US9320530B2 - Assisted cutting balloon - Google Patents

Assisted cutting balloon Download PDF

Info

Publication number
US9320530B2
US9320530B2 US13/800,214 US201313800214A US9320530B2 US 9320530 B2 US9320530 B2 US 9320530B2 US 201313800214 A US201313800214 A US 201313800214A US 9320530 B2 US9320530 B2 US 9320530B2
Authority
US
United States
Prior art keywords
balloon
cutting
dilation
laser light
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/800,214
Other versions
US20140277002A1 (en
Inventor
Kenneth P. Grace
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spectranetics LLC
Original Assignee
Spectranetics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spectranetics LLC filed Critical Spectranetics LLC
Priority to US13/800,214 priority Critical patent/US9320530B2/en
Assigned to THE SPECTRANETICS CORPORATION reassignment THE SPECTRANETICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRACE, KENNETH P.
Priority to EP20183866.1A priority patent/EP3750490B1/en
Priority to PCT/US2014/019268 priority patent/WO2014163955A1/en
Priority to EP14778867.3A priority patent/EP2967609B1/en
Publication of US20140277002A1 publication Critical patent/US20140277002A1/en
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE SPECTRANETICS CORPORATION
Assigned to THE SPECTRANETICS CORPORATION reassignment THE SPECTRANETICS CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WELLS FARGO BANK, NATIONAL ASSOCIATION
Assigned to MIDCAP FINANCIAL TRUST, AS AGENT reassignment MIDCAP FINANCIAL TRUST, AS AGENT SECURITY INTEREST (TERM) Assignors: THE SPECTRANETICS CORPORATION
Assigned to MIDCAP FINANCIAL TRUST, AS AGENT reassignment MIDCAP FINANCIAL TRUST, AS AGENT SECURITY INTEREST (REVOLVER) Assignors: THE SPECTRANETICS CORPORATION
Priority to US14/984,050 priority patent/US10201387B2/en
Priority to US14/984,308 priority patent/US20160184022A1/en
Priority to US15/090,736 priority patent/US10786661B2/en
Publication of US9320530B2 publication Critical patent/US9320530B2/en
Application granted granted Critical
Priority to US15/476,183 priority patent/US10842567B2/en
Assigned to MIDCAP FINANCIAL TRUST, AS AGENT reassignment MIDCAP FINANCIAL TRUST, AS AGENT SECURITY INTEREST (REVOLVER) Assignors: THE SPECTRANETICS CORPORATION
Assigned to MIDCAP FINANCIAL TRUST, AS AGENT reassignment MIDCAP FINANCIAL TRUST, AS AGENT SECURITY INTEREST (TERM) Assignors: THE SPECTRANETICS CORPORATION
Assigned to ANGIOSCORE INC., THE SPECTRANETICS CORPORATION reassignment ANGIOSCORE INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MIDCAP FINANCIAL TRUST
Assigned to ANGIOSCORE INC., THE SPECTRANETICS CORPORATION reassignment ANGIOSCORE INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MIDCAP FINANCIAL TRUST
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/2202Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320725Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with radially expandable cutting or abrading elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22001Angioplasty, e.g. PCTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22014Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22061Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation for spreading elements apart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22062Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation to be filled with liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22081Treatment of vulnerable plaque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • A61B2018/263Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy the conversion of laser energy into mechanical shockwaves taking place in a liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • A61B2018/266Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy the conversion of laser energy into mechanical shockwaves taking place in a part of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1088Balloon catheters with special features or adapted for special applications having special surface characteristics depending on material properties or added substances, e.g. for reducing friction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/109Balloon catheters with special features or adapted for special applications having balloons for removing solid matters, e.g. by grasping or scraping plaque, thrombus or other matters that obstruct the flow

