 中、 42°Cで 15分間振盪しながら 3回洗浄した後、 65°Cで 30分間洗 浄した。 メンブレンに残った放射活性を X線フィルムで検出し、 強いシグ ナルが検出されたコロニーの一部をとり大腸菌を培養し、 プラスミ ド DN Aを抽出した。 このプラスミ ドは約 2. 5 k bの DNA断片を含むもので あった (以下、 「pKOS 2. 5」 と略す) 。 次に、 pKOS 2. 5を制 限酵素 H i n c I Iで切断し、 上記プローブを用いてサザンハイブリダィ ゼーシヨンを行ったところ、 約 0. 65 k bのバンドが検出されたため、 この 0. 65 k bの H i n c I I断片をプラスミ ドベクター B l u e s c r i p t I I (S t r a t a g e n e) の Sma I切断部位に連結した。 次にこの H i n c I I DNA断片の塩基配列をジデォキシ法により決定し、 659 b pの塩基配列を得た (配列表の配列番号 1 ) 。 After mitochondrial DNA was cut with Nc0I to make it blunt-ended, it was ligated to the SmaI cleavage site of plasmid vector pUC19. This was introduced into a competent cell of Escherichia coli DH5 and cultured on an LB agar medium containing 50 g Zm1 of ampicillin. The grown E. coli colonies are transferred to a nylon membrane, lysed with 10% SDS for 5 minutes on a filter paper containing each solution, denatured with alkaline solution (1.5M NaC1 / 0.5M NaOH), After neutralization (3M sodium acetate, pH 5.2), the sample is dried at 80 ° C for 10 minutes, and then 6 XSSC (lx SSC: l5OmM NaCl, 15mM sodium citrate) For 30 minutes. The surface of the membrane was wiped lightly with a JK wiper containing 6 XSSC, washed with shaking in 6 x SSC, and completely dried at 80 ° C. Next, about 0.7 kb of the Hinc II fragment containing the Ogra cms cytoplasm-specific gene 0 rf 138 was labeled using a random primer, and used as a probe for hybridization. The hybridization was 5 XSSCP (lxSSCP: 50 mM sodium phosphate (pH 6.8), 120 mM NaC 15 mM sodium citrate), 50% formamide, 100 (ig / m 1 heat-denatured salmon sperm DNA, 0.o% skim milk, 0.5% SDS) at 42 ° C for 16 hours. Then shake the membrane in 2 x SSC at 42 ° C for 15 minutes After washing three times while washing, the plate was washed for 30 minutes at 65 ° C. Radioactivity remaining on the membrane was detected with an X-ray film, and a part of the colony where a strong signal was detected was used to culture E. coli. The plasmid DNA was extracted and contained a DNA fragment of about 2.5 kb (hereinafter abbreviated as “pKOS2.5”). Cleavage with H inc II and Southern hybridization using the above probe detected a band of about 0.65 kb.Then, the 0.65 kb H inc II fragment was converted to a plasmid vector Bluescript. II (S tratagene) was ligated to the Sma I cleavage site.Next, the nucleotide sequence of this Hinc II DNA fragment was sequenced by the dideoxy method. Constant to obtain a nucleotide sequence of 659 bp (SEQ ID NO: 1).
この塩基配列の中には、 125個のアミノ酸からなる遺伝子 (以下、 「o r f 125」 という) が存在していた。 0 r f 125はォグラの 0 r f 1 38の塩基配列の内、 39塩基が欠損していた。 この欠損は 0 r f 138 のもつ繰り返し D N A配列の中の一部であつた。 この繰り返し配列の長さ を検出するプライマ一 (配列表の配列番号 2および 3) を作製し、 cms 一 KA、 cms—KAC、 正常型細胞質を持つコセナダイコン、 cmsナ タネおよび cm s— OGUの全 DNAで、 94°C25秒、 52°C30秒、 72°C1分 30秒のサイクルを 40回繰り返す条件で P CR反応を行った (Am. J. Hum. G e n e t. , 37, 1 72 (1985) ) 。  A gene consisting of 125 amino acids (hereinafter referred to as “orf 125”) was present in this nucleotide sequence. 0 rf 125 had 39 bases deleted in the nucleotide sequence of 0 rf 138 of Ogura. This deletion was part of the repeated DNA sequence of 0 r f 138. Primers (SEQ ID NOS: 2 and 3 in the Sequence Listing) were prepared to detect the length of this repetitive sequence, and all of cms-KA, cms-KAC, cosena radish with normal cytoplasm, cms rape and cms-OGU were prepared. A PCR reaction was performed using 40 cycles of DNA at 94 ° C for 25 seconds, 52 ° C for 30 seconds, and 72 ° C for 1 minute and 30 seconds (Am. J. Hum. Genet., 37, 172 ( 1985)).
泳動パターンを図 2に示す。 ォグラ型 cms細胞質では 278 b p、 コセ ナ型 cm s細胞質では 239 b pのバンドが検出された。 その結果、 o r f 125はコセナダイコン正常型ミ トコンドリアと cms— OGUには存 在しないが、 cms—KA, cms— KACおよび cmsナタネには存在 することがわかった。 この結果から、 0 r f 125はコセナダイコンの c msミ トコンドリアを特定する遺伝子であることがわかった。 The migration pattern is shown in FIG. A band of 278 bp was detected in the Ogura type cms cytoplasm, and a 239 bp band was detected in the Kosena type cms cytoplasm. As a result, orf 125 is not present in the normal mitochondria of Kosena radish and cms-OGU Although not present, it was found to be present in cms-KA, cms-KAC and cms rape. From these results, it was found that 0 rf 125 is a gene that specifies the c ms mitochondria of radish.
(3) cms—KAと cms— KACとの識別  (3) cms—KA and cms—KAC discrimination
cms— K Aと cms— KACは遺伝的に異なる cms細胞質であるこ とから、 ミ トコンドリアゲノムに何等かの違いがあると考えられたため、 2つの cms型ミ トコンドリア DNAを抽出し.、 いくつかのミ トコンドリ ァ遺伝子領域を含む DNA断片を用いて、 サザンハイブリダィゼーシヨン 法により違いを検出することを行った。 プローブに用いた DN A断片は以 下のものである。 a t p A (ェンドウ) 、 a t p 9 (ェンドウ) 、 a t p 6 (エノテラ) 、 cob (トウモロコシ) 、 c ox I、 rp s l3と na d 1 (エノテラ) 、 cox l l (トウモロコシ) 、 c ox I I I (エノテ ラ) 、 r rn5、 r rn l8と nad5 (エノテラ) 、 および r rn26 (エンドゥ) 。 ハイブリダィゼ一シヨンは前述の条件で行った。 その結果、 エンドゥの r r n 26を含む 0. 5kbの Ec oRI— Sa l I DNA断 片をプローブにした時のみ cms—KAに特異的な約 6. 0 k bのバンド が検出された (図 3)  Since cms-KA and cms-KAC are genetically different cytoplasms, it was thought that there was some difference in the mitochondrial genome, so two cms-type mitochondrial DNAs were extracted. Using a DNA fragment containing the tochondrial gene region, differences were detected by the Southern hybridization method. The DNA fragments used for the probe are as follows. atp A (endow), atp 9 (endow), atp 6 (enotera), cob (corn), cox I, rps l3 and nad1 (enotera), cox ll (corn), cox III (enotera) ), Rrn5, rrnl8 and nad5 (Enotera), and rrn26 (endu). Hybridization was performed under the conditions described above. As a result, a cms-KA-specific band of about 6.0 kb was detected only when a 0.5 kb EcoRI-SalI DNA fragment containing endo rrn 26 was used as a probe (Fig. 3).
次に、 cms— KAおよび cms— KAC型ミ トコンドリアをもつ植物 で、 それぞれ可稔と不稔の個体のつぼみから全 RN Aを抽出した。 RNA は以下の方法で抽出した。 つぼみ 1 gを液体窒素中で乳鉢と乳棒で破砕し た後、 RN A抽出用緩衝液 [4M グァニジン ォシアン酸 Z25mM クェン酸ナトリウム (pH 7. 0) /0. 5% N—ラウロイルザルコシ ン酸ナトリウム 0. 1M EDTA] 10m 1を混合後遠心管に移し、 lmlの 2M酢酸ナトリウム (pH4. 6) を加え混合し、 さらに 10m 1の水飽和フヱノールと 2τ 1のクロ口ホルム ィソアミルアルコール (2 4: 1) を加えてよく混合した。 1、 500 xg、 4°Cで 20分間遠心分 離を行い上層を分取し、 クロ口ホルム ィソァミルアルコールで抽出し上 層を分取することを 2度繰り返した後、 等量のィソプロピルアルコールで RNAを沈澱させた。 15、 000 xg、 4 °Cで 10分間遠心分離を行なつ た後、 沈澱に lm 1の RNA抽出用緩衝液を加えてよく溶解し、 0. lm 1の 2M酢酸ナトリウム (pH4. 6) 、 lm 1の水飽和フエノールおよ び 0. 2mlのクロ口ホルム Zイソアミルアルコールを加えてよく混合し、 7、 500 X 4°Cで 20分間遠心分離を行った。 上層を分取してクロ 口ホルム/ィソァミルアルコールで抽出することを 2度繰り返した後、 2 容量のエタノールで RNAを沈澱させた。 RNAを 15、 000 X gs 4 °Cで 10分間遠心して集めた後、 滅菌水に溶解した。 次に各 RNA10// gをホルムアルデヒド変性ゲルで電気泳動した後、 r r n 26をプローブ にしてノーザンハイブリダィゼーシヨンを行った。 ハイブリダィゼーショ ' ンは上記の条件で行った。 その結果、 じ1113—1:八と。1113—1:八〇型ミ トコンドリァを持つ植物ではハイブリダイゼーションのパターンが異なつ ていた。 可稔、 不稔に関わらず cm s— KACでは cm s— KAにみられ ない約 4. 5 k bのバンドが検出された(図 4)。 以上の結果から cms— KAと cms— KACは r. rn26に相同性をもつミ トコンドリアゲノム 領域に違いがあることがわかり、 r r n 26をプローブにサザンまたはノ 一ザンハイブリダイゼーシヨンを行うことで識別できることがわかつた。 Next, total RNA was extracted from the buds of fertile and sterile individuals in plants having cms-KA and cms-KAC mitochondria, respectively. RNA was extracted by the following method. After crushing 1 g of buds with a mortar and pestle in liquid nitrogen, the RNA extraction buffer [4M guanidine ocyanate Z25 mM sodium citrate (pH 7.0) /0.5% N-lauroyl sarcosine acid Sodium 0.1 M EDTA] 10 ml was mixed, transferred to a centrifuge tube, added with 1 ml of 2 M sodium acetate (pH 4.6), mixed, and further mixed with 10 ml of water-saturated phenol and 2τ1 of cloform formisoamyl alcohol ( Two 4: 1) was added and mixed well. After centrifuging at 1, 500 xg and 4 ° C for 20 minutes to separate the upper layer, extract twice with chloroform-formylisoamyl alcohol, and separate the upper layer twice. RNA was precipitated with isopropyl alcohol. After centrifugation at 15,000 xg and 4 ° C for 10 minutes, the precipitate was dissolved well by adding 1 ml of RNA extraction buffer, and 0.1 ml of 2 M sodium acetate (pH 4.6) was added. 1 ml of water-saturated phenol and 0.2 ml of clo-form Zisoamyl alcohol were added, mixed well, and centrifuged at 7,500 × 4 ° C. for 20 minutes. After the upper layer was separated and extracted twice with chloroform / isoamyl alcohol, RNA was precipitated with 2 volumes of ethanol. RNA was collected by centrifugation at 15,000 X gs at 4 ° C for 10 minutes, and then dissolved in sterile water. Next, 10 // g of each RNA was electrophoresed on a formaldehyde denaturing gel, and Northern hybridization was performed using rrn26 as a probe. Hybridization was performed under the above conditions. As a result, the same 113-1: eight. 1113-1: Plants with an 80-type mitochondria had different hybridization patterns. Regardless of fertility or sterility, cm s-KAC detected an approximately 4.5 kb band not found in cm s-KA (Fig. 4). These results indicate that cms-KA and cms-KAC differ in the mitochondrial genomic region having homology to r.rn26, and that rrn26 can be used as a probe for Southern or Northern hybridizations. I knew it could be identified.