Definitions

  • This disclosure relates generally to cutting balloons utilized in balloon angioplasty and particularly to cutting balloons whose cutting action is assisted in one or more ways to increase the cutting action while at the same time allowing for reduced pressure within the cutting balloon.
  • Coronary artery disease affects millions of Americans, making it the most common form of heart disease. CAD most often results from a condition known as atherosclerosis, wherein a waxy substance forms inside the arteries that supply blood to the heart. This substance, called plaque, is made of cholesterol, fatty compounds, calcium, and a blood-clotting material called fibrin. As the plaque builds up, the artery narrows, making it more difficult for blood to flow to the heart. As the blockage gets worse, blood flow to the heart slows, and a condition called angina pectoris, or simply angina, may develop. Angina is like a squeezing, suffocating, or burning feeling in the chest.
  • the narrowed or blocked artery can lead to a heart attack.
  • a number of medicines can be used to relieve the angina pain that comes with CAD, but these medicines cannot clear blocked arteries.
  • a moderate to severely narrowed coronary artery may need more aggressive treatment to reduce the risk of a heart attack.
  • Balloon angioplasty is a technique for mechanically widening narrowed or obstructed arteries, the latter typically being a result of atherosclerosis.
  • An empty and collapsed balloon on a guide wire, known as a balloon catheter is passed into the narrowed locations and then inflated to a fixed size using water pressures some 75 to 500 times normal blood pressure (6 to 20 atmospheres).
  • the balloon is carefully inflated, first under low pressure, and then under higher pressure, until the narrowed area is widened.
  • the balloon inflation crushes the fatty deposits it expands against, opening up the blood vessel for improved blood flow.
  • the balloon is then deflated and withdrawn.
  • a stent may or may not be inserted at the time of balloon dilation to ensure the vessel remains open.
  • PCI Percutaneous coronary intervention
  • PCI includes the use of balloons, stents, and atherectomy devices.
  • PCI is accomplished with a small balloon catheter inserted into an artery in the groin or arm, and advanced to the narrowing in the coronary artery. The balloon is then inflated to enlarge the narrowing in the artery.
  • PCI allows more blood and oxygen to be delivered to the heart muscle and can relieve the chest pain of angina, improve the prognosis of individuals with unstable angina, and minimize or stop a heart attack without having the patient undergo open heart coronary artery bypass graft (CABG) surgery.
  • CABG open heart coronary artery bypass graft
  • Balloon angioplasty is also called percutaneous transluminal coronary angioplasty (PTCA). Both PCI and PTCA are non-surgical procedures. Balloon angioplasty can also be used to open narrowed vessels in many other parts of the body.
  • Peripheral angioplasty refers to the use of a balloon to open a blood vessel outside the coronary arteries. It is commonly done to treat atherosclerotic narrowing of the abdomen, leg, and renal arteries. PA can also be done to treat narrowing in veins. Often, PA is used in conjunction with peripheral stenting and atherectomy. For example, doctors can perform carotid angioplasty to open narrowed carotid arteries, which are the arteries that supply blood to the brain.
  • Balloon angioplasty can also be performed in the aorta (the main artery that comes from the heart), the iliac artery (in the hip), the femoral artery (in the thigh), the popliteal artery (behind the knee), and the tibial and peroneal arteries (in the lower leg).
  • the use of fluoroscopy assists the doctor in the location of blockages in the coronary arteries as the contrast dye moves through the arteries.
  • a small sample of heart tissue may be obtained during the procedure to be examined later under the microscope for abnormalities.
  • a cutting balloon is an angioplasty device used in PCI and PTCA and is a proven tool for the mechanical challenges of complex lesions that are often resistant to conventional balloon angioplasty.
  • a CB has a special balloon with small blades that are activated when the balloon is inflated.
  • the CB typically has three or four atherotomes (microsurgical blades) bonded longitudinally to its surface, suitable for creating discrete longitudinal incisions in the atherosclerotic target coronary segment during balloon inflation.
  • Cutting balloon angioplasty features three or four atherotomes, which are 3-5 times sharper than conventional surgical blades.
  • the atherotomes which are fixed longitudinally on the outer surface of a non-complaint balloon, expand radially and deliver longitudinal incisions in the plaque or target lesion, relieving its hoop stress.
  • CBA the increase in the vessel lumen diameter is obtained in a more controlled fashion and with a lower balloon inflation pressure than PCI and PTCA procedures utilizing conventional balloons. This controlled dilation could reduce the extent of vessel wall injury and the incidence of restenosis.
  • CBA cardiovascular disease
  • the advantage of CBA is its ability to reduce vessel stretch and vessel injury by scoring the target coronary segment longitudinally rather than causing an uncontrolled disruption of the atherosclerotic plaque or target lesion.
  • the atherotomes deliver a controlled fault line during dilation to ensure that the crack propagation ensues in an orderly fashion.
  • the CB also dilates the target vessel with less force to decrease the risk of a neoproliferative response and restenosis.
  • the unique design of the CB is engineered to protect the vessel from the edges of the atherotomes when it is deflated. This minimizes the risk of trauma to the vessel as the balloon is passed to and from the target coronary segment.
  • balloon inflation pressures can still range between 14-16 atmospheres, though lower inflation pressures are recommended.
  • Angioplasty balloons that employ a woven mesh, cutting strings, or wires are also known in the art. These balloons have been shown to be more flexible and safer than balloons employing cutting blades and edges.
  • the scoring elements can, for example, be in the form of a single wire or a plurality of wires wrapped around a dilation balloon in a helical configuration.
  • Other angioplasty cutting balloon catheter assemblies have a catheter equipped with an inflatable balloon with an interior cavity and an expandable covering around the balloon.
  • the expandable covering may be in the form of a mesh coating having a cross-hatched pattern.
  • the mesh coating may be made of plastic or metal fibers, where at least some of the fibers have cutting edges. In operation, the cutting edges abrade the stenosis, plaque, or lesions along the vessel walls when the catheter assembly is reciprocally moved longitudinally or rotationally after inflation of the balloon.
  • the disclosure is generally directed to the use of vibrations to enhance the performance of cutting balloons, particularly in angioplasty, in treating lesions, occlusions and plaque.
  • a method, according to this disclosure, can perform balloon angioplasty by the steps of:
  • the expanding and vibrating dilation balloon can crush softer portions of the plaque, and/or the vibrating wire abrasive can cut the harder or calcified portions of the plaque.
  • An assisted cutting balloon for performing balloon angioplasty can include:
  • the laser light source can transmit pulsed laser light into the contrast medium creating shockwaves that propagate through the contrast medium, thereby causing the cutting device(s) to vibrate and assist in the cracking or abrading of the surrounding plaque in contact with the balloon.
  • the contrast material commonly exhibits a high degree of optical absorption to the laser light.
  • a laser fiber or fibers inserted into the balloon interior emit optical energy into the contrast material, the material is believed to experience a rapid rate of energy absorption, creating the shockwave.
  • An assisted cutting balloon for performing balloon angioplasty can include:
  • the ultrasonic apparatus can transmit ultrasonic waves through the flexible wire waveguide to the cutting device(s) causing the cutting device(s) to vibrate as and/or after the dilation balloon is inflated, thereby assisting in the cracking or abrading of the surrounding plaque in contact with the balloon.
  • the cutting device(s) can be a wire abrasive bound to an exterior of the dilation balloon.
  • wire or braid material is constructed with a diamond abrasive or other types of abrasive cutting material and is wrapped around a dilation balloon in a helical or other type of configuration.
  • the wire or braided material is vibrated using high, low, or even ultrasonic waves transmitted to the wire or braided material via local or remote methods, substantially enhancing the ability to cut or abrade the plaque.
  • the guide wire can be inserted into a vasculature system and moved past the target coronary segment, and the assisted cutting balloon translated over the guide wire to the target coronary segment.
  • the dilation balloon can be inflated with a contrast medium.
  • a laser fiber and the assisted cutting balloon are translated along over the guide wire to the target coronary segment, with the distal end of the laser fiber terminating in the middle of the dilation balloon.
  • a laser generator connected to a proximal end of the laser fiber emits laser light from the distal end of the laser fiber at a very short pulse duration, thereby creating shockwaves that propagate through the contrast medium as the dilation balloon is inflating, causing the cutting device(s) to vibrate. The vibrations cause the cutting device(s) to cut or abrade harder or calcified portions of the plaque as the dilation balloon is inflating.
  • the laser generator typically generates 308 nm laser light at pulse durations ranging from 120-140 nsec. While other types of laser generators can be employed, a common laser generator is an excimer laser.
  • the assisted cutting balloon, guide wire, and laser fiber can be enclosed in a multi-lumen catheter.
  • an ultrasonic apparatus having a flexible wire waveguide connected at a proximal end to the ultrasonic apparatus and connected at a distal end to the cutting device(s) transmits ultrasonic waves through the flexible wire waveguide to the cutting device(s), causing the cutting device(s) to vibrate.
  • the vibrating cutting device(s) cut the harder or calcified portions of the plaque as and/or after the dilation balloon is inflated.
  • the balloon is commonly inflated to pressures ranging between about 1-30 atmospheres, 5-25 atmospheres, and 10-20 atmospheres.
  • the present disclosure can provide benefits relative to conventional cutting balloons.
  • the use of vibration, at low, medium, or high frequencies, can enhance dramatically the performance of cutting balloons.
  • Cutting device(s), particularly the wire or braid materials constructed with diamond abrasives or other type of abrasive cutting materials can cut, abrade, or otherwise modify plaque, particularly calcified or hard plaque, while leaving surrounding soft tissue and compliant balloon material substantially unaltered and undamaged. This can be a very effective method to assist in cracking or modifying plaque in arteries.
  • the disclosure can avoid the need to inflate balloons to very high pressures (e.g., from about 15 to about 30 atms), thereby permitting the use of lower pressures (e.g., typically no more than about 10 atms and even more typically no more than about 7.5 atms).
  • very high pressures e.g., from about 15 to about 30 atms
  • lower pressures e.g., typically no more than about 10 atms and even more typically no more than about 7.5 atms.
  • each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
  • each one of A, B, and C in the above expressions refers to an element, such as X, Y, and Z, or class of elements, such as X1-Xm, Y1-Yn, and Z1-Zo
  • the phrase is intended to refer to a single element selected from X, Y, and Z, a combination of elements selected from the same class (e.g., X1 and X2) as well as a combination of elements selected from two or more classes (e.g., Y1 and Z3).
  • Contrast media is generally any substance used to change the imaging characteristics of a patient, thereby providing additional information such as anatomical, morphological, and/or physiological. Contrast media can, for example, provide information regarding vasculature, vascular integrity, and/or qualitative assessment of vasculature function or operation.
  • Positive contrast agents increase the attenuation of tissue, blood, urine, or outline spaces such as the gastrointestinal lumen or subarachnoid space.
  • Two primary types of positive contrast agents are barium sulfate agents and various halogenated (e.g., iodated) compounds.
  • Negative contrast agents normally decrease attenuation by occupying a space, such as the bladder, gastrointestinal tract, or blood vessels.
  • Negative contrast agents are typically gases, such as carbon dioxide and nitrous oxide.
  • Another type of contrast media namely MRI contrast agents, uses typically superparamegnetism.
  • ultrasound contrast media namely sonagraphic contrast agents, are typically composed of gas bubbles (air or perfluor gases) stabilized by a shell of phospholipids, surfactants, albumin, or polymers.
  • Ultrasound refers to sound or other vibrations having an ultrasonic frequency, which is commonly a frequency above about 20 thousand cycles per second (20,000 Hz).
  • FIG. 1 shows a schematic illustration of an embodiment of an assisted cutting balloon.
  • FIG. 2 shows a schematic diagram of an embodiment of an ultrasonic generator apparatus.
  • FIG. 3 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon in place prior to inflation.
  • FIG. 4 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon in place and inflated.
  • FIG. 5 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon after deflation and ready for removal.
  • FIG. 6 shows a schematic illustration of another embodiment of an assisted cutting balloon.
  • FIG. 7 shows a schematic diagram of an embodiment of a laser generator apparatus.
  • FIG. 1 shows a schematic illustration of an embodiment of an assisted cutting balloon.
  • Assisted Cutting Balloon 10 includes a Dilation Balloon 12 , which may be any conventional angioplasty balloon such as commonly used by interventional cardiologists or radiologists, and a Wire Abrasive 14 mounted, attached, affixed, or otherwise bound, in a helical configuration, to the exterior of Dilation Balloon 12 .
  • Wire Abrasive 14 may be one wire strand or many wire strands wrapped or braided together.
  • the wire may be composed of any suitable material, with one or more metal and/or plastic fibers being typical. Diamond material or any other suitable abrasives may be used as an abrasive bonded to the wire.
  • Dilation Balloon 12 Diamond wire impregnated with diamond dust is relatively inexpensive and is readily available in various diameters and lengths. Multiple configurations of Dilation Balloon 12 may be used with different types of cutting wire or string wrap patterns or braids, such as diamond, cross-hatch, woven or unwoven mesh, reverse helical, longitudinal, radial, etc., around the exterior of the Dilation Balloon 12 and with different types of abrasive coated wire or cutting blades or atherotomes in a variety of geometrical shapes bonded or applied to Dilation Balloon 12 . Other cutting balloon configurations known to those of skill in the art may be employed as the Dilation Balloon 12 . Guide Wire 30 is inserted into the vasculature system of the subject and past Target Coronary Segment 32 (see FIG. 3 ). Assisted Cutting Balloon 10 is translated over Guide Wire 30 to Target Coronary Segment 32 .
  • Cutting Wire 30 is inserted into the vasculature system of the subject and past Target Coronary Segment 32 (see FIG
  • FIG. 2 shows a schematic diagram of an embodiment of an ultrasonic generator apparatus.
  • Ultrasonic Apparatus 16 includes a Piezoelectric Converter And Acoustic Horn 18 that operates with a resonant frequency. Piezoelectric Converter And Acoustic Horn 18 is driven by Ultrasonic Generator 20 at an adjustable resonant frequency or set of plural frequencies. The frequencies can be temporally fixed or varied during Assisted Cutting Balloon 12 operation. This ensures that resonance of Piezoelectric Converter And Acoustic Horn 18 is achieved despite minor alterations in the resonant frequency of the system.
  • Ultrasonic Generator 20 has adjustable input power dial settings.
  • Flexible Wire Waveguide 22 is connected to Piezoelectric Converter And Acoustic Horn 18 at a Proximal End 24 and fixed tightly into the radiating face of Piezoelectric Converter And Acoustic Horn 18 ensuring a rigid connection between the two.
  • Distal End 26 of Flexible Wire Waveguide 22 is rigidly connected to a Proximal End 28 of Wire Abrasive 14 (see FIG. 1 ).
  • Other local or remote methods may be used to transmit high, low, or ultrasonic waves to Flexible Wire Waveguide 22 such as.
  • FIG. 3 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon in place prior to inflation.
  • Assisted Cutting Balloon 10 has been translated over Guide Wire 30 to Target Coronary Segment 32 .
  • the interior of Artery 34 is partially occluded with deposits of Plaque 36 .
  • FIG. 4 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon in place and inflated.
  • Dilation Balloon 12 As Dilation Balloon 12 is inflated, Ultrasonic Apparatus 16 is powered on. Flexible Wire Waveguide 22 causes Wire Abrasive 14 to vibrate.
  • Flexible Wire Waveguide 22 causes Wire Abrasive 14 to vibrate.
  • Wire Abrasive 14 of Dilation Balloon 12 comes into contact with Plaque 36 .
  • Dilation Balloon 12 crushes the softer portions of Plaque 36 and the cutting action of Wire Abrasive 14 , which is enhanced due to the vibration imparted via Flexible Wire Waveguide 22 , cuts the harder or calcified portions of Plaque 36 .
  • the enhanced cutting action reduces the inflation pressure necessary to 5 to 10 atmospheres which reduces the chance for damage to Artery 34 .
  • FIG. 5 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon after deflation and ready for removal.
  • Striations 38 can be seen in crushed Plaque 36 due to the cutting action of Wire Abrasive 14 .
  • Assisted Cutting Balloon 10 is now ready for removal over Guide Wire 30 .
  • FIG. 6 shows a schematic illustration of another embodiment of an assisted cutting balloon.
  • Assisted Cutting Balloon 50 includes a Dilation Balloon 52 , which may be any conventional angioplasty balloon such as commonly used by interventional cardiologists or radiologists, and a Wire Abrasive 54 mounted over or attached to Dilation Balloon 52 .
  • Wire Abrasive 54 may be one wire strand or many wire strands braided together.
  • Diamond material or any other suitable abrasives may be used as an abrasive bonded to the wire.
  • Diamond wire impregnated with diamond dust is relatively inexpensive and is readily available in various diameters and lengths.
  • Dilation Balloon 52 may be used with different types of wire wrap patterns or braids, such as diamond or cross-hatch, helical, etc., and with different types of abrasive coated wire or cutting blades in a variety of geometrical shapes bonded or applied to Dilation Balloon 12 .
  • Guide Wire 70 is inserted into the subject and Assisted Cutting Balloon 50 is translated over Guide Wire 70 to a target coronary segment, such as Target Coronary Segment 32 shown in FIG. 3 .
  • FIG. 7 shows a schematic diagram of an embodiment of a laser generator apparatus.
  • a laser light source such as Laser Apparatus 56 includes a Laser Generator 58 controlled by a Computer 60 .
  • Flexible Cladding 62 shields Laser Fiber 64 , which may be a single fiber or multiple fibers.
  • Flexible Cladding 62 runs parallel with Guide Wire 70 and both may be enclosed in a multi-lumen catheter along with Assisted Cutting Balloon 10 .
  • Distal End 66 (see FIG. 6 ) of Flexible Cladding 62 terminates in the middle of Dilation Balloon 52 .
  • Laser Fiber 64 extends a short distance from Distal End 66 .
  • Dilation Balloon 52 is inflated with Contrast Medium 68 .
  • Contrast Medium 68 may be one of many different compounds as found in the ACR Manual of Contrast Media, Version 8, 2012.
  • Laser Apparatus 56 is activated, which, in one embodiment, may be an excimer laser that emits 308 nm laser light at very short pulse durations (120-140 nsec.) from Laser Fiber 64 .
  • Contrast Medium 68 exhibits a very high absorption to this laser light.
  • shockwaves Due to the high absorption and short pulse width of the laser light, shockwaves are created that propagate through the volume of Contrast Medium 68 within Dilation Balloon 52 .
  • the shockwaves assist in the cracking, crushing, or modification of Plaque 36 by Dilation Balloon 52 .
  • the shockwave also causes Wire Abrasive 54 to vibrate.
  • Dilation Balloon 52 As Wire Abrasive 54 of Dilation Balloon 52 comes into contact with Plaque 36 , Dilation Balloon 52 , assisted by the shockwaves as well as by inflation, crushes the softer portions of Plaque 36 , and the cutting action of Wire Abrasive 54 , which is enhanced due to the vibration imparted via the shockwaves traveling through the volume of Contrast Medium 68 , cuts the harder or calcified portions of Plaque 36 . Dilation Balloon 52 is then deflated and ready for removal as shown in FIG. 5 . Striations 38 will also be seen in crushed Plaque 36 due to the cutting action of Wire Abrasive 54 .
  • cutting blades may be used instead of abrasive wire.
  • Assisted Cutting Balloon 12 vibrating mechanisms may be employed. Examples include mechanically induced vibration (e.g., by a micro-vibration motor), electrically induced vibration, electromechanically induced vibration (e.g., by a micro-electromechanical system), magnetically induced vibration, electromagnetically induced vibration, and vibration induced by other sound or acoustical frequencies.
  • mechanically induced vibration e.g., by a micro-vibration motor
  • electrically induced vibration e.g., electrically induced vibration
  • electromechanically induced vibration e.g., by a micro-electromechanical system
  • magnetically induced vibration e.g., electromagnetically induced vibration, and vibration induced by other sound or acoustical frequencies.
  • the vibration source may be positioned either remotely, as discussed and shown above, or locally, such as in the proximity of the balloon itself, or a combination thereof.
  • Micro-components can be positioned in or near the balloon in the catheter itself whereby attenuation of vibrations remotely generated is reduced.
  • a micro-vibration motor, micro-electromechanical system, or micro-piezoelectric transducer can be positioned in the catheter in proximity to the balloon.
  • the present disclosure in various aspects, embodiments, and configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the various aspects, embodiments, and configurations, after understanding the present disclosure.
  • the present disclosure in various aspects, embodiments, and configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and ⁇ or reducing cost of implementation.