(4)単一のコセナ R f遺伝子で稔性が回復する cmsナタネのもつ c ms細胞質を同定するDNA断片  (4) Fertility is restored by a single Kosena Rf gene DNA fragment that identifies the cms cytoplasm of cms rape
さらに単一のコセナ R f遺伝子によって稔性が回復する cmsナタネ細 胞質を識別するために、 この cm sナタネに特異的なミ トコンドリアゲノ ム領域を探索した。 cmsナタネのミ トコンドリア DNAを抽出し、 制限 酵素 N c o I、 H i n c I Iおよび Xb a Iで切断し、 o r f 125の 5 ' 側を含む約 0. 33 k bの DNA断片 H i n c l l— Xb a lと 3' 側 を含む約 0. 33kbの Xba l— H i n c l I断片をそれぞれプローブ にしてサザンハイブリダィゼーシヨンを行った。 その結果、 cmsナタネ の持つ 0 r f 125を含む領域の物理地図 (図 5) は、 コセナダイコンの それとは異なることがわかった。 ォグラダイコンの cms型ミ トコンドリ ァでは、 0 r f 138およびそのすぐ下流に 0 r f Bが存在する。 コセナ ダイコンでは cm s— KA、 c m s— KA Cのいずれの c m s型ミ トコン ドリアの 0 r f 125を含む 2. 5 k b Nc I DNA断片において も o r f 125のすぐ下流に o r f Bが存在する (図 5)。 一方、 cms ナタネでは 0 r f 125の下流がコセナダイコンのものとは異なる。 コセ ナダイコン c m s型ミ トコンドリア D N Aを H i n c I Iで切断し、 o r f 125の 3 ' 側を含む約 0. 33 k bの Xb a I -H i n c I I断片を プローブにしてサザンハイブリダィゼーションを行うと、 約 650 b の バンドが検出されたが、 cmsナタネでは 2. 5 kbのバンドが検出され た。 図 5に示される、 0 r f 125を含む 2. 5 k bの H i n c I I D N A断片は cmsナタネのミ トコンドリアに特有なものであり、 これを持 つかどうかによって c m sナタネの細胞質が識別することができる。 Furthermore, in order to identify cms rape cells whose fertility was restored by a single Kosena Rf gene, a mitochondrial genome region specific to the cms rape was searched. Extract mitochondrial DNA from cms rape and limit Cleavage with the enzymes NcoI, HincII and XbaI, a DNA fragment of about 0.33 kb including the 5 ′ side of orf125 H incll—XbaI of about 0.33 kb including the Xbal and 3 ′ side — Southern hybridization was performed using each of the Hincl I fragments as a probe. As a result, the physical map of the region containing 0 rf 125 of cms rape (Fig. 5) was found to be different from that of Kosena radish. In the cms-type mitochondria of ogla radish, there is 0 rf 138 and 0 rf B immediately downstream. In Kosena radish, orf B is present immediately downstream of orf 125 in the 2.5 kb Nc I DNA fragment containing 0 rf 125 of either cms-KA or cms-KAC mitochondria (Fig. 5 ). On the other hand, the downstream of 0 rf 125 is different from that of Kosena radish in cms rape. Kosen radish cms-type mitochondrial DNA was digested with H inc II, and the Southern hybridization was carried out using an Xb a I-H inc II fragment of about 0.33 kb including the 3 'side of orf 125 as a probe. A band of about 650 b was detected, but a 2.5 kb band was detected in cms rape. The 2.5 kb HincII DNA fragment containing 0 rf 125 shown in FIG. 5 is specific to the mitochondria of cms rape, and the cytoplasm of cms rape can be identified depending on whether or not it is present.
(5)上記ナタネのもつ cms細胞質を同定する DN A断片の塩基配列 の決定  (5) Determination of the nucleotide sequence of the DNA fragment identifying the cms cytoplasm of the rape
cmsナタネ (系統 SW18) のミ トコンドリア D N Aを制限酵素 X b a Iで切断し、 プラスミ ドベクター ρ B l u e s c r i p t l l (S t r a t a g e n e) の Xb a I切断部位に連結し、 大腸菌 DH 5ひのコンビ テントセルに導入して形質転換した。 0 r f 125のコ一ディング領域を プローブにしてコロニーハイブリダイゼ一ションを行い、 2種のポジティ ブクローンを得た。 それらよりプラスミ ド DNAを抽出し、 制限酵素によ る物理地図を作成したところ、 2種のクローンは 0 r f 125の 5' 側を 含む PSWX2. 8と、 o r f 125の 3' 側を含む pSWXl. 7であ ることがわか The mitochondrial DNA of cms rape (line SW18) was digested with the restriction enzyme XbaI, ligated to the XbaI site of the plasmid vector ρBluescript (Stratagene), and introduced into a combinatorial cell of Escherichia coli DH5. And transformed. 0 Colony hybridization was performed using the coding region of rf125 as a probe, and the two positive Buclone was obtained. Plasmid DNA was extracted from them and a physical map was created using restriction enzymes.As a result, the two clones were PSWX2.8 containing the 5 'side of 0 rf125 and pSWXl. Containing the 3' side of orf125. It turns out to be 7
次に pSWXl. 7を制限酵素 E c oRVで切断した後、 pB l ue s c r i p t I I (S t r a t agen e) にサブクロ一ニングし、 o r f 125を含むクローン p SWVO. 7とその下流の配列を含む p SWV0. 2を得た。 次にこれらにクローニングした DNA断片と、 0 r f 125の N末端領域を含む p SWX2. 8の H i n c I I -Xb a I断片について、 塩基配列をジデォキシ法により決定した (配列表の配列番号 4) 。 cms ナタネ系統 SW18のもつ 0 r f 125領域は、 o r f 125のストップ コドン下流の 34番目の塩基以下がコセナダイコンのものとは全く異なる 配列であり、 0 r f Bは存在しなかった。 以下、 上記 cmsナタネのもつ 0 r f 125領域を o r ί 125 cと称する。  Next, after cutting pSWXl.7 with the restriction enzyme EcoRV, it was subcloned into pBluescript II (Stratagene) and clone pSWVO.7 containing orf 125 and p containing the downstream sequence SWV0.2 was obtained. Next, the nucleotide sequences of the cloned DNA fragment and the HincII-XbaI fragment of pSWX2.8 containing the N-terminal region of 0 rf 125 were determined by the dideoxy method (SEQ ID NO: 4 in the sequence listing). . The 0 rf 125 region of the cms rape line SW18 had a sequence completely different from that of Kosena radish at the 34th base or less downstream of the stop codon of orf 125, and 0 rfB did not exist. Hereinafter, the 0 rf 125 region of the above-mentioned cms rape is referred to as or ί 125 c.
次に cmsナタネのミ トコンドリア DNAについて、 PCR法により 0 r f 125 cの他に cmsコセナダイコンのミ トコンドリアがもつ o r f 125領域 (図 5) が存在するかどうかを調査した。 PCRには 2つのプ ライマーの組み合わせを用いた。 1つは o r f 125コード領域中の塩基 配列 5' — GACATCTAGAGAAGTTAAAAAAT— 3' (配 列表の配列番号 3) と pSWVO. 7のもつ 0 r f 125 cの下流域中の 塩基配列 5' — TCTGACAGCTTACGATG— 3' (配列表の配 列番号 5) である。 もう 1つは上記配列表の配列番号 3と pKOS 2. 5 にみられる 0 r f B下流の塩基配列 5' -CTAC C AGAGGTATC TATAGAAT— 3' (配列表の配列番号 6) の組み合わせである。 c msナタネ系統 SW18は前者のプライマー組み合わせでは約 0. 55k bのバンドが検出されたが、 後者の組み合わせではバンドは検出されなかつ た (図 6の第 6レーン) 。 一方 cmsコセナダイコンと cmsナタネ系統 SW12では、 前者の組合せでは系統 SW18と同じ 0. 55 k b、 後者 の組合せでは約 0. 9 k bのバンドが検出された (図 6の第 1〜4レーン および第 7レーン) 。 これにより、 cmsナタネ系統 SW18のもつ 0 r f 125 cはコセナダイコン cms型ミ トコンドリアに由来するものであ ることが確認された。 以上により、 cmsナタネ系統 SW18のミ トコン ドリアゲノムはコセナダイコンとの細胞融合時に選択的に 0 r ί 125 c が導入されたものであり、 PCR法によりコセナダイコンの cms型ミ ト コンドリアゲノムと簡便に区別できることがわかった。 Next, the mitochondrial DNA of the cms rape was examined by PCR to determine whether or not the orf 125 region of the mitochondria of the cms radish (FIG. 5) exists in addition to 0 rf 125 c. A combination of two primers was used for PCR. One is the nucleotide sequence 5 'in the coding region of orf 125 — GACATCTAGAGAAGTTAAAAAAT— 3' (SEQ ID NO: 3 in the sequence listing) and the nucleotide sequence 5 'in the downstream region of 0 rf 125 c of pSWVO. 7 — TCTGACAGCTTACGATG— 3' (SEQ ID NO: 5 in the sequence listing). The other is a combination of SEQ ID NO: 3 in the above sequence listing and the base sequence 5′-CTAC C AGAGGTATC TATAGAAT—3 ′ downstream of 0 rf B found in pKOS2.5 (SEQ ID NO: 6 in the sequence listing). c ms rape line SW18 is about 0.55k with the former primer combination Band b was detected, but no band was detected in the latter combination (lane 6 in FIG. 6). On the other hand, in cms kosena radish and cms rape line SW12, a band of 0.55 kb was detected in the former combination, which was the same as that of line SW18, and a band of about 0.9 kb was detected in the latter combination (Fig. 6, lanes 1-4 and lane 7). Lane). This confirmed that 0 rf 125 c of the cms rape line SW18 was derived from Kosena radish cms-type mitochondria. Based on the above, the mitochondrial genome of cms rape line SW18 is the one in which 0r r125c was selectively introduced during cell fusion with Kosena radish, and it can be easily distinguished from the cms-type mitochondrial genome of Kosena radish by PCR. I knew I could do it.
(6) 0 r f 125と雄性不稔との関連  (6) Relationship between 0 r f 125 and male sterility
cmsコセナダイコンと cm sナタネのつぼみより前述の方法により全 ミ トコンドリア RN Aを抽出し、 0 r f 125のコーディング領域をプロ ーブにして前述の方法でノーザンハイブリダィゼーションを行った。 cm sコセナダイコンでは 1. 4kbのバンド、 cmsナタネでは 1. 2k b のバンドが検出され (図 8) 、 cmsナタネのミ トコンドリアで 0 r f 1 25 cは転写されていることがわかった。  All mitochondrial RNAs were extracted from the buds of cms radish and rapeseed rape by the method described above, and Northern hybridization was performed by the method described above using the coding region of 0 rf 125 as a probe. A 1.4 kb band was detected in cm sap radish and a 1.2 kb band in cms rape (FIG. 8), indicating that 0 rf 125 c was transcribed in the mitochondria of cms rape.
cmsナタネ系統 SW18に正常細胞質をもち R f をもたないナタネの 花粉を交配して得た次代植物集団中に、 完全に稔性をもつ個体を見いだし た。 この個体の自家受粉後代は全てが稔性をもち、 これをナタネ可稔復帰 系統 FW18とした。 この系統 FW18のミ トコンドリアゲノムに 0 r f 125が存在するかどうかを PCR法とサザンハイブリダィゼーションに より調査したところ、 どちらの方法でも 0 r f 125は検出されなかった (図 6の第 8レーン、 図 7)。 以上の結果より、 o r i l 25が CMSの 原因遺伝子であることが明らかとなつた。 (7) o r f 125遺伝子による植物の形質転換 A completely fertile individual was found in a next-generation plant population obtained by crossing the rapeseed pollen with normal cytoplasm and no R f in the cms rape line SW18. All the self-pollinated progeny of this individual had fertility, and this was designated as rapeseed fertility reverting line FW18. Examination of the presence of 0 rf 125 in the mitochondrial genome of this strain FW18 by PCR and Southern hybridization revealed that 0 rf 125 was not detected by either method (lane 8 in Figure 6). , Figure 7). From the above results, it was clarified that oril 25 is a causative gene of CMS. (7) Plant transformation with orf 125 gene
暗所で発芽生育後 5日目の芽生えを材料としてミ トコンドリアを精製し、 ミ トコンドリア全タンパク質約 1 O^gを 12%SDS—ポリアクリルァ ミ ドゲルで分画した後、 0 r f 125のアミノ酸配列の 78番目から 92 番目の 15アミノ酸配列に対する抗体を用いてのウェスタン解析を行った ところ、 cmsナタネでは、 正常型ミ トコンドリアをもつ可稔ナタネおよ びナタネ可稔復帰系統にはみられない約 17 kD aの特異的なバンドが検 出された (図 9A) 。 次に cmsナタネから精製したミ トコンドリアタン パク質を可溶性画分と膜画分に分離後、 上記抗体を用いてウェスタン解析 を行った結果、 17 kD aポリベプチドは cmsナタネミ トコンドリァの 膜画分に存在することがわかった (図 9 B) 。 o r f 125は、 これまで に報告されているトウモロコシの cms遺伝子産物 u r f 13タンパク質 と同様に、 ミ トコンドリア膜に存在する事によってミ トコンドリアの正常 な機能を阻害すると考えられた (P r o c. Na t l. Ac ad. S c i. USA, 8 , 5374-5378 (1987) ; Sc i en c e, 2_3 _9, 293-295 (1988) ; P r o c. Na t l. Ac a d. S c i . USA, 8_6, 4435-4439 (1989) ; EMBO J . , 9_, 339-347 (1990) ) 。  Mitochondria were purified from the seedlings 5 days after germination and growth in the dark, and about 1 O ^ g of mitochondrial total protein was fractionated on a 12% SDS-polyacrylamide gel. Western analysis using an antibody to the 15th amino acid sequence from the 78th to the 92nd amino acid sequence revealed that cms rape showed about 17 motility, which was not found in fertile rapeseed with normal mitochondria and rapeseed revertible line. A specific band of kDa was detected (Fig. 9A). Next, the mitochondrial protein purified from cms rape was separated into a soluble fraction and a membrane fraction, and Western analysis was performed using the above antibodies.As a result, 17 kDa polypeptide was present in the membrane fraction of cms rape (Fig. 9B). orf 125, like the previously reported maize cms gene product urf 13 protein, is thought to inhibit the normal function of mitochondria by being present in the mitochondrial membrane (Proc. Nat USA, 8, 5374-5378 (1987); Science, 2_3_9, 293-295 (1988); Proc. Natl. Ac ad. Sci. USA, 8_6, 4435-4439 (1989); EMBO J., 9_, 339-347 (1990)).
そこで o r f 125をァグロパクテリゥム法によりタバコに導入し、 0 r f 125が植物細胞に及ぼす影響を調査した。 0 r f 125遺伝子、 ま たはサツマィモの F。 一 Fi ATPァーゼ S サブユニッ トのミ トコン ドリァへの移送配列 (P l an t Ce l l Phys i o l. , 3_4, 177— 183 (1993) ) を o r f 125に付加したキメラ遺伝子に それぞれカリフラワーモザイクウィルス 35 Sプロモーター (35S) と ノパリン合成酵素遺伝子ターミネータ一 (NOST) を連結し、 バイナリ 一ベクター pKM424のマルチクローニング部位の H i n d I I Iおよ び E c oR I切断部位に連結し、 それぞれ pKCMl 25および pK CM D 125を得た (図 10 A、 B) 。 対照実験には、 35 S、 ^一グルクロ ニダ一ゼ遺伝子 (GUS)、 NOSTを含む p LAN411を用いた (P 1 a n t c e l l Re p. , _1_0, 286-290 (1991) ) 。 次に上記バイナリーベクターを凍結/溶解法によりそれぞれァグロバクテ リウム EHA101株に導入した。 タバコの形質転換は、 Ro g e r sら の方法 (Me t h o d s E n z ymo 1. , 11_8. 627-640 (1 986) ) に従い、 以下の様に行った。 バイナリーベクターが導入された EHA 101を 50 gZm 1スぺクチノマイシン、 2. 5 g/ 1 テトラサイクリンおよび 50 β g/ 1カナマイシンを含む YEB培地で 約 16時間 27°Cで振とう培養した。 約 1 cm角に切ったタバコ無菌葉を 3%ショ糖を含む MS培地に浮かべ (1実験あたり約 20個) 、 前述のァ グロパクテリゥム培養液を MS培地に対して 1Z50容量添加し、 27°C で 2昼夜静置して共存培養を行った。 共存培養後のタバコ葉切片を、 0. 2mg/ 1 6—ベンジルァミ ノプリン、 200 gZm 1カナマイシン、 500 gZm 1 クラフォラン、 3%ショ糖および 0. 2%ゲルライ ト含 む MS培地上に置き、 27°Cで約 20日間培養した。 この方法による植物 の再生率を、 形成された不定芽の数/全葉切片数を計算することにより求 めた。 結果を、 表 5に示す。 Thus, orf 125 was introduced into tobacco by the agrobacterium method, and the effect of 0 rf 125 on plant cells was investigated. 0 rf125 gene, or F. of sweet potato. The transfer sequence of the Fi ATPase S subunit to the mitochondrial dryer (Plant Cell Physiol., 3_4, 177-183 (1993)) was added to the chimeric gene added to orf 125 to cauliflower mosaic virus 35, respectively. S promoter (35S) and nopaline synthase gene terminator (NOST) The vector was ligated to the HindIII and EcoRI cleavage sites of the multiple cloning site of the vector pKM424 to obtain pKCM125 and pKCMD125, respectively (FIGS. 10A and 10B). For control experiments, pLAN411 containing 35 S, ^ -glucuronidase gene (GUS) and NOST was used (P1antcell Rep., _1_0, 286-290 (1991)). Next, each of the binary vectors was introduced into Agrobacterium EHA101 strain by a freeze / thaw method. Transformation of tobacco was performed as follows according to the method of Rogers et al. (Methods Enzymo 1., 11_8. 627-640 (1 986)). EHA101 into which the binary vector was introduced was cultured with shaking at 27 ° C. for about 16 hours in a YEB medium containing 50 gZm1 spectinomycin, 2.5 g / 1 tetracycline and 50βg / 1 kanamycin. Approximately 1 cm square cut tobacco aseptic leaves are floated on an MS medium containing 3% sucrose (about 20 per experiment), and the above-mentioned agrobacterium culture solution is added to the MS medium at 1Z50 volume and added at 27 ° C. For 2 days and nights for co-culture. The co-cultured tobacco leaf sections were placed on an MS medium containing 0.2 mg / 16-benzylaminopurine, 200 gZm 1 kanamycin, 500 gZm 1 claforan, 3% sucrose and 0.2% gel light, and placed at 27 ° C. C for about 20 days. The regeneration rate of the plant by this method was determined by calculating the number of adventitious buds formed / the number of whole leaf sections. Table 5 shows the results.
表 5 o r f 125の形質転換が植物の不定芽形成に与える影響 Table 5 Effect of transformation of orf 125 on adventitious bud formation in plants
—葉切片あたりの不定芽形成率 —Adventitious bud formation rate per leaf section
実験回 Experiment times
p LAN4 pKCMl 25 pKCMD 125  p LAN4 pKCMl 25 pKCMD 125
0.46 0.32 0.140.46 0.32 0.14
2 0.83 0.13 0.02 2 0.83 0.13 0.02
3 0.33 0.12  3 0.33 0.12
4 1.10  4 1.10
5 0.67  5 0.67
その結果、 pLAN411による形質転換では一葉切片あたりの不定芽 形成率が平均 0. 68であったのに対して、 PKCM125では 0. 22、 1 0?^0125では0. 07であった。 さらに不定芽が形成されたタパ コ葉切片を上記組成の新たな MS培地に移植し培養を続け、 不定芽が 1〜 2 cmになったところで葉切片から切り取り、 カナマイシンと 6—べンジ ルァミノプリンを含まない上記 MS培地で生育させ、 その後の植物の形態 を調べたところ、 G U Sを導入した植物ではほとんどが正常な形態を示し たのに対して、 0 r f 125を導入した植物ではガラス様の形態異常を示 す植物が高頻度で出現した (表 6)。 表 6 o r f 125が再生植物の形態に与える影響 形態異常 As a result, in the transformation with pLAN411, the adventitious bud formation rate per leaf section was 0.68 on average, whereas it was 0.22 for PKCM125 and 0.07 for 10? ^ 0125. In addition, the leaf section of tapaco with adventitious buds was transplanted to a new MS medium having the above composition, and cultivation was continued. When the adventitious buds reached 1-2 cm, the leaf section was cut off, and kanamycin and 6-benzylaminopurine were removed. When grown on the above-mentioned MS medium without containing and examined for the morphology of the subsequent plants, most of the GUS-introduced plants showed a normal morphology, whereas the plants into which 0 rf 125 had been introduced exhibited a glass-like morphology. Plants showing abnormalities appeared frequently (Table 6). Table 6 Effects of orf 125 on the morphology of regenerated plants
ベクター 再生個体数  Vector reproduction population
数 % p LAN411 30 0 0 pKCMl 25 16 3 19 pKCMD 125 30 13 81  %% P LAN411 30 0 0 pKCMl 25 16 3 19 pKCMD 125 30 13 81
以上の結果は、 o r f l 25がミ トコンドリアに存在することが植物細 胞の形態形成に影響を及ぼすことを示すものであり、 0 r f 125を形質 転換法により植物に導入して雄性不稔植物の作出が可能であることを示す ものであった。 The above results indicate that the presence of orfl 25 in mitochondria affects the morphogenesis of plant cells, and that 0 rf 125 was introduced into plants by a transformation method to transform male sterile plants. It indicated that production was possible.
発明の効果  The invention's effect
本発明の細胞質遺伝子は、 植物、 例えばアブラナ科植物、 のハイブリツ ド種子生産に利用できる新しい c m s細胞質遺伝子として有効であり、 育 種上有用な形質を示す新しい細胞質であるコセナ c m s細胞質を迅速に識 別するために有用である。  INDUSTRIAL APPLICABILITY The cytoplasmic gene of the present invention is effective as a new cms cytoplasmic gene that can be used for hybrid seed production of plants, for example, cruciferous plants, and quickly recognizes a cosena cms cytoplasm, which is a new cytoplasm exhibiting a trait useful for breeding. Useful to distinguish.