Abstract

A dilation balloon is wrapped in one or more patterns with a wire or braided material having diamond abrasive or other abrasive material bonded thereto. The wire or braided material is vibrated in one or more ways to enhance the cutting action of the wire abrasive. The wire abrasive may be vibrated using high, low, or even ultrasonic waves transmitted to the wire abrasive via local or remote methods. Alternatively, the dilation balloon may be dilated with a contrast media that exhibits a high absorption to laser light. The contrast material is lased with a laser fiber or fibers inserted into the balloon interior, creating a substantial shockwave that vibrates the balloon and assists in the cracking or abrading of the surrounding plaque in contact with the dilation balloon. The cutting balloon may employ the abrasive coated wires described above or cutting blades.

Description

FIELD
This disclosure relates generally to cutting balloons utilized in balloon angioplasty and particularly to cutting balloons whose cutting action is assisted in one or more ways to increase the cutting action while at the same time allowing for reduced pressure within the cutting balloon.
BACKGROUND
Coronary artery disease (CAD) affects millions of Americans, making it the most common form of heart disease. CAD most often results from a condition known as atherosclerosis, wherein a waxy substance forms inside the arteries that supply blood to the heart. This substance, called plaque, is made of cholesterol, fatty compounds, calcium, and a blood-clotting material called fibrin. As the plaque builds up, the artery narrows, making it more difficult for blood to flow to the heart. As the blockage gets worse, blood flow to the heart slows, and a condition called angina pectoris, or simply angina, may develop. Angina is like a squeezing, suffocating, or burning feeling in the chest. The pain usually happens when the heart has an extra demand for blood, such as during exercise or times of emotional stress. In time, the narrowed or blocked artery can lead to a heart attack. A number of medicines can be used to relieve the angina pain that comes with CAD, but these medicines cannot clear blocked arteries. A moderate to severely narrowed coronary artery may need more aggressive treatment to reduce the risk of a heart attack.
Balloon angioplasty is a technique for mechanically widening narrowed or obstructed arteries, the latter typically being a result of atherosclerosis. An empty and collapsed balloon on a guide wire, known as a balloon catheter, is passed into the narrowed locations and then inflated to a fixed size using water pressures some 75 to 500 times normal blood pressure (6 to 20 atmospheres). The balloon is carefully inflated, first under low pressure, and then under higher pressure, until the narrowed area is widened. The balloon inflation crushes the fatty deposits it expands against, opening up the blood vessel for improved blood flow. The balloon is then deflated and withdrawn. Although the narrowing is improved in a majority of patients following balloon dilation, over time, the artery can again become narrow in as many as 15% to 20% of cases, requiring further balloon dilation. A stent may or may not be inserted at the time of balloon dilation to ensure the vessel remains open.
Percutaneous coronary intervention (PCI) is a therapeutic procedure to treat the stenotic (narrowed) coronary arteries of the heart due to CAD. These stenotic segments are caused by the buildup of plaque that forms due to atherosclerosis. PCI is usually performed by an interventional cardiologist.
PCI includes the use of balloons, stents, and atherectomy devices. PCI is accomplished with a small balloon catheter inserted into an artery in the groin or arm, and advanced to the narrowing in the coronary artery. The balloon is then inflated to enlarge the narrowing in the artery. When successful, PCI allows more blood and oxygen to be delivered to the heart muscle and can relieve the chest pain of angina, improve the prognosis of individuals with unstable angina, and minimize or stop a heart attack without having the patient undergo open heart coronary artery bypass graft (CABG) surgery.
Balloon angioplasty is also called percutaneous transluminal coronary angioplasty (PTCA). Both PCI and PTCA are non-surgical procedures. Balloon angioplasty can also be used to open narrowed vessels in many other parts of the body. Peripheral angioplasty (PA) refers to the use of a balloon to open a blood vessel outside the coronary arteries. It is commonly done to treat atherosclerotic narrowing of the abdomen, leg, and renal arteries. PA can also be done to treat narrowing in veins. Often, PA is used in conjunction with peripheral stenting and atherectomy. For example, doctors can perform carotid angioplasty to open narrowed carotid arteries, which are the arteries that supply blood to the brain. A stroke most often occurs when the carotid arteries become blocked and the brain does not get enough oxygen. Balloon angioplasty can also be performed in the aorta (the main artery that comes from the heart), the iliac artery (in the hip), the femoral artery (in the thigh), the popliteal artery (behind the knee), and the tibial and peroneal arteries (in the lower leg). The use of fluoroscopy assists the doctor in the location of blockages in the coronary arteries as the contrast dye moves through the arteries. A small sample of heart tissue (biopsy) may be obtained during the procedure to be examined later under the microscope for abnormalities.
A cutting balloon (CB) is an angioplasty device used in PCI and PTCA and is a proven tool for the mechanical challenges of complex lesions that are often resistant to conventional balloon angioplasty. A CB has a special balloon with small blades that are activated when the balloon is inflated. The CB typically has three or four atherotomes (microsurgical blades) bonded longitudinally to its surface, suitable for creating discrete longitudinal incisions in the atherosclerotic target coronary segment during balloon inflation. Cutting balloon angioplasty (CBA) features three or four atherotomes, which are 3-5 times sharper than conventional surgical blades. The atherotomes, which are fixed longitudinally on the outer surface of a non-complaint balloon, expand radially and deliver longitudinal incisions in the plaque or target lesion, relieving its hoop stress. With the CBA, the increase in the vessel lumen diameter is obtained in a more controlled fashion and with a lower balloon inflation pressure than PCI and PTCA procedures utilizing conventional balloons. This controlled dilation could reduce the extent of vessel wall injury and the incidence of restenosis.
The advantage of CBA is its ability to reduce vessel stretch and vessel injury by scoring the target coronary segment longitudinally rather than causing an uncontrolled disruption of the atherosclerotic plaque or target lesion. The atherotomes deliver a controlled fault line during dilation to ensure that the crack propagation ensues in an orderly fashion. The CB also dilates the target vessel with less force to decrease the risk of a neoproliferative response and restenosis. The unique design of the CB is engineered to protect the vessel from the edges of the atherotomes when it is deflated. This minimizes the risk of trauma to the vessel as the balloon is passed to and from the target coronary segment. With CBA, balloon inflation pressures can still range between 14-16 atmospheres, though lower inflation pressures are recommended.
Angioplasty balloons that employ a woven mesh, cutting strings, or wires are also known in the art. These balloons have been shown to be more flexible and safer than balloons employing cutting blades and edges. The scoring elements can, for example, be in the form of a single wire or a plurality of wires wrapped around a dilation balloon in a helical configuration. Other angioplasty cutting balloon catheter assemblies have a catheter equipped with an inflatable balloon with an interior cavity and an expandable covering around the balloon. The expandable covering may be in the form of a mesh coating having a cross-hatched pattern. The mesh coating may be made of plastic or metal fibers, where at least some of the fibers have cutting edges. In operation, the cutting edges abrade the stenosis, plaque, or lesions along the vessel walls when the catheter assembly is reciprocally moved longitudinally or rotationally after inflation of the balloon.
SUMMARY
These and other needs are addressed by the various aspects, embodiments, and configurations of the present disclosure. The disclosure is generally directed to the use of vibrations to enhance the performance of cutting balloons, particularly in angioplasty, in treating lesions, occlusions and plaque.
A method, according to this disclosure, can perform balloon angioplasty by the steps of:
(a) inserting an assisted cutting balloon into a target coronary segment partially occluded with plaque, the assisted cutting balloon having one or more cutting devices positioned on an exterior of the dilation balloon; and
(b) inflating the dilation balloon and vibrating the one or more cutting devices while the cutting balloon is inserted into the target coronary segment.
The expanding and vibrating dilation balloon can crush softer portions of the plaque, and/or the vibrating wire abrasive can cut the harder or calcified portions of the plaque.
An assisted cutting balloon for performing balloon angioplasty, according to this disclosure, can include:
(a) a dilation balloon;
(b) one or more cutting devices operably positioned on an exterior of the dilation balloon;
(c) a laser light source terminating at a distal end in the interior of the dilation balloon; and
(d) a contrast medium for inflating the dilation balloon.
As the dilation balloon is inflated with the contrast medium and/or after inflation, the laser light source can transmit pulsed laser light into the contrast medium creating shockwaves that propagate through the contrast medium, thereby causing the cutting device(s) to vibrate and assist in the cracking or abrading of the surrounding plaque in contact with the balloon.
The contrast material commonly exhibits a high degree of optical absorption to the laser light. When a laser fiber or fibers inserted into the balloon interior emit optical energy into the contrast material, the material is believed to experience a rapid rate of energy absorption, creating the shockwave.
An assisted cutting balloon for performing balloon angioplasty, according to this disclosure, can include:
(a) a dilation balloon;
(b) one or more cutting devices operably positioned on an exterior of the dilation balloon; and
(c) a flexible wire waveguide connected at a distal end to the cutting device(s) and at a proximal end to an ultrasonic apparatus.
The ultrasonic apparatus can transmit ultrasonic waves through the flexible wire waveguide to the cutting device(s) causing the cutting device(s) to vibrate as and/or after the dilation balloon is inflated, thereby assisting in the cracking or abrading of the surrounding plaque in contact with the balloon.
The cutting device(s) can be a wire abrasive bound to an exterior of the dilation balloon.
In one application, wire or braid material is constructed with a diamond abrasive or other types of abrasive cutting material and is wrapped around a dilation balloon in a helical or other type of configuration. The wire or braided material is vibrated using high, low, or even ultrasonic waves transmitted to the wire or braided material via local or remote methods, substantially enhancing the ability to cut or abrade the plaque.
The guide wire can be inserted into a vasculature system and moved past the target coronary segment, and the assisted cutting balloon translated over the guide wire to the target coronary segment.
In one procedure, the dilation balloon can be inflated with a contrast medium. Specifically, a laser fiber and the assisted cutting balloon are translated along over the guide wire to the target coronary segment, with the distal end of the laser fiber terminating in the middle of the dilation balloon. A laser generator connected to a proximal end of the laser fiber emits laser light from the distal end of the laser fiber at a very short pulse duration, thereby creating shockwaves that propagate through the contrast medium as the dilation balloon is inflating, causing the cutting device(s) to vibrate. The vibrations cause the cutting device(s) to cut or abrade harder or calcified portions of the plaque as the dilation balloon is inflating. The laser generator typically generates 308 nm laser light at pulse durations ranging from 120-140 nsec. While other types of laser generators can be employed, a common laser generator is an excimer laser.
To assist positioning within the body, the assisted cutting balloon, guide wire, and laser fiber can be enclosed in a multi-lumen catheter.
In another procedure, an ultrasonic apparatus having a flexible wire waveguide connected at a proximal end to the ultrasonic apparatus and connected at a distal end to the cutting device(s) transmits ultrasonic waves through the flexible wire waveguide to the cutting device(s), causing the cutting device(s) to vibrate. The vibrating cutting device(s) cut the harder or calcified portions of the plaque as and/or after the dilation balloon is inflated.
In any of the above procedures, the balloon is commonly inflated to pressures ranging between about 1-30 atmospheres, 5-25 atmospheres, and 10-20 atmospheres.
The present disclosure can provide benefits relative to conventional cutting balloons. The use of vibration, at low, medium, or high frequencies, can enhance dramatically the performance of cutting balloons. Cutting device(s), particularly the wire or braid materials constructed with diamond abrasives or other type of abrasive cutting materials, can cut, abrade, or otherwise modify plaque, particularly calcified or hard plaque, while leaving surrounding soft tissue and compliant balloon material substantially unaltered and undamaged. This can be a very effective method to assist in cracking or modifying plaque in arteries. The disclosure can avoid the need to inflate balloons to very high pressures (e.g., from about 15 to about 30 atms), thereby permitting the use of lower pressures (e.g., typically no more than about 10 atms and even more typically no more than about 7.5 atms).