また、 取得した遺伝子を核ゲノムに導入する、 または直接ミ トコンドリ ァゲノムに導入することにより、 アブラナ科のみならず植物一般に CMS を付加することが可能である。 配列表 In addition, by introducing the obtained gene into the nuclear genome or directly into the mitochondrial genome, it is possible to add CMS to plants as well as crucifers. Sequence listing
配列番号: 1 SEQ ID NO: 1
配列の長さ : 6 5 9 Array length: 6 5 9
配列の型:核酸 Sequence type: nucleic acid
鎖の数:二本鎖 Number of chains: double strand
トポロジー:直鎖状  Topology: linear
配列の種類: G e n o m i c D N A 生物名: ラフアナス サティバス (Raphanus sativus) Sequence type: Genomic DNA Organism name: Raphanus sativus
株名: コセナダイコン  Stock name: Kosena radish
オルガネラ名: ミ トコンドリア  Organelle name: mitochondria
配列の特徴 Array features
特徴を表す記号: C D S  Characteristic symbol: CDS
存在位置: 1 6 2. . 5 3 6  Location: 1 6 2.. 5 3 6
特徴を決定した方法: S  How the features were determined: S
配列 Array
AACTCATCAG GCTCATGACC TGAAGATTAC AGGTTCAAAT CCTGTCCCCG CACCGTAGTT 60 TCATTCTGCA TCACTCTCCC TGTCGTTATC GACCTCGCAA GGTTTTTGAA ACGGCCGAAA 120 CGGGAAGTGA CAATACCGCT TTTCTTCAGC ATATAAATGC A ATG ATT ACC TTT TTC 176  AACTCATCAG GCTCATGACC TGAAGATTAC AGGTTCAAAT CCTGTCCCCG CACCGTAGTT 60 TCATTCTGCA TCACTCTCCC TGTCGTTATC GACCTCGCAA GGTTTTTGAA ACGGCCGAAA 120 CGGGAAGTGA CAATACCGCT TTTCTTCAGC ATATAAATGC A ATG ATT ACC TTTTC
Met lie Thr Phe Phe 1 5 Met lie Thr Phe Phe 1 5
GAA AAA TTG TCC ACT TTT TGT CAT AAT CTC ACT CCT ACT GAA TGT AAA 224 Glu Lys Leu Ser Thr Phe Cys His Asn Leu Thr Pro Thr Glu Cys Lys GAA AAA TTG TCC ACT TTT TGT CAT AAT CTC ACT CCT ACT GAA TGT AAA 224 Glu Lys Leu Ser Thr Phe Cys His Asn Leu Thr Pro Thr Glu Cys Lys
10 15 20  10 15 20
GTT AGT GTA ATA AGT TTC TTT CTT TTA GCT TTT TTA CTA ATG GCC CAT 272 Val Ser Val lie Ser Phe Phe Leu Leu Ala Phe Leu Leu Met Ala HisGTT AGT GTA ATA AGT TTC TTT CTT TTA GCT TTT TTA CTA ATG GCC CAT 272 Val Ser Val lie Ser Phe Phe Leu Leu Ala Phe Leu Leu Met Ala His
25 30 3525 30 35
ATT TGG CTA AGC TGG TTT TCT AAC AAC CAA CAT TGT TTA CGA ACC ATG 320 lie Trp Leu Ser Trp Phe Ser Asn Asn Gin His Cys Leu Arg Thr Met ATT TGG CTA AGC TGG TTT TCT AAC AAC CAA CAT TGT TTA CGA ACC ATG 320 lie Trp Leu Ser Trp Phe Ser Asn Asn Gin His Cys Leu Arg Thr Met
40 45 50  40 45 50
AGA CAT CTA GAG AAG TTA AAA ATT CCA TAT GAA TTT CAG TAT GGG TGG 368 Arg His Leu Glu Lys Leu Lys lie Pro Tyr Glu Phe Gin Tyr Gly Trp  AGA CAT CTA GAG AAG TTA AAA ATT CCA TAT GAA TTT CAG TAT GGG TGG 368 Arg His Leu Glu Lys Leu Lys lie Pro Tyr Glu Phe Gin Tyr Gly Trp
55 60 65  55 60 65
CTA GGT GTC AAA ATT ACA ATA AAA TCA AAT GTA CCT AAC GAT GAA GTG 416 Leu Gly Val Lys lie Thr lie Lys Ser Asn Val Pro Asn Asp Glu Val 70 75 80 85 CTA GGT GTC AAA ATT ACA ATA AAA TCA AAT GTA CCT AAC GAT GAA GTG 416 Leu Gly Val Lys lie Thr lie Lys Ser Asn Val Pro Asn Asp Glu Val 70 75 80 85
ACG AAA AAA GTC TCA CCT ATC ATT AAA GGG GAA ATA GAG GGG AAA GAG 464 Thr Lys Lys Val Ser Pro lie lie Lys Gly Glu He Glu Gly Lys Glu ACG AAA AAA GTC TCA CCT ATC ATT AAA GGG GAA ATA GAG GGG AAA GAG 464 Thr Lys Lys Val Ser Pro lie lie Lys Gly Glu He Glu Gly Lys Glu
90 95 100  90 95 100
GAA AAA AAA GAG GGG AAA GGG GAA ATA GAG GGG AAA GAG GAA AAA AAA 512 Glu Lys Lys Glu Gly Lys Gly Glu lie Glu Gly Lys Glu Glu Lys Lys  GAA AAA AAA GAG GGG AAA GGG GAA ATA GAG GGG AAA GAG GAA AAA AAA 512 Glu Lys Lys Glu Gly Lys Gly Glu lie Glu Gly Lys Glu Glu Lys Lys
105 110 115  105 110 115
GAG GTG GAA AAT GGA CCG AGA AAA TAATGCTTTG TGAACCCAAT TGCTTTGACA 566 Glu Val Glu Asn Gly Pro Arg Lys Stop  GAG GTG GAA AAT GGA CCG AGA AAA TAATGCTTTG TGAACCCAAT TGCTTTGACA 566 Glu Val Glu Asn Gly Pro Arg Lys Stop
120 125  120 125
AAAATAAAGA AAGAAGCAAA ATCTCATTCA ATTTGAAATA GAAGAGATCT CTATGCCCCC 626 TGTTCTTGGT TTTCTCCCAT GCTTTTGTTG GTC 659 配列番号: 2 AAAATAAAGA AAGAAGCAAA ATCTCATTCA ATTTGAAATA GAAGAGATCT CTATGCCCCC 626 TGTTCTTGGT TTTCTCCCAT GCTTTTGTTG GTC 659 SEQ ID NO: 2
配列の長さ : 2 2 Array length: 2 2
配列の型:核酸 鎖の数:一本鎖 Sequence type: nucleic acid Number of chains: single strand
トポロジー:直鎖状  Topology: linear
配列の種類:その他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 Array
GACATCTAGA GAAGTTAAAA AT 22 配列番号: 3  GACATCTAGA GAAGTTAAAA AT 22 SEQ ID NO: 3
配列.の長さ : 22 Array. Length: 22
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状  Topology: linear
配列の種類:その他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 Array
AGCAATTGAA TTCACAAAGC AT 22 配列番号: 4  AGCAATTGAA TTCACAAAGC AT 22 SEQ ID NO: 4
配列の長さ : 1242 Sequence length: 1242
配列の型:核酸 Sequence type: nucleic acid
鎖の数:二本鎖 Number of chains: double strand
トポロジー:直鎖状  Topology: linear
配列の種類: Ge n om i c DNA Sequence type: Genom i c DNA
起源 Origin
生物名:ブラシカ ナプス . (B r a s s i c a n a p u s) 株名: SW18  Organism name: Brassica naps. (Brassic acanapus) Strain name: SW18
オルガネラ名: ミ トコンドリア  Organelle name: mitochondria
配列 Array
AACTCATCAG GCTCATGACC TGAAGATTAC AGGTTCAAAT CCTGTCCCCG CACCGTAGTT 60 TCATTCTGCA TCACTCTCCC TGTCGTTATC GACCTCGCAA GGTTTTTGAA ACGGCCGAAA 120 CGGGAAGTGA CAATACCGCT TTTCTTCAGC ATATAAATGC AATGATTACC TTTTTCGAAA 180AACTCATCAG GCTCATGACC TGAAGATTAC AGGTTCAAAT CCTGTCCCCG CACCGTAGTT 60 TCATTCTGCA TCACTCTCCC TGTCGTTATC GACCTCGCAA GGTTTTTGAA ACGGCCGAAA 120 CGGGAAGTGA CAATACCGCT TTTCTTCAGC ATATAAATGC AATGATTACC TTTTTCGAAA 180
AATTGTCCAC TTTTTGTCAT AATCTCACTC CTACTGAATG TAAAGTTAGT GTAATAAGTT 240AATTGTCCAC TTTTTGTCAT AATCTCACTC CTACTGAATG TAAAGTTAGT GTAATAAGTT 240
TCTTTCTTTT AGCTTTTTTA CTAATGGCCC ATATTTGGCT AAGCTGGTTT TCTAACAACC 300TCTTTCTTTT AGCTTTTTTA CTAATGGCCC ATATTTGGCT AAGCTGGTTT TCTAACAACC 300
AACATTGTTT ACGAACCATG AGACATCTAG AGAAGTTAAA AATTCCATAT GAATTTCAGT 360AACATTGTTT ACGAACCATG AGACATCTAG AGAAGTTAAA AATTCCATAT GAATTTCAGT 360
ATGGGTGGCT AGGTGTCAAA ATTACAATAA AATCAAATGT ACCTAACGAT GAAGTGACGA 420ATGGGTGGCT AGGTGTCAAA ATTACAATAA AATCAAATGT ACCTAACGAT GAAGTGACGA 420
AAAAAGTCTC ACCTATCATT AAAGGGGAAA TAGAGGGGAA AGAGGCAAAA AAAGAGGGGA 480AAAAAGTCTC ACCTATCATT AAAGGGGAAA TAGAGGGGAA AGAGGCAAAA AAAGAGGGGA 480
AAGGGGAAAT AGAGGGGAAA GAGGAAAAAA AAGAGGTGGA AAATGGACCG AGAAAATAAT 540AAGGGGAAAT AGAGGGGAAA GAGGAAAAAA AAGAGGTGGA AAATGGACCG AGAAAATAAT 540
GCTTTGTGAA CCCAATTGCT TTGACAAAAA TATATGAAGA ATCAGTGCTA TTGAGGAACA 600GCTTTGTGAA CCCAATTGCT TTGACAAAAA TATATGAAGA ATCAGTGCTA TTGAGGAACA 600
TTTTATAGAA AGAAAAGAAA AAGAAGCAAT AGTAAAGGAG GGCTTTCCCA GTGCATGAAG 660TTTTATAGAA AGAAAAGAAA AAGAAGCAAT AGTAAAGGAG GGCTTTCCCA GTGCATGAAG 660
GGAGGGTGAA GCAGGGTAAG TCATAAGAAT CCGCTTTGTT ACAAAGACCT CCTGCTATGC 720GGAGGGTGAA GCAGGGTAAG TCATAAGAAT CCGCTTTGTT ACAAAGACCT CCTGCTATGC 720
TAATGAGGGG TCTTAAGCAA ACAAAGTACC AAGAACTTTG GATATTATCC GTTTTTCTAT 780TAATGAGGGG TCTTAAGCAA ACAAAGTACC AAGAACTTTG GATATTATCC GTTTTTCTAT 780
TATATCCCAT TTTATCCTTC CGCTTTAGGA TTAGCCCAGC TTTTTCGAAA CGGACGGAAG 840TATATCCCAT TTTATCCTTC CGCTTTAGGA TTAGCCCAGC TTTTTCGAAA CGGACGGAAG 840
GCCTAACTAG AAGCTATTTG GCGCCTTCCC CTCGATGAAT ACTTGGAAAT TTGTCTTGCA 900GCCTAACTAG AAGCTATTTG GCGCCTTCCC CTCGATGAAT ACTTGGAAAT TTGTCTTGCA 900
TCGTAAGCTG TCAGAAGAAA GTAAGACTTA GAAAGAAGAC AGTAAGTAAG AGAACTACGA 960TCGTAAGCTG TCAGAAGAAA GTAAGACTTA GAAAGAAGAC AGTAAGTAAG AGAACTACGA 960
TTTACTTGAT TCCCAAAGTG GTACGTAGGC AGCCAAGGAC GAATCCTTAT CCAGTTCTTT 1020TTTACTTGAT TCCCAAAGTG GTACGTAGGC AGCCAAGGAC GAATCCTTAT CCAGTTCTTT 1020
GTTAGTAAGT GAGGAAAAGA TATCAAACTT TTTTTTGAAA AAAGTTCGTA GTTAATCTAC 1080GTTAGTAAGT GAGGAAAAGA TATCAAACTT TTTTTTGAAA AAAGTTCGTA GTTAATCTAC 1080
CTCGGACGTA CCCATGGCGT GTGGGGTTCG CGTGGGGAAC CGAGTAACCA AAGTCACGAT 1140CTCGGACGTA CCCATGGCGT GTGGGGTTCG CGTGGGGAAC CGAGTAACCA AAGTCACGAT 1140
CAGTCTAAGG TTGAAATCTG GATGGTCTTT TTGCCAGACG CGCTGGTTCG AGTCCAGCTC 1200CAGTCTAAGG TTGAAATCTG GATGGTCTTT TTGCCAGACG CGCTGGTTCG AGTCCAGCTC 1200
GTGACAAAAG GCTACCCTTT CTCTTAAGAG AATCTCGATA TC 1242 配列番号: 5 GTGACAAAAG GCTACCCTTT CTCTTAAGAG AATCTCGATA TC 1242 SEQ ID NO: 5
配列の長さ : 1 7 Array length: 1 7
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状 配列の種類:その他の核酸 合成 DNA Topology: linear Sequence type: Other nucleic acid Synthetic DNA
配列 Array
TCTGACAGCT TACGATG 17 配列番号: 6  TCTGACAGCT TACGATG 17 SEQ ID NO: 6
配列の長さ : 22 Array length: 22
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状  Topology: linear
配列の種類:その他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 Array
CTACCAGAGG TATCTATAGA AT 22  CTACCAGAGG TATCTATAGA AT 22

Claims

請 求 の 範 囲 The scope of the claims
1. 配列表の配列番号 1に記載のァミノ酸配列で表されるポリベプチド をコードする遺伝子。 1. A gene encoding a polypeptide represented by the amino acid sequence described in SEQ ID NO: 1 in the sequence listing.
2. 配列表の配列番号 1に記載の塩基配列で表されることを特徴とする 請求項 1記載の遺伝子。  2. The gene according to claim 1, which is represented by the nucleotide sequence of SEQ ID NO: 1 in the sequence listing.
3. コセナダイコン由来であることを特徴とする請求項 2記載の遺伝子 c 3. The gene c according to claim 2, which is derived from Kosena radish.
4. 配列表の配列番号 4に記載の塩基配列で表される請求項 3記載のポ リベプチドをコ一ドする遺伝子を含む D N A断片。 4. A DNA fragment comprising the gene encoding the polypeptide of claim 3, which is represented by the nucleotide sequence of SEQ ID NO: 4 in the sequence listing.
5. 請求項 1または 2記載の遺伝子が導入された形質転換植物または細 胞質雑種植物。  5. A transformed plant or a hybrid cell plant into which the gene according to claim 1 has been introduced.
6. 請求項 4記載の D N A断片が導入された形質転換植物または細胞質 雑種植物。  6. A transformed plant or cytoplasmic hybrid plant into which the DNA fragment according to claim 4 has been introduced.
7. 植物がァブラナ科植物であることを特徴とする請求項 6記載の形質 転換植物または細胞質雑種植物。  7. The transformed plant or cytoplasmic hybrid plant according to claim 6, wherein the plant is a Brassicaceae plant.
8. 植物がナタネであることを特徴とする請求項 7記載の形質転換植物 または細胞質雑種植物。  8. The transformed plant or cytoplasmic hybrid plant according to claim 7, wherein the plant is rape.
9. 請求項 5〜 8の L、ずれかに記載の細胞質雄性不稔形質を有する形質 転換植物または細胞質雑種植物を受粉系統とし、 該細胞質雄性不稔に対し て花粉稔性を回復する稔性回復遺伝子を導入した植物を授粉系統として交 配することを特徴とするハイプリッ ド植'物の作成方法。  9. A transgenic plant or a cytoplasmic hybrid plant having the cytoplasmic male sterility trait according to claim 5 to claim 8 as a pollinating line, and fertility for restoring pollen fertility to the cytoplasmic male sterility. A method for producing a hybrid plant, comprising breeding a plant into which a recovery gene has been introduced as a pollination line.
1 0. 請求項 9記載の方法により得られるハイプリッ ド植物。  10. A hybrid plant obtained by the method according to claim 9.
PCT/JP1994/001625 1993-10-01 1994-09-30 Gene that identifies sterile plant cytoplasm and process for preparing hybrid plant by using the same WO1995009910A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002150667A CA2150667C (en) 1993-10-01 1994-09-30 A gene which determines cytoplasmic sterility and a method of producing hybrid plants using said gene
EP94927811A EP0675198A4 (en) 1993-10-01 1994-09-30 Gene that identifies sterile plant cytoplasm and process for preparing hybrid plant by using the same.
US08/454,115 US5866782A (en) 1993-10-01 1994-09-30 Gene which determines cytoplasmic sterility and a method of producing hybrid plants using said gene
DE0675198T DE675198T1 (en) 1993-10-01 1994-09-30 GENES IDENTIFY THE STERILE PLANT CYTOPLASMA AND METHOD FOR PRODUCING HYBRID PLANTS BY USE THEREOF.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26966093 1993-10-01
JP5/269660 1993-10-01

Publications (1)

Publication Number Publication Date
WO1995009910A1 true WO1995009910A1 (en) 1995-04-13

Family

ID=17475445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001625 WO1995009910A1 (en) 1993-10-01 1994-09-30 Gene that identifies sterile plant cytoplasm and process for preparing hybrid plant by using the same

Country Status (6)

Country Link
US (1) US5866782A (en)
EP (1) EP0675198A4 (en)
CN (1) CN1066487C (en)
CA (1) CA2150667C (en)
DE (1) DE675198T1 (en)
WO (1) WO1995009910A1 (en)