As used herein, “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together. When each one of A, B, and C in the above expressions refers to an element, such as X, Y, and Z, or class of elements, such as X1-Xm, Y1-Yn, and Z1-Zo, the phrase is intended to refer to a single element selected from X, Y, and Z, a combination of elements selected from the same class (e.g., X1 and X2) as well as a combination of elements selected from two or more classes (e.g., Y1 and Z3).
It is to be noted that the term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.
“Contrast medium” or “contrast media” is generally any substance used to change the imaging characteristics of a patient, thereby providing additional information such as anatomical, morphological, and/or physiological. Contrast media can, for example, provide information regarding vasculature, vascular integrity, and/or qualitative assessment of vasculature function or operation. Positive contrast agents increase the attenuation of tissue, blood, urine, or outline spaces such as the gastrointestinal lumen or subarachnoid space. Two primary types of positive contrast agents are barium sulfate agents and various halogenated (e.g., iodated) compounds. Negative contrast agents normally decrease attenuation by occupying a space, such as the bladder, gastrointestinal tract, or blood vessels. Negative contrast agents are typically gases, such as carbon dioxide and nitrous oxide. Another type of contrast media, namely MRI contrast agents, uses typically superparamegnetism. Finally, ultrasound contrast media, namely sonagraphic contrast agents, are typically composed of gas bubbles (air or perfluor gases) stabilized by a shell of phospholipids, surfactants, albumin, or polymers.
The term “means” as used herein shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112, Paragraph 6. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof, shall include all those described in the summary of the invention, brief description of the drawings, detailed description, abstract, and claims themselves.
“Ultrasound” refers to sound or other vibrations having an ultrasonic frequency, which is commonly a frequency above about 20 thousand cycles per second (20,000 Hz).
It should be understood that every maximum numerical limitation given throughout this disclosure is deemed to include each and every lower numerical limitation as an alternative, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this disclosure is deemed to include each and every higher numerical limitation as an alternative, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this disclosure is deemed to include each and every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and configurations of the disclosure are possible, utilizing alone or in combination, one or more of the features set forth above or described in detail below.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a schematic illustration of an embodiment of an assisted cutting balloon.
FIG. 2 shows a schematic diagram of an embodiment of an ultrasonic generator apparatus.
FIG. 3 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon in place prior to inflation.
FIG. 4 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon in place and inflated.
FIG. 5 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon after deflation and ready for removal.
FIG. 6 shows a schematic illustration of another embodiment of an assisted cutting balloon.
FIG. 7 shows a schematic diagram of an embodiment of a laser generator apparatus.
The accompanying drawings are incorporated into and form a part of the specification to illustrate several examples of the present disclosure. These drawings, together with the description, explain the principles of the disclosure. The drawings simply illustrate preferred and alternative examples of how the disclosure can be made and used and are not to be construed as limiting the disclosure to only the illustrated and described examples. Further features and advantages will become apparent from the following, more detailed, description of the various aspects, embodiments, and configurations of the disclosure, as illustrated by the drawings referenced below.
DETAILED DESCRIPTION
FIG. 1 shows a schematic illustration of an embodiment of an assisted cutting balloon. Referring now to FIG. 1, Assisted Cutting Balloon 10 includes a Dilation Balloon 12, which may be any conventional angioplasty balloon such as commonly used by interventional cardiologists or radiologists, and a Wire Abrasive 14 mounted, attached, affixed, or otherwise bound, in a helical configuration, to the exterior of Dilation Balloon 12. Wire Abrasive 14 may be one wire strand or many wire strands wrapped or braided together. The wire may be composed of any suitable material, with one or more metal and/or plastic fibers being typical. Diamond material or any other suitable abrasives may be used as an abrasive bonded to the wire. Diamond wire impregnated with diamond dust is relatively inexpensive and is readily available in various diameters and lengths. Multiple configurations of Dilation Balloon 12 may be used with different types of cutting wire or string wrap patterns or braids, such as diamond, cross-hatch, woven or unwoven mesh, reverse helical, longitudinal, radial, etc., around the exterior of the Dilation Balloon 12 and with different types of abrasive coated wire or cutting blades or atherotomes in a variety of geometrical shapes bonded or applied to Dilation Balloon 12. Other cutting balloon configurations known to those of skill in the art may be employed as the Dilation Balloon 12. Guide Wire 30 is inserted into the vasculature system of the subject and past Target Coronary Segment 32 (see FIG. 3). Assisted Cutting Balloon 10 is translated over Guide Wire 30 to Target Coronary Segment 32.
FIG. 2 shows a schematic diagram of an embodiment of an ultrasonic generator apparatus. Referring now to FIG. 2, Ultrasonic Apparatus 16 includes a Piezoelectric Converter And Acoustic Horn 18 that operates with a resonant frequency. Piezoelectric Converter And Acoustic Horn 18 is driven by Ultrasonic Generator 20 at an adjustable resonant frequency or set of plural frequencies. The frequencies can be temporally fixed or varied during Assisted Cutting Balloon 12 operation. This ensures that resonance of Piezoelectric Converter And Acoustic Horn 18 is achieved despite minor alterations in the resonant frequency of the system. In addition, Ultrasonic Generator 20 has adjustable input power dial settings.
Flexible Wire Waveguide 22 is connected to Piezoelectric Converter And Acoustic Horn 18 at a Proximal End 24 and fixed tightly into the radiating face of Piezoelectric Converter And Acoustic Horn 18 ensuring a rigid connection between the two. Distal End 26 of Flexible Wire Waveguide 22 is rigidly connected to a Proximal End 28 of Wire Abrasive 14 (see FIG. 1). Other local or remote methods may be used to transmit high, low, or ultrasonic waves to Flexible Wire Waveguide 22 such as.
FIG. 3 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon in place prior to inflation. Referring now to FIG. 3, Assisted Cutting Balloon 10 has been translated over Guide Wire 30 to Target Coronary Segment 32. The interior of Artery 34 is partially occluded with deposits of Plaque 36.
FIG. 4 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon in place and inflated. Referring now to FIG. 4, as Dilation Balloon 12 is inflated, Ultrasonic Apparatus 16 is powered on. Flexible Wire Waveguide 22 causes Wire Abrasive 14 to vibrate. Thus, as Wire Abrasive 14 of Dilation Balloon 12 comes into contact with Plaque 36, Dilation Balloon 12 crushes the softer portions of Plaque 36 and the cutting action of Wire Abrasive 14, which is enhanced due to the vibration imparted via Flexible Wire Waveguide 22, cuts the harder or calcified portions of Plaque 36. The enhanced cutting action reduces the inflation pressure necessary to 5 to 10 atmospheres which reduces the chance for damage to Artery 34.
FIG. 5 shows a partial cross section view of a partially occluded artery with an assisted cutting balloon after deflation and ready for removal. Referring now to FIG. 5, Striations 38 can be seen in crushed Plaque 36 due to the cutting action of Wire Abrasive 14. Assisted Cutting Balloon 10 is now ready for removal over Guide Wire 30.
FIG. 6 shows a schematic illustration of another embodiment of an assisted cutting balloon. Referring now to FIG. 6, Assisted Cutting Balloon 50 includes a Dilation Balloon 52, which may be any conventional angioplasty balloon such as commonly used by interventional cardiologists or radiologists, and a Wire Abrasive 54 mounted over or attached to Dilation Balloon 52. Wire Abrasive 54 may be one wire strand or many wire strands braided together. Diamond material or any other suitable abrasives may be used as an abrasive bonded to the wire. Diamond wire impregnated with diamond dust is relatively inexpensive and is readily available in various diameters and lengths. Multiple configurations of Dilation Balloon 52 may be used with different types of wire wrap patterns or braids, such as diamond or cross-hatch, helical, etc., and with different types of abrasive coated wire or cutting blades in a variety of geometrical shapes bonded or applied to Dilation Balloon 12. Guide Wire 70 is inserted into the subject and Assisted Cutting Balloon 50 is translated over Guide Wire 70 to a target coronary segment, such as Target Coronary Segment 32 shown in FIG. 3.
FIG. 7 shows a schematic diagram of an embodiment of a laser generator apparatus. Referring now to FIG. 7, a laser light source such as Laser Apparatus 56 includes a Laser Generator 58 controlled by a Computer 60. Flexible Cladding 62 shields Laser Fiber 64, which may be a single fiber or multiple fibers. Flexible Cladding 62 runs parallel with Guide Wire 70 and both may be enclosed in a multi-lumen catheter along with Assisted Cutting Balloon 10. Distal End 66 (see FIG. 6) of Flexible Cladding 62 terminates in the middle of Dilation Balloon 52. Laser Fiber 64 extends a short distance from Distal End 66. When Assisted Cutting Balloon 50 has been translated over Guide Wire 70 to a target coronary segment, it will appear like that shown in FIG. 3, where the interior of Artery 34 of Target Coronary Segment 32 is partially occluded with deposits of Plaque 36.
Substituting now Assisted Cutting Balloon 50 for Assisted Cutting Balloon 10 shown in FIG. 4, Dilation Balloon 52 is inflated with Contrast Medium 68. Contrast Medium 68 may be one of many different compounds as found in the ACR Manual of Contrast Media, Version 8, 2012. As Dilation Balloon 52 is inflated, Laser Apparatus 56 is activated, which, in one embodiment, may be an excimer laser that emits 308 nm laser light at very short pulse durations (120-140 nsec.) from Laser Fiber 64. Contrast Medium 68 exhibits a very high absorption to this laser light. Due to the high absorption and short pulse width of the laser light, shockwaves are created that propagate through the volume of Contrast Medium 68 within Dilation Balloon 52. The shockwaves assist in the cracking, crushing, or modification of Plaque 36 by Dilation Balloon 52. The shockwave also causes Wire Abrasive 54 to vibrate. Thus, as Wire Abrasive 54 of Dilation Balloon 52 comes into contact with Plaque 36, Dilation Balloon 52, assisted by the shockwaves as well as by inflation, crushes the softer portions of Plaque 36, and the cutting action of Wire Abrasive 54, which is enhanced due to the vibration imparted via the shockwaves traveling through the volume of Contrast Medium 68, cuts the harder or calcified portions of Plaque 36. Dilation Balloon 52 is then deflated and ready for removal as shown in FIG. 5. Striations 38 will also be seen in crushed Plaque 36 due to the cutting action of Wire Abrasive 54.
A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.
For example in one alternative embodiment, cutting blades may be used instead of abrasive wire.
In another example, other Assisted Cutting Balloon 12 vibrating mechanisms may be employed. Examples include mechanically induced vibration (e.g., by a micro-vibration motor), electrically induced vibration, electromechanically induced vibration (e.g., by a micro-electromechanical system), magnetically induced vibration, electromagnetically induced vibration, and vibration induced by other sound or acoustical frequencies.
In another example, the vibration source may be positioned either remotely, as discussed and shown above, or locally, such as in the proximity of the balloon itself, or a combination thereof. Micro-components can be positioned in or near the balloon in the catheter itself whereby attenuation of vibrations remotely generated is reduced. For example, a micro-vibration motor, micro-electromechanical system, or micro-piezoelectric transducer can be positioned in the catheter in proximity to the balloon.
The present disclosure, in various aspects, embodiments, and configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the various aspects, embodiments, and configurations, after understanding the present disclosure. The present disclosure, in various aspects, embodiments, and configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. For example, in the foregoing Detailed Description, various features of the disclosure are grouped together in one or more, aspects, embodiments, and configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and configurations of the disclosure may be combined in alternate aspects, embodiments, and configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspects, embodiments, and configurations. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the description of the disclosure has included descriptions of one or more aspects, embodiments, or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.