Cited By (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039771A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2039770A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2039772A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants introduction
DE102007045953A1 (en) 2007-09-26 2009-04-02 Bayer Cropscience Ag Active substance combination, useful for combating animal pest, treating seed, transgenic plant and seeds of transgenic plant, comprises a 5H-furan-2-one compound and other active agent comprising e.g. acrinathrin and alpha-cypermethrin
DE102007045922A1 (en) 2007-09-26 2009-04-02 Bayer Cropscience Ag Drug combinations with insecticidal and acaricidal properties
DE102007045957A1 (en) 2007-09-26 2009-04-09 Bayer Cropscience Ag Active agent combination, useful e.g. for combating animal pests e.g. insects and treating seeds of transgenic plants, comprises substituted amino-furan-2-one compound and at least one compound e.g. benzoyl urea, buprofezin and cyromazine
DE102007045955A1 (en) 2007-09-26 2009-04-09 Bayer Cropscience Ag Active agent combination, useful e.g. for combating animal pests and treating seeds of transgenic plants, comprises substituted amino-furan-2-one compound and at least one compound e.g. diazinon, isoxathion, carbofuran or aldicarb
DE102007045919A1 (en) 2007-09-26 2009-04-09 Bayer Cropscience Ag Active agent combination, useful e.g. to combat animal pest and to prepare insecticidal and acaricidal agent, comprises a substituted 5H-furan-2-one compound and a compound e.g. spirotetramat, spirodiclofen and spiromesifen
DE102007045956A1 (en) 2007-09-26 2009-04-09 Bayer Cropscience Ag Combination of active ingredients with insecticidal and acaricidal properties
EP2072506A1 (en) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine or thiadiazolyloxyphenylamidine und its use as fungicide
EP2090168A1 (en) 2008-02-12 2009-08-19 Bayer CropScience AG Method for improving plant growth
DE102009001469A1 (en) 2009-03-11 2009-09-24 Bayer Cropscience Ag Improving utilization of productive potential of transgenic plant by controlling e.g. animal pest, and/or by improving plant health, comprises treating the transgenic plant with active agent composition comprising prothioconazole
DE102008041695A1 (en) 2008-08-29 2010-03-04 Bayer Cropscience Ag Methods for improving plant growth
EP2168434A1 (en) 2008-08-02 2010-03-31 Bayer CropScience AG Use of azols to increase resistance of plants of parts of plants to abiotic stress
EP2198709A1 (en) 2008-12-19 2010-06-23 Bayer CropScience AG Method for treating resistant animal pests
EP2201838A1 (en) 2008-12-05 2010-06-30 Bayer CropScience AG Active ingredient-beneficial organism combinations with insecticide and acaricide properties
EP2204094A1 (en) 2008-12-29 2010-07-07 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants Introduction
WO2010083955A2 (en) 2009-01-23 2010-07-29 Bayer Cropscience Aktiengesellschaft Use of enaminocarboxylic compounds for fighting viruses transmitted by insects
WO2010086311A1 (en) 2009-01-28 2010-08-05 Bayer Cropscience Ag Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
WO2010086095A1 (en) 2009-01-29 2010-08-05 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants introduction
EP2218717A1 (en) 2009-02-17 2010-08-18 Bayer CropScience AG Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives
WO2010094666A2 (en) 2009-02-17 2010-08-26 Bayer Cropscience Ag Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives
WO2010094728A1 (en) 2009-02-19 2010-08-26 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
DE102009001681A1 (en) 2009-03-20 2010-09-23 Bayer Cropscience Ag Improving utilization of production potential of a transgenic plant by controlling animal pests, phytopathogenic fungi, microorganisms and/or improving plant health, comprises treating plant with a drug composition comprising iprovalicarb
EP2232995A1 (en) 2009-03-25 2010-09-29 Bayer CropScience AG Method for improved utilisation of the production potential of transgenic plants
DE102009001730A1 (en) 2009-03-23 2010-09-30 Bayer Cropscience Ag Improving utilization of production potential of a transgenic plant by controlling animal pests, phytopathogenic fungi and/or microorganisms and/or the plant health, comprises treating plant with a drug composition comprising spiroxamine
DE102009001728A1 (en) 2009-03-23 2010-09-30 Bayer Cropscience Ag Improving the production potential of transgenic plant, by combating e.g. animal pests and/or microorganism, and/or increasing plant health, comprises treating the plants with active agent composition comprising fluoxastrobin
DE102009001732A1 (en) 2009-03-23 2010-09-30 Bayer Cropscience Ag Improving the production potential of transgenic plant, by combating e.g. animal pests and/or microorganism, and/or increasing plant health, comprises treating the plants with active agent composition comprising trifloxystrobin
EP2239331A1 (en) 2009-04-07 2010-10-13 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2251331A1 (en) 2009-05-15 2010-11-17 Bayer CropScience AG Fungicide pyrazole carboxamides derivatives
EP2255626A1 (en) 2009-05-27 2010-12-01 Bayer CropScience AG Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress
WO2011006603A2 (en) 2009-07-16 2011-01-20 Bayer Cropscience Ag Synergistic active substance combinations containing phenyl triazoles
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
EP2292094A1 (en) 2009-09-02 2011-03-09 Bayer CropScience AG Active compound combinations
WO2011080254A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011080255A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011080256A1 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2343280A1 (en) 2009-12-10 2011-07-13 Bayer CropScience AG Fungicide quinoline derivatives
WO2011089071A2 (en) 2010-01-22 2011-07-28 Bayer Cropscience Ag Acaricide and/or insecticide active substance combinations
EP2353387A1 (en) 2010-02-05 2011-08-10 Bayer CropScience AG Use of succinate dehydrogenase (SDH) inhibitors in the treatment of plant types in the sweet grass family
WO2011107504A1 (en) 2010-03-04 2011-09-09 Bayer Cropscience Ag Fluoroalkyl-substituted 2-amidobenzimidazoles and the use thereof for boosting stress tolerance in plants
WO2011113861A2 (en) 2010-03-18 2011-09-22 Bayer Cropscience Ag Aryl and hetaryl sulfonamides as active agents against abiotic plant stress
EP2374791A1 (en) 2008-08-14 2011-10-12 Bayer CropScience Aktiengesellschaft Insecticidal 4-phenyl-1H pyrazoles
WO2011124554A2 (en) 2010-04-06 2011-10-13 Bayer Cropscience Ag Use of 4-phenylbutyric acid and/or the salts thereof for enhancing the stress tolerance of plants
WO2011124553A2 (en) 2010-04-09 2011-10-13 Bayer Cropscience Ag Use of derivatives of the (1-cyanocyclopropyl)phenylphosphinic acid, the esters thereof and/or the salts thereof for enhancing the tolerance of plants to abiotic stress
EP2377397A1 (en) 2010-04-14 2011-10-19 Bayer CropScience AG Use of fungicidal agents for controlling mycoses in palm trees
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011134912A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134913A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
US8058505B2 (en) 2005-10-26 2011-11-15 Sakata Seed Corporation Cybrid plant of the genus Lactuca and method for producing the same
WO2011151370A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues
WO2011151368A2 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2011151369A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
WO2012004221A2 (en) 2010-07-07 2012-01-12 Bayer Cropscience Ag Anthranilamides in combination with fungicides
WO2012010579A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
WO2012010525A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Use of anthranilic acid amide derivatives for controlling insects and spider mites by watering, mixing with soil, drench treatment, droplet application, injection into the soil, stems or blossoms, in hydroponic systems, by treating the planting hole or immersion application, floating or seed box application or by the treatment of seeds, and for increasing the stress tolerance in plants to abiotic stress
WO2012028578A1 (en) 2010-09-03 2012-03-08 Bayer Cropscience Ag Substituted fused pyrimidinones and dihydropyrimidinones
WO2012038480A2 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of biological or chemical control agents for controlling insects and nematodes in resistant crops
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
WO2012052489A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag 1-(heterocyclic carbonyl) piperidines
WO2012052490A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag N-benzyl heterocyclic carboxamides
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012065944A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag N-aryl pyrazole(thio)carboxamides
WO2012065945A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazole(thio)carboxamides
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
EP2460407A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Agent combinations comprising pyridylethyl benzamides and other agents
EP2460406A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Use of fluopyram for controlling nematodes in nematode resistant crops
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
WO2012089721A1 (en) 2010-12-30 2012-07-05 Bayer Cropscience Ag Use of substituted spirocyclic sulfonamidocarboxylic acids, carboxylic esters thereof, carboxamides thereof and carbonitriles thereof or salts thereof for enhancement of stress tolerance in plants
WO2012089757A1 (en) 2010-12-29 2012-07-05 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2474542A1 (en) 2010-12-29 2012-07-11 Bayer CropScience AG Fungicide hydroximoyl-tetrazole derivatives
EP2494867A1 (en) 2011-03-01 2012-09-05 Bayer CropScience AG Halogen-substituted compounds in combination with fungicides
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
WO2012123434A1 (en) 2011-03-14 2012-09-20 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2511255A1 (en) 2011-04-15 2012-10-17 Bayer CropScience AG Substituted prop-2-in-1-ol and prop-2-en-1-ol derivatives
WO2012139892A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-dienes and 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-ene-4-ines as active agents against abiotic stress in plants
WO2012139891A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted vinyl and alkinyl cyclohexenols as active agents against abiotic stress in plants
WO2012139890A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(cyclohex-2-en-1-yl)-penta-2,4-dienes and 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ines as active agents against abiotic stress in plants
US8334237B2 (en) 2007-03-12 2012-12-18 Bayer Cropscience Ag Substituted phenylamidines and the use thereof as fungicides
WO2013004652A1 (en) 2011-07-04 2013-01-10 Bayer Intellectual Property Gmbh Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants
WO2013020985A1 (en) 2011-08-10 2013-02-14 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
EP2561759A1 (en) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth
WO2013026836A1 (en) 2011-08-22 2013-02-28 Bayer Intellectual Property Gmbh Fungicide hydroximoyl-tetrazole derivatives
WO2013034621A1 (en) 2011-09-09 2013-03-14 Bayer Intellectual Property Gmbh Acyl-homoserine lactone derivatives for improving plant yield
WO2013037955A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
WO2013037958A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of phenylpyrazolin-3-carboxylates for improving plant yield
WO2013037717A1 (en) 2011-09-12 2013-03-21 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives
WO2013041602A1 (en) 2011-09-23 2013-03-28 Bayer Intellectual Property Gmbh Use of 4-substituted 1-phenyl-pyrazole-3-carboxylic-acid derivatives as agents against abiotic plant stress
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013050324A1 (en) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Combination, containing 4-phenylbutyric acid (4-pba) or a salt thereof (component (a)) and one or more selected additional agronomically active compounds (component(s) (b)), that reduces abiotic plant stress
WO2013075817A1 (en) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2013079566A2 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013098146A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013098147A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
US8519003B2 (en) 2007-03-12 2013-08-27 Bayer Cropscience Ag Phenoxyphenylamidines as fungicides
WO2013124275A1 (en) 2012-02-22 2013-08-29 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape.
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
WO2013156560A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
EP2662370A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole benzofuranyl carboxamides
EP2662363A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole biphenylcarboxamides
EP2662361A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol indanyl carboxamides
EP2662364A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole tetrahydronaphthyl carboxamides
EP2662362A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole indanyl carboxamides
EP2662360A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole indanyl carboxamides
WO2013167545A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag Pyrazole indanyl carboxamides
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2014009322A1 (en) 2012-07-11 2014-01-16 Bayer Cropscience Ag Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress
WO2014037340A1 (en) 2012-09-05 2014-03-13 Bayer Cropscience Ag Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014060519A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
WO2014060520A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
EP2735231A1 (en) 2012-11-23 2014-05-28 Bayer CropScience AG Active compound combinations
WO2014083031A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
EP2740720A1 (en) 2012-12-05 2014-06-11 Bayer CropScience AG Substituted bicyclic and tricyclic pent-2-en-4-inic acid derivatives and their use for enhancing the stress tolerance in plants
EP2740356A1 (en) 2012-12-05 2014-06-11 Bayer CropScience AG Substituted (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-inic acid derivatives
WO2014086751A1 (en) 2012-12-05 2014-06-12 Bayer Cropscience Ag Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cyloalkenyl ethynyl)-cyclohexanols as active agents against abiotic plant stress
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2014135608A1 (en) 2013-03-07 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives
WO2014167008A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazolinthione derivatives
WO2014167009A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
WO2014170345A2 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
WO2014177582A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2015004040A1 (en) 2013-07-09 2015-01-15 Bayer Cropscience Ag Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
EP2837287A1 (en) 2013-08-15 2015-02-18 Bayer CropScience AG Use of prothioconazole for increasing root growth of Brassicaceae
WO2015032692A1 (en) 2013-09-03 2015-03-12 Bayer Cropscience Ag Use of fungicidal agents for controlling chalara fraxinea on ash trees
EP2865265A1 (en) 2014-02-13 2015-04-29 Bayer CropScience AG Active compound combinations comprising phenylamidine compounds and biological control agents
EP2865267A1 (en) 2014-02-13 2015-04-29 Bayer CropScience AG Active compound combinations comprising phenylamidine compounds and biological control agents
WO2015082586A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
US9199922B2 (en) 2007-03-12 2015-12-01 Bayer Intellectual Property Gmbh Dihalophenoxyphenylamidines and use thereof as fungicides
WO2016012362A1 (en) 2014-07-22 2016-01-28 Bayer Cropscience Aktiengesellschaft Substituted cyano cycloalkyl penta-2,4-dienes, cyano cycloalkyl pent-2-en-4-ynes, cyano heterocyclyl penta-2,4-dienes and cyano heterocyclyl pent-2-en-4-ynes as active substances against abiotic plant stress
EP2997825A1 (en) 2011-04-22 2016-03-23 Bayer Intellectual Property GmbH Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound
EP3000809A1 (en) 2009-05-15 2016-03-30 Bayer Intellectual Property GmbH Fungicide pyrazole carboxamides derivatives
WO2016096942A1 (en) 2014-12-18 2016-06-23 Bayer Cropscience Aktiengesellschaft Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
WO2016166077A1 (en) 2015-04-13 2016-10-20 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
US9574237B2 (en) 2011-11-28 2017-02-21 Anglo Netherlands Grain B.V. Method for differentiating fertile and sterile plant lines by detection of polymorphic markers in chloroplast DNA
WO2017174430A1 (en) 2016-04-06 2017-10-12 Bayer Cropscience Aktiengesellschaft Combination of nuclear polyhedrosis virus and diamides
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
WO2018054829A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives and their use as fungicides
WO2018054832A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018077711A2 (en) 2016-10-26 2018-05-03 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications
EP3332645A1 (en) 2016-12-12 2018-06-13 Bayer Cropscience AG Use of substituted pyrimidine diones or their salts as agents to combat abiotic plant stress
WO2018104392A1 (en) 2016-12-08 2018-06-14 Bayer Cropscience Aktiengesellschaft Use of insecticides for controlling wireworms
WO2018108627A1 (en) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Use of substituted indolinylmethyl sulfonamides, or the salts thereof for increasing the stress tolerance of plants
DE102007045920B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistic drug combinations
WO2019025153A1 (en) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Use of substituted n-sulfonyl-n'-aryl diaminoalkanes and n-sulfonyl-n'-heteroaryl diaminoalkanes or salts thereof for increasing the stress tolerance in plants
WO2019233863A1 (en) 2018-06-04 2019-12-12 Bayer Aktiengesellschaft Herbicidally active bicyclic benzoylpyrazoles
WO2020020895A1 (en) 2018-07-26 2020-01-30 Bayer Aktiengesellschaft Use of the succinate dehydrogenase inhibitor fluopyram for controlling root rot complex and/or seedling disease complex caused by rhizoctonia solani, fusarium species and pythium species in brassicaceae species
WO2020058144A1 (en) 2018-09-17 2020-03-26 Bayer Aktiengesellschaft Use of the succinate dehydrogenase inhibitor fluopyram for controlling claviceps purpurea and reducing sclerotia in cereals
WO2020057939A1 (en) 2018-09-17 2020-03-26 Bayer Aktiengesellschaft Use of the fungicide isoflucypram for controlling claviceps purpurea and reducing sclerotia in cereals
US10767190B2 (en) 2015-12-15 2020-09-08 Basf Agricultural Solutions Seed, Us Llc Brassicaceae plants resistant to Plasmodiophora brassicae (clubroot)
WO2023004429A1 (en) 2021-07-23 2023-01-26 BASF Agricultural Solutions Seed US LLC Blackleg resistant plants and methods for the identification of blackleg resistant plants

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084998A (en) * 1996-09-13 1998-04-07 Sumitomo Chem Co Ltd Discrimination of plant containing cytoplasmic male sterility factor dna and cytoplasmic male sterility factor dna to be used therefor
US6852908B2 (en) 1997-05-30 2005-02-08 Mcgill University Method for enhancement of naturally occurring cytoplasmic male sterility and for restoration of male fertility and uses thereof in hybrid crop production
JP2002500512A (en) * 1997-05-30 2002-01-08 マクギル・ユニヴァーシティ Methods for enhancing and restoring naturally occurring male sterility and their use in producing hybrid crops
WO2002088179A1 (en) * 2001-04-25 2002-11-07 Mitsubishi Chemical Corporation Protein participating in restoration from cytoplasmic male sterility to fertility and gene encoding the same
WO2004055165A2 (en) * 2002-12-13 2004-07-01 St. Jude Children's Research Hospital Glutathione-s-transferase test for susceptibility to parkinson's
CL2007003743A1 (en) * 2006-12-22 2008-07-11 Bayer Cropscience Ag COMPOSITION THAT INCLUDES FENAMIDONA AND AN INSECTICIDE COMPOUND; AND METHOD TO CONTROL FITOPATOGENOS CULTURES AND INSECTS FACING OR PREVENTIVELY.
CL2007003744A1 (en) * 2006-12-22 2008-07-11 Bayer Cropscience Ag COMPOSITION THAT INCLUDES A 2-PYRIDILMETILBENZAMIDE DERIVATIVE AND AN INSECTICIDE COMPOUND; AND METHOD TO CONTROL FITOPATOGENOS CULTURES AND INSECTS FACING OR PREVENTIVELY.
EP1969931A1 (en) * 2007-03-12 2008-09-17 Bayer CropScience Aktiengesellschaft Fluoroalkyl phenylamidines and their use as fungicides
US8080688B2 (en) * 2007-03-12 2011-12-20 Bayer Cropscience Ag 3, 4-disubstituted phenoxyphenylamidines and use thereof as fungicides
EP1969934A1 (en) 2007-03-12 2008-09-17 Bayer CropScience AG 4-cycloalkyl or 4-aryl substituted phenoxy phenylamidines and their use as fungicides
US8168567B2 (en) 2007-04-19 2012-05-01 Bayer Cropscience Ag Thiadiazolyl oxyphenyl amidines and the use thereof as a fungicide
MX2010002746A (en) * 2007-10-02 2010-06-01 Bayer Cropscience Ag Methods of improving plant growth.
EP2113172A1 (en) * 2008-04-28 2009-11-04 Bayer CropScience AG Method for improved utilisation of the production potential of transgene plants
JP5558490B2 (en) 2009-01-19 2014-07-23 バイエル・クロップサイエンス・アーゲー Cyclic diones and their use as insecticides, acaricides and / or fungicides
WO2010108508A2 (en) 2009-03-25 2010-09-30 Bayer Cropscience Ag Active ingredient combinations with insecticidal and acaricidal properties
MX2011009916A (en) 2009-03-25 2011-10-06 Bayer Cropscience Ag Active ingredient combinations having insecticidal and acaricidal properties.
JP2012521371A (en) 2009-03-25 2012-09-13 バイエル・クロップサイエンス・アーゲー Combination of active compounds having insecticidal and acaricidal properties
US9012360B2 (en) 2009-03-25 2015-04-21 Bayer Intellectual Property Gmbh Synergistic combinations of active ingredients
EP2410847A1 (en) 2009-03-25 2012-02-01 Bayer CropScience AG Active ingredient combinations having insecticidal and acaricidal properties
US8835657B2 (en) 2009-05-06 2014-09-16 Bayer Cropscience Ag Cyclopentanedione compounds and their use as insecticides, acaricides and/or fungicides
UA106618C2 (en) 2009-06-02 2014-09-25 Баєр Кропсаєнс Аг APPLICATION OF SUCCINDEGYDROGENASE INHIBITORS FOR SCLEROTINIA SUBSCRIPTION CONTROL
CN109338010A (en) * 2018-12-12 2019-02-15 海南大学 A kind of male sterile with radish cytoplasm gene molecule marker primer and its application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005251A1 (en) * 1990-09-21 1992-04-02 Institut National De La Recherche Agronomique Dna sequence imparting cytoplasmic male sterility, mitochondrial genome, nuclear genome, mitochondria and plant containing said sequence and process for the preparation of hybrids