Claims (14)

What is claimed is:
1. A method for performing balloon angioplasty, the method comprising the steps of:
(a) inserting an assisted cutting balloon into a target coronary segment partially occluded with plaque, the assisted cutting balloon having a dilation balloon with one or more cutting devices operably positioned on an exterior of the dilation balloon and a laser fiber within the dilation balloon;
(b) inflating the dilation balloon with a liquid medium; and
(c) vibrating the one or more cutting devices by emitting laser light from the laser fiber, thereby creating shockwaves that propagate through the liquid medium and causing the one or more cutting devices to vibrate, wherein the laser light is 308 nm laser light pulsed at durations ranging from 120-140 nsec; and
whereby the inflating and/or inflated dilation balloon crushes softer portions of the plaque and the vibrating one or more cutting devices cuts relative harder or calcified portions of the plaque.
2. The method according to claim 1, wherein the one or more cutting devices comprise one or more wire abrasives bound to the exterior of the dilation balloon and wherein step (a) further comprises the steps of:
inserting a guide wire into a vasculature system and past the target coronary segment; and
translating the assisted cutting balloon over the guide wire to the target coronary segment.
3. The method according to claim 2, wherein the liquid medium includes a contrast medium.
4. The method according to claim 3, further comprising the steps of:
translating the laser fiber along with the assisted cutting balloon over the guide wire to the target coronary segment, the distal end of the laser fiber terminating in the middle of the dilation balloon.
5. The method according to claim 4, wherein the translating step further comprises the step of:
enclosing the assisted cutting balloon, the guide wire, and the laser fiber into a multi-lumen catheter.
6. The method according to claim 4, wherein the
the laser light is emitted from the distal end of the laser fiber, and wherein the laser light is generated from an excimer laser.
7. The method according to claim 4, further comprising the step of:
assisting the crushing of the softer portions of the plaque by the shockwaves propagating within the dilation balloon.
8. The method according to claim 1, wherein step (b) further comprises the step of:
inflating the dilation balloon to a pressure ranging between 5 to 10 atmospheres.
9. An assisted cutting balloon for performing balloon angioplasty comprising:
a dilation balloon;
one or more cutting devices operably positioned on an exterior of the dilation balloon;
a laser light source terminating at a distal end in the interior of the dilation balloon, wherein laser light generated by the laser light source is 308 nm laser light pulsed at durations ranging from 120-140 nsec; and
a contrast medium for inflating the dilation balloon;
whereby, as and/or after the dilation balloon is inflated with the contrast medium, the laser light source transmits pulsed laser light into the contrast medium creating shockwaves that propagate through the contrast medium causing the one or more cutting devices to vibrate.
10. The assisted cutting balloon for performing balloon angioplasty according to claim 9, wherein the one or more cutting devices comprise a wire abrasive bound to the exterior of the dilation balloon and further comprising:
a guide wire for translating the assisted cutting balloon and the laser light source to a target coronary segment partially occluded with plaque, wherein the guide wire is inserted into a vasculature system and past the target coronary segment.
11. The assisted cutting balloon for performing balloon angioplasty according to claim 9, wherein the laser light source further comprises:
a laser fiber translated along with the assisted cutting balloon to the target coronary segment;
a laser generator connected to a proximal end of the laser fiber and the distal end of the laser fiber terminates in the middle of the dilation balloon; and
a laser light emitted from the distal end of the laser fiber at very short pulse durations creating shockwaves that propagate through the contrast medium as the dilation balloon is inflating, causing the one or more cutting devices to vibrate, wherein, as the dilation balloon is inflated, the one or more cutting devices vibrate and cut harder or calcified portions of the plaque.
12. The assisted cutting balloon for performing balloon angioplasty according to claim 11, further comprising:
a multi-lumen catheter for enclosing the assisted cutting balloon, the guide wire, and the laser fiber.
13. The assisted cutting balloon for performing balloon angioplasty according to claim 9, wherein a proximal end of the laser light source is coupled to an excimer laser generator.
14. The assisted cutting balloon for performing balloon angioplasty according to claim 10, wherein the wire abrasive is diamond dust, and the wire wrap pattern of the wire abrasive bound to the dilation balloon is one or more of diamond, cross-hatch, mesh, longitudinal, radial, and helical.
US13/800,214 2013-03-13 2013-03-13 Assisted cutting balloon Active 2033-08-16 US9320530B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/800,214 US9320530B2 (en) 2013-03-13 2013-03-13 Assisted cutting balloon
EP20183866.1A EP3750490B1 (en) 2013-03-13 2014-02-28 Assisted cutting balloon and catheter comprising the balloon
PCT/US2014/019268 WO2014163955A1 (en) 2013-03-13 2014-02-28 Assisted cutting balloon
EP14778867.3A EP2967609B1 (en) 2013-03-13 2014-02-28 Assisted cutting balloon
US14/984,050 US10201387B2 (en) 2013-03-13 2015-12-30 Laser-induced fluid filled balloon catheter
US14/984,308 US20160184022A1 (en) 2013-03-13 2015-12-30 Laser-induced pressure wave emitting catheter sheath
US15/090,736 US10786661B2 (en) 2013-03-13 2016-04-05 Apparatus and method for balloon angioplasty
US15/476,183 US10842567B2 (en) 2013-03-13 2017-03-31 Laser-induced fluid filled balloon catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/800,214 US9320530B2 (en) 2013-03-13 2013-03-13 Assisted cutting balloon

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/984,050 Continuation-In-Part US10201387B2 (en) 2013-03-13 2015-12-30 Laser-induced fluid filled balloon catheter
US15/090,736 Continuation US10786661B2 (en) 2013-03-13 2016-04-05 Apparatus and method for balloon angioplasty

Publications (2)

Publication Number Publication Date
US20140277002A1 US20140277002A1 (en) 2014-09-18
US9320530B2 true US9320530B2 (en) 2016-04-26

Family

ID=51531038

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/800,214 Active 2033-08-16 US9320530B2 (en) 2013-03-13 2013-03-13 Assisted cutting balloon
US15/090,736 Active 2035-04-17 US10786661B2 (en) 2013-03-13 2016-04-05 Apparatus and method for balloon angioplasty

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/090,736 Active 2035-04-17 US10786661B2 (en) 2013-03-13 2016-04-05 Apparatus and method for balloon angioplasty

Country Status (3)

Country Link
US (2) US9320530B2 (en)
EP (2) EP2967609B1 (en)
WO (1) WO2014163955A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10166374B2 (en) 2015-09-17 2019-01-01 Cagent Vascular, Llc Wedge dissectors for a medical balloon
US10201387B2 (en) 2013-03-13 2019-02-12 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US10471238B2 (en) 2014-11-03 2019-11-12 Cagent Vascular, Llc Serration balloon
US10772683B2 (en) 2014-05-18 2020-09-15 Eximo Medical Ltd. System for tissue ablation using pulsed laser
US10786661B2 (en) 2013-03-13 2020-09-29 The Spectranetics Corporation Apparatus and method for balloon angioplasty
US10842567B2 (en) 2013-03-13 2020-11-24 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US10850078B2 (en) 2014-12-30 2020-12-01 The Spectranetics Corporation Electrically-induced fluid filled balloon catheter
US10869689B2 (en) 2017-05-03 2020-12-22 Medtronic Vascular, Inc. Tissue-removing catheter
US10898213B2 (en) 2014-12-30 2021-01-26 The Spectranetics Corporation Electrically-induced pressure wave emitting catheter sheath
US10905863B2 (en) 2016-11-16 2021-02-02 Cagent Vascular, Llc Systems and methods of depositing drug into tissue through serrations
US11058492B2 (en) 2014-12-30 2021-07-13 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
US11103262B2 (en) 2018-03-14 2021-08-31 Boston Scientific Scimed, Inc. Balloon-based intravascular ultrasound system for treatment of vascular lesions
US11166742B2 (en) 2008-03-21 2021-11-09 Cagent Vascular, Inc. Method of enhancing drug uptake from a drug-eluting balloon
US11219750B2 (en) 2008-03-21 2022-01-11 Cagent Vascular, Inc. System and method for plaque serration
US11246659B2 (en) 2014-08-25 2022-02-15 The Spectranetics Corporation Liquid laser-induced pressure wave emitting catheter sheath
US11357534B2 (en) 2018-11-16 2022-06-14 Medtronic Vascular, Inc. Catheter
US11369779B2 (en) 2018-07-25 2022-06-28 Cagent Vascular, Inc. Medical balloon catheters with enhanced pushability
US11517713B2 (en) 2019-06-26 2022-12-06 Boston Scientific Scimed, Inc. Light guide protection structures for plasma system to disrupt vascular lesions
US11576724B2 (en) 2011-02-24 2023-02-14 Eximo Medical Ltd. Hybrid catheter for vascular intervention
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US11622779B2 (en) 2018-10-24 2023-04-11 Boston Scientific Scimed, Inc. Photoacoustic pressure wave generation for intravascular calcification disruption
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
US11684420B2 (en) 2016-05-05 2023-06-27 Eximo Medical Ltd. Apparatus and methods for resecting and/or ablating an undesired tissue
US11690645B2 (en) 2017-05-03 2023-07-04 Medtronic Vascular, Inc. Tissue-removing catheter
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
US11738181B2 (en) 2014-06-04 2023-08-29 Cagent Vascular, Inc. Cage for medical balloon
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US11819236B2 (en) 2019-05-17 2023-11-21 Medtronic Vascular, Inc. Tissue-removing catheter
US11819229B2 (en) 2019-06-19 2023-11-21 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device
US11903642B2 (en) 2020-03-18 2024-02-20 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486025B2 (en) 2006-05-11 2013-07-16 Ronald J. Solar Systems and methods for treating a vessel using focused force
US10238456B2 (en) 2010-10-14 2019-03-26 Corindus, Inc. Occlusion traversal robotic catheter system
US11559325B2 (en) 2011-09-13 2023-01-24 Venturemed Group, Inc. Intravascular catheter having an expandable incising portion and grating tool
EP2755714B1 (en) 2011-09-13 2020-03-11 Pigott, John, P. Intravascular catheter having an expandable incising portion
US11413062B2 (en) 2011-09-13 2022-08-16 Venturemed Group, Inc. Methods for preparing a zone of attention within a vascular system for subsequent angioplasty with an intravascular catheter device having an expandable incising portion and an integrated embolic protection device
US11357533B2 (en) 2011-09-13 2022-06-14 Venturemed Group, Inc. Intravascular catheter having an expandable incising portion and abrasive surfaces
US10463387B2 (en) 2011-09-13 2019-11-05 John P. Pigott Intravascular catheter having an expandable incising portion for incising atherosclerotic material located in a blood vessel
US10610255B2 (en) 2011-09-13 2020-04-07 John P. Pigott Intravascular catheter having an expandable incising portion and medication delivery system
RU2679304C2 (en) 2013-04-24 2019-02-06 Лома Виста Медикал, Инк. Inflatable medical balloons with continuous fiber wind
CA2909548C (en) * 2013-05-02 2022-05-31 Veryan Medical Limited Expandable balloon
US11202892B2 (en) 2013-07-15 2021-12-21 John P. Pigott Balloon catheter having a retractable sheath
US10828471B2 (en) 2013-07-15 2020-11-10 John P. Pigott Balloon catheter having a retractable sheath
US10315014B2 (en) 2013-07-15 2019-06-11 John P. Pigott Balloon catheter having a retractable sheath and locking mechanism with balloon recapture element
US10130798B2 (en) 2013-07-15 2018-11-20 John P. Pigott Balloon catheter having a retractable sheath and locking mechanism
EP2870936B1 (en) * 2013-11-07 2016-10-26 Cook Medical Technologies LLC Balloon catheter with lithotripsy amplification system
US10335189B2 (en) 2014-12-03 2019-07-02 PAVmed Inc. Systems and methods for percutaneous division of fibrous structures
US11033712B2 (en) 2015-01-13 2021-06-15 Venturemed Group, Inc. Intravascular catheter having an expandable portion
US10603069B2 (en) * 2015-01-13 2020-03-31 John P. Pigott Intravascular catheter balloon device having a tool for atherectomy or an incising portion for atheromatous plaque scoring
US10327846B1 (en) 2015-08-25 2019-06-25 The Spectranetics Corporation Methods for treating vascular stenoses including laser atherectomy and drug delivery via drug-coated balloons
US10561438B2 (en) 2015-10-30 2020-02-18 C.R. Bard, Inc. Scoring balloon with translating scoring wires
JP6674700B2 (en) * 2016-05-09 2020-04-01 朝日インテック株式会社 Medical devices
US10245112B2 (en) 2016-06-27 2019-04-02 Corindus, Inc. Interlocking system and method for joysticks in a catheter procedure system
WO2018002887A1 (en) * 2016-06-30 2018-01-04 Les Solutions Medicales Soundbite Inc. Method and system for treating lesions
CN110167466B (en) * 2016-11-04 2023-07-04 莱斯桑柏特医疗解决方案股份有限公司 Device for delivering mechanical waves through balloon catheter
CA3047273C (en) * 2016-12-16 2020-08-25 C.R. Bard, Inc. Balloon catheters and methods thereof
US10531890B2 (en) * 2016-12-30 2020-01-14 C.R. Bard, Inc. Scoring balloon with translating scoring wires
EP3762081A4 (en) * 2018-03-09 2021-12-08 C.R. Bard, Inc. Inflatable medical balloon with continuous fiber
GB2572190A (en) * 2018-03-22 2019-09-25 Imperial College Sci Tech & Medicine Angioplasty of calcified arteries
WO2021011571A1 (en) 2019-07-15 2021-01-21 Corindus, Inc. Systems and methods for a control station for robotic interventional procedures using a plurality of elongated medical devices
CN110801268B (en) * 2019-11-11 2021-05-25 广州华科盈医疗科技有限公司 Cancer embolus taking device
CN111699016B (en) * 2020-04-30 2021-09-03 广东博迈医疗科技股份有限公司 Cutting device and cutting balloon
EP3957349A1 (en) * 2020-08-19 2022-02-23 Biotronik AG Scoring balloon catheter with intrinsic fibre optic pressure and temperature measurement
CN112022365B (en) * 2020-09-04 2022-09-27 北京中科盛康科技有限公司 Balloon dilator with reasonable structure
US20220161006A1 (en) * 2020-11-25 2022-05-26 Jihad Ali Mustapha Peripheral artery balloon, a hypo-tube for preparing a peripheral artery balloon and methods of use thereof
US11484327B2 (en) 2021-02-26 2022-11-01 Fastwave Medical Inc. Intravascular lithotripsy
US11911056B2 (en) 2021-02-26 2024-02-27 Fastwave Medical Inc. Intravascular lithotripsy
CN113180822B (en) * 2021-03-16 2022-02-08 哈尔滨医科大学 Catheter integrating laser ablation and vascular shock wave forming
CN113288420B (en) * 2021-05-24 2022-08-16 哈尔滨医科大学 Sacculus system and vascular calcification treatment device
WO2023230302A1 (en) * 2022-05-26 2023-11-30 Lie Kevin T Lumen ablation system and method of treating varicose veins with same
US11918285B2 (en) 2022-06-01 2024-03-05 Fast Wave Medical Inc. Intravascular lithotripsy
WO2024015298A1 (en) * 2022-07-12 2024-01-18 Boston Scientific Scimed, Inc. Cutting and scoring lithotripsy balloon catheter