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687396B2 (en) * 1988-02-26 1997-12-08 三菱化学株式会社 Method for producing cytoplasmic hybrid plant
AU5664090A (en) * 1989-05-05 1990-11-29 Biosource Genetics Corporation Male sterility in plants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005251A1 (en) * 1990-09-21 1992-04-02 Institut National De La Recherche Agronomique Dna sequence imparting cytoplasmic male sterility, mitochondrial genome, nuclear genome, mitochondria and plant containing said sequence and process for the preparation of hybrids

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Current Genetics, Vol. 24, Nos. 1 to 2 (1993), S. KRISHNASAMY et al., "Characterization of the Radish Mitochondrial orfB Locus: Possible Relationship with Male Sterility in Ogura Radish", p. 156-63. *
Molecular & General Genetics, Vol. 235, Nos. 2 to 3, (1992), "Sequence and Transcript Analysis of the Nco 25 Ogura-Specific Fragment Correlated with Cytoplasmic Male Sterility in Brassica Cybrids", p. 340-8. *
See also references of EP0675198A4 *

Cited By (194)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058505B2 (en) 2005-10-26 2011-11-15 Sakata Seed Corporation Cybrid plant of the genus Lactuca and method for producing the same
EP2944692A1 (en) 2005-10-26 2015-11-18 Sakata Seed Corporation Cybrid plant of the genus lactuca and method for producing the same
US8334237B2 (en) 2007-03-12 2012-12-18 Bayer Cropscience Ag Substituted phenylamidines and the use thereof as fungicides
US8785692B2 (en) 2007-03-12 2014-07-22 Bayer Cropscience Ag Substituted phenylamidines and the use thereof as fungicides
US9199922B2 (en) 2007-03-12 2015-12-01 Bayer Intellectual Property Gmbh Dihalophenoxyphenylamidines and use thereof as fungicides
US8519003B2 (en) 2007-03-12 2013-08-27 Bayer Cropscience Ag Phenoxyphenylamidines as fungicides
US8455480B2 (en) 2007-09-26 2013-06-04 Bayer Cropscience Ag Active agent combinations having insecticidal and acaricidal properties
DE102007045922A1 (en) 2007-09-26 2009-04-02 Bayer Cropscience Ag Drug combinations with insecticidal and acaricidal properties
DE102007045956A1 (en) 2007-09-26 2009-04-09 Bayer Cropscience Ag Combination of active ingredients with insecticidal and acaricidal properties
DE102007045953B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Drug combinations with insecticidal and acaricidal properties
US9173394B2 (en) 2007-09-26 2015-11-03 Bayer Intellectual Property Gmbh Active agent combinations having insecticidal and acaricidal properties
DE102007045955A1 (en) 2007-09-26 2009-04-09 Bayer Cropscience Ag Active agent combination, useful e.g. for combating animal pests and treating seeds of transgenic plants, comprises substituted amino-furan-2-one compound and at least one compound e.g. diazinon, isoxathion, carbofuran or aldicarb
DE102007045953A1 (en) 2007-09-26 2009-04-02 Bayer Cropscience Ag Active substance combination, useful for combating animal pest, treating seed, transgenic plant and seeds of transgenic plant, comprises a 5H-furan-2-one compound and other active agent comprising e.g. acrinathrin and alpha-cypermethrin
DE102007045919A1 (en) 2007-09-26 2009-04-09 Bayer Cropscience Ag Active agent combination, useful e.g. to combat animal pest and to prepare insecticidal and acaricidal agent, comprises a substituted 5H-furan-2-one compound and a compound e.g. spirotetramat, spirodiclofen and spiromesifen
DE102007045957A1 (en) 2007-09-26 2009-04-09 Bayer Cropscience Ag Active agent combination, useful e.g. for combating animal pests e.g. insects and treating seeds of transgenic plants, comprises substituted amino-furan-2-one compound and at least one compound e.g. benzoyl urea, buprofezin and cyromazine
DE102007045919B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Drug combinations with insecticidal and acaricidal properties
DE102007045920B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistic drug combinations
EP2072506A1 (en) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine or thiadiazolyloxyphenylamidine und its use as fungicide
EP2090168A1 (en) 2008-02-12 2009-08-19 Bayer CropScience AG Method for improving plant growth
EP2168434A1 (en) 2008-08-02 2010-03-31 Bayer CropScience AG Use of azols to increase resistance of plants of parts of plants to abiotic stress
EP2374791A1 (en) 2008-08-14 2011-10-12 Bayer CropScience Aktiengesellschaft Insecticidal 4-phenyl-1H pyrazoles
DE102008041695A1 (en) 2008-08-29 2010-03-04 Bayer Cropscience Ag Methods for improving plant growth
EP2201838A1 (en) 2008-12-05 2010-06-30 Bayer CropScience AG Active ingredient-beneficial organism combinations with insecticide and acaricide properties
EP2198709A1 (en) 2008-12-19 2010-06-23 Bayer CropScience AG Method for treating resistant animal pests
EP2204094A1 (en) 2008-12-29 2010-07-07 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants Introduction
WO2010075994A1 (en) 2008-12-29 2010-07-08 Bayer Cropscience Aktiengesellschaft Treatment of transgenic crops with mixtures of fiproles and chloronicotinyls
EP2039771A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2039772A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants introduction
EP2039770A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2227951A1 (en) 2009-01-23 2010-09-15 Bayer CropScience AG Application of enaminocarbonyl compounds for combating viruses transmitted by insects
WO2010083955A2 (en) 2009-01-23 2010-07-29 Bayer Cropscience Aktiengesellschaft Use of enaminocarboxylic compounds for fighting viruses transmitted by insects
WO2010086311A1 (en) 2009-01-28 2010-08-05 Bayer Cropscience Ag Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
WO2010086095A1 (en) 2009-01-29 2010-08-05 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants introduction
WO2010094666A2 (en) 2009-02-17 2010-08-26 Bayer Cropscience Ag Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives
EP2218717A1 (en) 2009-02-17 2010-08-18 Bayer CropScience AG Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives
WO2010094728A1 (en) 2009-02-19 2010-08-26 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
DE102009001469A1 (en) 2009-03-11 2009-09-24 Bayer Cropscience Ag Improving utilization of productive potential of transgenic plant by controlling e.g. animal pest, and/or by improving plant health, comprises treating the transgenic plant with active agent composition comprising prothioconazole
DE102009001681A1 (en) 2009-03-20 2010-09-23 Bayer Cropscience Ag Improving utilization of production potential of a transgenic plant by controlling animal pests, phytopathogenic fungi, microorganisms and/or improving plant health, comprises treating plant with a drug composition comprising iprovalicarb
DE102009001732A1 (en) 2009-03-23 2010-09-30 Bayer Cropscience Ag Improving the production potential of transgenic plant, by combating e.g. animal pests and/or microorganism, and/or increasing plant health, comprises treating the plants with active agent composition comprising trifloxystrobin
DE102009001728A1 (en) 2009-03-23 2010-09-30 Bayer Cropscience Ag Improving the production potential of transgenic plant, by combating e.g. animal pests and/or microorganism, and/or increasing plant health, comprises treating the plants with active agent composition comprising fluoxastrobin
DE102009001730A1 (en) 2009-03-23 2010-09-30 Bayer Cropscience Ag Improving utilization of production potential of a transgenic plant by controlling animal pests, phytopathogenic fungi and/or microorganisms and/or the plant health, comprises treating plant with a drug composition comprising spiroxamine
EP2232995A1 (en) 2009-03-25 2010-09-29 Bayer CropScience AG Method for improved utilisation of the production potential of transgenic plants
EP2239331A1 (en) 2009-04-07 2010-10-13 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2251331A1 (en) 2009-05-15 2010-11-17 Bayer CropScience AG Fungicide pyrazole carboxamides derivatives
EP3000809A1 (en) 2009-05-15 2016-03-30 Bayer Intellectual Property GmbH Fungicide pyrazole carboxamides derivatives
EP2255626A1 (en) 2009-05-27 2010-12-01 Bayer CropScience AG Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress
WO2011006603A2 (en) 2009-07-16 2011-01-20 Bayer Cropscience Ag Synergistic active substance combinations containing phenyl triazoles
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
EP2292094A1 (en) 2009-09-02 2011-03-09 Bayer CropScience AG Active compound combinations
WO2011035834A1 (en) 2009-09-02 2011-03-31 Bayer Cropscience Ag Active compound combinations
EP2343280A1 (en) 2009-12-10 2011-07-13 Bayer CropScience AG Fungicide quinoline derivatives
WO2011080254A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011080255A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011080256A1 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011089071A2 (en) 2010-01-22 2011-07-28 Bayer Cropscience Ag Acaricide and/or insecticide active substance combinations
EP2353387A1 (en) 2010-02-05 2011-08-10 Bayer CropScience AG Use of succinate dehydrogenase (SDH) inhibitors in the treatment of plant types in the sweet grass family
WO2011095496A2 (en) 2010-02-05 2011-08-11 Bayer Cropscience Ag Use of succinate dehydrogenase (sdh) inhibitors in treating plant species of the family of true grasses
US9215872B2 (en) 2010-02-05 2015-12-22 Bayer Intellectual Property Gmbh Use of succinate dehydrogenase (SDH) inhibitors in the treatment of plant species from the family of the true grasses
WO2011107504A1 (en) 2010-03-04 2011-09-09 Bayer Cropscience Ag Fluoroalkyl-substituted 2-amidobenzimidazoles and the use thereof for boosting stress tolerance in plants
WO2011113861A2 (en) 2010-03-18 2011-09-22 Bayer Cropscience Ag Aryl and hetaryl sulfonamides as active agents against abiotic plant stress
WO2011124554A2 (en) 2010-04-06 2011-10-13 Bayer Cropscience Ag Use of 4-phenylbutyric acid and/or the salts thereof for enhancing the stress tolerance of plants
WO2011124553A2 (en) 2010-04-09 2011-10-13 Bayer Cropscience Ag Use of derivatives of the (1-cyanocyclopropyl)phenylphosphinic acid, the esters thereof and/or the salts thereof for enhancing the tolerance of plants to abiotic stress
WO2011128262A2 (en) 2010-04-14 2011-10-20 Bayer Cropscience Ag Use of fungicidal agents for controlling mycoses on palms
EP2377397A1 (en) 2010-04-14 2011-10-19 Bayer CropScience AG Use of fungicidal agents for controlling mycoses in palm trees
WO2011134913A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134912A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011151368A2 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2011151369A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
WO2011151370A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues
US9265255B2 (en) 2010-07-07 2016-02-23 Bayer Intellectual Property Gmbh Anthranilamides in combination with fungicides
US9700049B2 (en) 2010-07-07 2017-07-11 Bayer Intellectual Property Gmbh Anthranilamides in combination with fungicides
WO2012004221A2 (en) 2010-07-07 2012-01-12 Bayer Cropscience Ag Anthranilamides in combination with fungicides
WO2012010579A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
WO2012010525A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Use of anthranilic acid amide derivatives for controlling insects and spider mites by watering, mixing with soil, drench treatment, droplet application, injection into the soil, stems or blossoms, in hydroponic systems, by treating the planting hole or immersion application, floating or seed box application or by the treatment of seeds, and for increasing the stress tolerance in plants to abiotic stress
WO2012028578A1 (en) 2010-09-03 2012-03-08 Bayer Cropscience Ag Substituted fused pyrimidinones and dihydropyrimidinones
WO2012038476A1 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of active ingredients for controlling nematodes in nematode-resistant crops
WO2012038480A2 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of biological or chemical control agents for controlling insects and nematodes in resistant crops
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
WO2012052490A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag N-benzyl heterocyclic carboxamides
WO2012052489A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag 1-(heterocyclic carbonyl) piperidines
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012065944A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag N-aryl pyrazole(thio)carboxamides
US9206137B2 (en) 2010-11-15 2015-12-08 Bayer Intellectual Property Gmbh N-Aryl pyrazole(thio)carboxamides
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
WO2012065945A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazole(thio)carboxamides
EP3092900A1 (en) 2010-12-01 2016-11-16 Bayer Intellectual Property GmbH Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients
EP3103334A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
EP3103339A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
EP3103340A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
WO2012072696A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
EP3103338A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
EP2460406A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Use of fluopyram for controlling nematodes in nematode resistant crops
EP2460407A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Agent combinations comprising pyridylethyl benzamides and other agents
EP2474542A1 (en) 2010-12-29 2012-07-11 Bayer CropScience AG Fungicide hydroximoyl-tetrazole derivatives
WO2012089757A1 (en) 2010-12-29 2012-07-05 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012089722A2 (en) 2010-12-30 2012-07-05 Bayer Cropscience Ag Use of open-chain carboxylic acids, carbonic esters, carboxamides and carbonitriles of aryl, heteroaryl and benzylsulfonamide or the salts thereof for improving the stress tolerance in plants
WO2012089721A1 (en) 2010-12-30 2012-07-05 Bayer Cropscience Ag Use of substituted spirocyclic sulfonamidocarboxylic acids, carboxylic esters thereof, carboxamides thereof and carbonitriles thereof or salts thereof for enhancement of stress tolerance in plants
EP2494867A1 (en) 2011-03-01 2012-09-05 Bayer CropScience AG Halogen-substituted compounds in combination with fungicides
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
WO2012123434A1 (en) 2011-03-14 2012-09-20 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012139892A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-dienes and 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-ene-4-ines as active agents against abiotic stress in plants
EP2511255A1 (en) 2011-04-15 2012-10-17 Bayer CropScience AG Substituted prop-2-in-1-ol and prop-2-en-1-ol derivatives
WO2012139890A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(cyclohex-2-en-1-yl)-penta-2,4-dienes and 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ines as active agents against abiotic stress in plants
WO2012139891A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted vinyl and alkinyl cyclohexenols as active agents against abiotic stress in plants
EP2997825A1 (en) 2011-04-22 2016-03-23 Bayer Intellectual Property GmbH Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound
WO2013004652A1 (en) 2011-07-04 2013-01-10 Bayer Intellectual Property Gmbh Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
WO2013020985A1 (en) 2011-08-10 2013-02-14 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
WO2013026836A1 (en) 2011-08-22 2013-02-28 Bayer Intellectual Property Gmbh Fungicide hydroximoyl-tetrazole derivatives
EP2561759A1 (en) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth
WO2013034621A1 (en) 2011-09-09 2013-03-14 Bayer Intellectual Property Gmbh Acyl-homoserine lactone derivatives for improving plant yield
WO2013037717A1 (en) 2011-09-12 2013-03-21 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives
WO2013037958A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of phenylpyrazolin-3-carboxylates for improving plant yield
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
WO2013037955A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
WO2013041602A1 (en) 2011-09-23 2013-03-28 Bayer Intellectual Property Gmbh Use of 4-substituted 1-phenyl-pyrazole-3-carboxylic-acid derivatives as agents against abiotic plant stress
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013050324A1 (en) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Combination, containing 4-phenylbutyric acid (4-pba) or a salt thereof (component (a)) and one or more selected additional agronomically active compounds (component(s) (b)), that reduces abiotic plant stress
WO2013075817A1 (en) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
US9574237B2 (en) 2011-11-28 2017-02-21 Anglo Netherlands Grain B.V. Method for differentiating fertile and sterile plant lines by detection of polymorphic markers in chloroplast DNA
WO2013079566A2 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013098146A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013098147A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013124275A1 (en) 2012-02-22 2013-08-29 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape.
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
WO2013156560A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
EP2662364A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole tetrahydronaphthyl carboxamides
EP2662370A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole benzofuranyl carboxamides
EP2662363A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole biphenylcarboxamides
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
WO2013167545A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag Pyrazole indanyl carboxamides
EP2662361A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol indanyl carboxamides
EP2662360A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole indanyl carboxamides
EP2662362A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole indanyl carboxamides
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2014009322A1 (en) 2012-07-11 2014-01-16 Bayer Cropscience Ag Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress
WO2014037340A1 (en) 2012-09-05 2014-03-13 Bayer Cropscience Ag Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014060520A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
WO2014060519A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
WO2014079789A1 (en) 2012-11-23 2014-05-30 Bayer Cropscience Ag Active compound combinations
EP2735231A1 (en) 2012-11-23 2014-05-28 Bayer CropScience AG Active compound combinations
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014083031A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
EP2740720A1 (en) 2012-12-05 2014-06-11 Bayer CropScience AG Substituted bicyclic and tricyclic pent-2-en-4-inic acid derivatives and their use for enhancing the stress tolerance in plants
EP2740356A1 (en) 2012-12-05 2014-06-11 Bayer CropScience AG Substituted (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-inic acid derivatives
WO2014086751A1 (en) 2012-12-05 2014-06-12 Bayer Cropscience Ag Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cyloalkenyl ethynyl)-cyclohexanols as active agents against abiotic plant stress
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2014135608A1 (en) 2013-03-07 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives
WO2014167008A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazolinthione derivatives
WO2014167009A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014170345A2 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants
WO2014177582A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2015004040A1 (en) 2013-07-09 2015-01-15 Bayer Cropscience Ag Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
EP2837287A1 (en) 2013-08-15 2015-02-18 Bayer CropScience AG Use of prothioconazole for increasing root growth of Brassicaceae
WO2015032692A1 (en) 2013-09-03 2015-03-12 Bayer Cropscience Ag Use of fungicidal agents for controlling chalara fraxinea on ash trees
WO2015082586A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
EP2865265A1 (en) 2014-02-13 2015-04-29 Bayer CropScience AG Active compound combinations comprising phenylamidine compounds and biological control agents
EP2865267A1 (en) 2014-02-13 2015-04-29 Bayer CropScience AG Active compound combinations comprising phenylamidine compounds and biological control agents
WO2016012362A1 (en) 2014-07-22 2016-01-28 Bayer Cropscience Aktiengesellschaft Substituted cyano cycloalkyl penta-2,4-dienes, cyano cycloalkyl pent-2-en-4-ynes, cyano heterocyclyl penta-2,4-dienes and cyano heterocyclyl pent-2-en-4-ynes as active substances against abiotic plant stress
WO2016096942A1 (en) 2014-12-18 2016-06-23 Bayer Cropscience Aktiengesellschaft Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
WO2016166077A1 (en) 2015-04-13 2016-10-20 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
US10767190B2 (en) 2015-12-15 2020-09-08 Basf Agricultural Solutions Seed, Us Llc Brassicaceae plants resistant to Plasmodiophora brassicae (clubroot)
WO2017174430A1 (en) 2016-04-06 2017-10-12 Bayer Cropscience Aktiengesellschaft Combination of nuclear polyhedrosis virus and diamides
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
WO2018054829A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives and their use as fungicides
WO2018054832A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018077711A2 (en) 2016-10-26 2018-05-03 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications
WO2018104392A1 (en) 2016-12-08 2018-06-14 Bayer Cropscience Aktiengesellschaft Use of insecticides for controlling wireworms
EP3332645A1 (en) 2016-12-12 2018-06-13 Bayer Cropscience AG Use of substituted pyrimidine diones or their salts as agents to combat abiotic plant stress
WO2018108627A1 (en) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Use of substituted indolinylmethyl sulfonamides, or the salts thereof for increasing the stress tolerance of plants
WO2019025153A1 (en) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Use of substituted n-sulfonyl-n'-aryl diaminoalkanes and n-sulfonyl-n'-heteroaryl diaminoalkanes or salts thereof for increasing the stress tolerance in plants
WO2019233863A1 (en) 2018-06-04 2019-12-12 Bayer Aktiengesellschaft Herbicidally active bicyclic benzoylpyrazoles
WO2020020895A1 (en) 2018-07-26 2020-01-30 Bayer Aktiengesellschaft Use of the succinate dehydrogenase inhibitor fluopyram for controlling root rot complex and/or seedling disease complex caused by rhizoctonia solani, fusarium species and pythium species in brassicaceae species
WO2020058144A1 (en) 2018-09-17 2020-03-26 Bayer Aktiengesellschaft Use of the succinate dehydrogenase inhibitor fluopyram for controlling claviceps purpurea and reducing sclerotia in cereals
WO2020057939A1 (en) 2018-09-17 2020-03-26 Bayer Aktiengesellschaft Use of the fungicide isoflucypram for controlling claviceps purpurea and reducing sclerotia in cereals
WO2023004429A1 (en) 2021-07-23 2023-01-26 BASF Agricultural Solutions Seed US LLC Blackleg resistant plants and methods for the identification of blackleg resistant plants

Also Published As

Publication number Publication date
US5866782A (en) 1999-02-02
CN1115990A (en) 1996-01-31
CN1066487C (en) 2001-05-30
EP0675198A1 (en) 1995-10-04
EP0675198A4 (en) 1996-01-10
DE675198T1 (en) 1996-06-27
CA2150667C (en) 2007-01-09
CA2150667A1 (en) 1995-04-13

Similar Documents

Publication Publication Date Title
WO1995009910A1 (en) Gene that identifies sterile plant cytoplasm and process for preparing hybrid plant by using the same
DK175585B1 (en) Hankönssterile plant, culture of cells from a plant, promoter, DNA as well as cells, plants and plant cells containing this DNA and also methods and parent plants for seed production
JP3143120B2 (en) Plants with altered flowers, seeds or germs
ES2883229T3 (en) Gene for the induction of parthenogenesis, a component of apomictic reproduction
JPH05502378A (en) Site-specific recombination of DNA in plant cells
CN110938120B (en) StSCI protein for changing self-incompatibility of diploid potato material
JP6978152B2 (en) Multiphase spore reproductive gene
WO2021000878A1 (en) Novel genetic loci associated with rust resistance in soybeans
US20220106607A1 (en) Gene for parthenogenesis
ES2211864T3 (en) SEQUENCES OF cDNA SPECIFIC ANTERA, SEQUENCES OF GENOMIC DNA AND SEQUENCES OF RECOMBINANT DNA.
JP2009524409A (en) Nucleic acids and methods for producing seeds with a complete diploid complement of the maternal genome in the embryo
US20030237112A1 (en) Nuclear fertility restorer genes and methods of use in plants
EP0436467A2 (en) Expression of S-locus specific glycoprotein gene in transgenic plants
CN116568131A (en) Modified promoters of parthenogenesis genes
WO1994025593A2 (en) Method for obtaining male-sterile plants
US7351817B2 (en) Nucleic acids from rice conferring resistance to bacterial blight disease caused by Xanthomonas spp
Ray et al. Development of barnase/barstar transgenics for hybrid seed production in Indian oilseed mustard (Brassica juncea L. Czern & Coss) using a mutant acetolactate synthase gene conferring resistance to imidazolinone-based herbicide'Pursuit'
US7728194B2 (en) DNA fragment specific to cytoplasmic male sterile pepper and use thereof
US20050120416A1 (en) Novel method for the production of hybrid maize seeds
CN105121651B (en) Hybrid brassica plants and methods for producing same
US20060123514A1 (en) Self-fertile apple resulting from S-RNAase gene silencing
CN110714014B (en) Rape cytoplasmic male sterility gene and application thereof
MXPA05011893A (en) Dna fragment specific to cytoplasmic male sterile pepper and use thereof.
AU5977098A (en) Production of self-compatible (brassica) hybrids using a self-incompatible pollination control system
WO2014063442A1 (en) Method for propagating sterile male plant line

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94190856.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2150667

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994927811

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08454115

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994927811

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994927811

Country of ref document: EP