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1240182B (en) 1960-04-14 1967-05-11 Philips Nv Gas-filled electric light bulb
DE1437578A1 (en) 1963-10-31 1968-10-24 Western Electric Co Call arrangement for time division multiplex telephone systems
DE2517019A1 (en) 1975-04-17 1976-10-28 Friedrich Dipl Phys Bodem Laser beam input into fibre optic cable - uses heat dissipating and loss reducing immersion fluid
EP0189329A3 (en) 1985-01-25 1987-06-03 Robert E. Fischell A tunneling catheter system for transluminal arterial angioplasty
US4770653A (en) 1987-06-25 1988-09-13 Medilase, Inc. Laser angioplasty
US4785806A (en) 1987-01-08 1988-11-22 Yale University Laser ablation process and apparatus
US4793359A (en) 1987-04-24 1988-12-27 Gv Medical, Inc. Centering balloon structure for transluminal angioplasty catheter
US4832023A (en) 1987-06-03 1989-05-23 Mcm Laboratories, Inc. Method and apparatus for reducing blockage in body channels
JPH01148278A (en) 1987-12-04 1989-06-09 Olympus Optical Co Ltd Laser irradiator
US4862886A (en) 1985-05-08 1989-09-05 Summit Technology Inc. Laser angioplasty
US4878492A (en) 1987-10-08 1989-11-07 C. R. Bard, Inc. Laser balloon catheter
EP0355200A1 (en) 1988-08-12 1990-02-28 Advanced Cardiovascular Systems, Inc. Balloon dilatation catheter with laser cutting capability
US4966596A (en) 1988-08-08 1990-10-30 The Beth Israel Hospital Association Laser atherectomy catheter
US4993412A (en) 1989-08-02 1991-02-19 Eclipse Surgical Technologies, Inc. Method and apparatus for removal of obstructive substance from body channels
US5010886A (en) 1989-08-18 1991-04-30 Intertherapy, Inc. Medical probe assembly having combined ultrasonic imaging and laser ablation capabilities
US5026366A (en) 1984-03-01 1991-06-25 Cardiovascular Laser Systems, Inc. Angioplasty catheter and method of use thereof
US5026367A (en) 1988-03-18 1991-06-25 Cardiovascular Laser Systems, Inc. Laser angioplasty catheter and a method for use thereof
US5029588A (en) 1989-06-15 1991-07-09 Cardiovascular Imaging Systems, Inc. Laser catheter with imaging capability
US5053033A (en) 1990-10-10 1991-10-01 Boston Advanced Technologies, Inc. Inhibition of restenosis by ultraviolet radiation
US5176674A (en) 1990-03-05 1993-01-05 Schneider (Europe) Ag Angioplasty light guide catheter for the removal of stenoses using laser light energy
US5192278A (en) 1985-03-22 1993-03-09 Massachusetts Institute Of Technology Multi-fiber plug for a laser catheter
US5281212A (en) 1992-02-18 1994-01-25 Angeion Corporation Laser catheter with monitor and dissolvable tip
US5334207A (en) 1993-03-25 1994-08-02 Allen E. Coles Laser angioplasty device with magnetic direction control
US5350375A (en) 1993-03-15 1994-09-27 Yale University Methods for laser induced fluorescence intensity feedback control during laser angioplasty
US5423805A (en) 1992-02-05 1995-06-13 Angeion Corporation Laser catheter with moveable integral fixation wires
US5468239A (en) 1992-04-13 1995-11-21 Sorenson Laboratories, Inc. Apparatus and methods for using a circumferential light-emitting surgical laser probe
US5470330A (en) 1984-12-07 1995-11-28 Advanced Interventional Systems, Inc. Guidance and delivery system for high-energy pulsed laser light
US5514128A (en) 1992-08-18 1996-05-07 Spectranetics Corporation Fiber optic guide wire and support catheter therefor
US5722972A (en) 1993-08-12 1998-03-03 Power; John A. Method and apparatus for ablation of atherosclerotic blockage
US5722979A (en) * 1997-04-08 1998-03-03 Schneider (Usa) Inc. Pressure assisted ultrasonic balloon catheter and method of using same
US5733301A (en) 1996-01-11 1998-03-31 Schneider (Usa) Inc. Laser ablation of angioplasty catheters and balloons
US5741246A (en) 1996-04-15 1998-04-21 Prescott; Marvin A. Method and apparatus for laser balloon angioplasty treatment of medical conditions
US5769843A (en) 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US5876397A (en) 1984-01-24 1999-03-02 Boston Scientific Corporation Reduction of an arteriosclerotic lesion by selective absorption of electromagnetic energy in a component thereof
US5876373A (en) 1997-04-04 1999-03-02 Eclipse Surgical Technologies, Inc. Steerable catheter
US5944687A (en) 1996-04-24 1999-08-31 The Regents Of The University Of California Opto-acoustic transducer for medical applications
US6022309A (en) 1996-04-24 2000-02-08 The Regents Of The University Of California Opto-acoustic thrombolysis
US6024738A (en) 1988-07-08 2000-02-15 Surgical Laser Technologies, Inc. Laser catheter apparatus for use in arteries or other narrow paths within living organisms
WO2000012168A1 (en) 1998-09-01 2000-03-09 Cardeon Corporation System and methods for catheter procedures with circulatory support in high risk patients
US6106515A (en) 1998-08-13 2000-08-22 Intraluminal Therapeutics, Inc. Expandable laser catheter
US6167315A (en) 1999-04-05 2000-12-26 Spectranetics Corporation Lead locking device and method
US6283958B1 (en) 1996-04-04 2001-09-04 Somatex Medizintechnische Instrumente Gmbh Laser applicator set
US6551302B1 (en) 1997-09-24 2003-04-22 Michael J. Rosinko Steerable catheter with tip alignment and surface contact detector
US6561998B1 (en) 1998-04-07 2003-05-13 Transvascular, Inc. Transluminal devices, systems and methods for enlarging interstitial penetration tracts
US6592612B1 (en) 2000-05-04 2003-07-15 Cardeon Corporation Method and apparatus for providing heat exchange within a catheter body
US20050216044A1 (en) 2004-03-25 2005-09-29 Hong Mun K Total occlusion recanalization facilitating device
US20050251116A1 (en) 2004-05-05 2005-11-10 Minnow Medical, Llc Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter
EP1200002B1 (en) 1999-07-14 2006-04-12 Cardiofocus, Inc. Photoablation system
US20060189930A1 (en) 2000-07-21 2006-08-24 Lary Banning G Methods and Apparatus for Sclerosing the Wall of a Varicose Vein
US20060190022A1 (en) * 2004-07-14 2006-08-24 By-Pass, Inc. Material delivery system
US7125404B2 (en) 1990-08-06 2006-10-24 Levatter Jeffrey I Fiber optic laser catheter and method of using it
US20060259005A1 (en) 2005-05-11 2006-11-16 Angioscore, Inc. Methods and systems for delivering substances into luminal walls
US7144248B2 (en) 2001-10-18 2006-12-05 Irwin Dean S Device for oral UV photo-therapy
US7226470B2 (en) 2001-08-10 2007-06-05 Rhinolight Corporation Phototherapeutical apparatus and method for the treatment and prevention of diseases of body cavities
US7238178B2 (en) 2004-02-20 2007-07-03 Siemens Aktiengesellschaft Device for performing laser angioplasty with OCT monitoring
US20070198047A1 (en) 2005-12-20 2007-08-23 Medical Components, Inc. Cutting balloon catheter assembly
US20080154296A1 (en) 2006-12-22 2008-06-26 The Spectranetics Corporation Tissue Separating Systems and Methods
US20080154293A1 (en) 2006-12-22 2008-06-26 The Spectranetics Corporation Retractable Separating Systems and Methods
US20090112239A1 (en) 2007-10-31 2009-04-30 Specialized Vascular Technologies, Inc. Sticky dilatation balloon and methods of using
US7572254B2 (en) 2004-09-17 2009-08-11 The Spectranetics Corporation Apparatus and methods for directional delivery of laser energy
US20090270850A1 (en) 2007-06-20 2009-10-29 Tea Time Partners, L.P., Organized In Texas Devices and methods for the ablation of tissue in the lateral direction
US20090270846A1 (en) 2005-10-25 2009-10-29 Teiji Nakayama Catheter, examination system and thrombus removing device
US20100016862A1 (en) 2008-07-16 2010-01-21 Daniel Hawkins Method of providing embolic protection and shockwave angioplasty therapy to a vessel
US7666161B2 (en) 2004-04-27 2010-02-23 The Spectranetics Corporation Thrombectomy and soft debris removal device
US20100152717A1 (en) 2008-12-17 2010-06-17 Spectranetics Eccentric balloon laser catheter
US7754047B2 (en) 2004-04-08 2010-07-13 Boston Scientific Scimed, Inc. Cutting balloon catheter and method for blade mounting
US20100222786A1 (en) 2003-02-21 2010-09-02 Kassab Ghassan S Devices, systems, and methods for removing targeted lesions from vessels
US7818053B2 (en) 2003-02-21 2010-10-19 Dtherapeutics, Llc Devices, systems and methods for plaque type determination
KR100996733B1 (en) 2010-01-12 2010-11-25 (주)휴엔텍 High powered laser irradiation device
US20110152683A1 (en) 2011-03-01 2011-06-23 Gerrans Lawrence J Abrading Balloon Catheter for Extravasated Drug Delivery
US8162964B2 (en) * 2008-06-05 2012-04-24 Cardiovascular Systems, Inc. Split flexible tube biasing and directional atherectomy device and method
US8167810B2 (en) 2005-12-12 2012-05-01 Siemens Aktiengesellschaft Catheter device for treating a blockage of a vessel
US20120116289A1 (en) 2010-11-09 2012-05-10 Daniel Hawkins Shockwave valvuloplasty device with guidewire and debris basket
US20120203255A1 (en) 2011-02-04 2012-08-09 Daniel Hawkins High pressure balloon shockwave catheter and method
US20120221013A1 (en) 2008-06-13 2012-08-30 Daniel Hawkins Non-cavitation shockwave balloon catheter system
US20130030431A1 (en) 2008-06-13 2013-01-31 Adams John M Shock wave balloon catheter system with off center shock wave generator
US20130046293A1 (en) 2010-03-09 2013-02-21 Keio University System for preventing blood charring at laser beam emitting site of laser catheter
US8465452B2 (en) 2003-02-21 2013-06-18 3Dt Holdings, Llc Devices, systems, and methods for removing stenotic lesions from vessels
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
US8574247B2 (en) 2011-11-08 2013-11-05 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
CN103462688A (en) 2013-08-29 2013-12-25 珠海市司迈科技有限公司 Laser fiber sheath and manipulator for using same
US20140005576A1 (en) 2012-06-27 2014-01-02 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
US20140046353A1 (en) 2012-08-08 2014-02-13 Shockwave Medical, Inc. Shockwave valvuloplasty with multiple balloons
US20140046229A1 (en) 2012-08-10 2014-02-13 Shockwave Medical, Inc. Shockwave nerve therapy system and method
US20140052114A1 (en) 2011-02-24 2014-02-20 Eximo Medical Ltd. Hybrid catheter for endoluminal intervention
US20140052145A1 (en) 2012-08-17 2014-02-20 Shockwave Medical, Inc. Shock wave catheter system with arc preconditioning
US20140074113A1 (en) 2012-09-13 2014-03-13 Shockwave Medical, Inc. Shockwave catheter system with energy control
US8684970B1 (en) 2011-04-30 2014-04-01 Medical Shockwaves Inc. Stereotactic shockwave surgery and drug delivery apparatus
US8747416B2 (en) 2012-08-06 2014-06-10 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
US20140163592A1 (en) 2012-08-06 2014-06-12 Shockwave Medical, Inc. Shockwave catheter
US20140288570A1 (en) 2012-09-13 2014-09-25 Shockwave Medical, Inc. Shockwave catheter system with energy control
US20150039002A1 (en) 2013-07-31 2015-02-05 Shockwave Medical, Inc. Angioplasty balloon
US8956374B2 (en) 2008-06-13 2015-02-17 Shockwave Medical, Inc. Shockwave balloon catheter system
US9044618B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US9180280B2 (en) 2008-11-04 2015-11-10 Shockwave Medical, Inc. Drug delivery shockwave balloon catheter system
US20150320432A1 (en) 2014-05-08 2015-11-12 Shockwave Medical, Inc. Shock wave guide wire

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041108A (en) 1981-12-11 1991-08-20 Pillco Limited Partnership Method for laser treatment of body lumens
CA1266412A (en) 1984-10-24 1990-03-06 J. Richard Spears Method and apparatus for angioplasty
US6066130A (en) 1988-10-24 2000-05-23 The General Hospital Corporation Delivering laser energy
AU4809590A (en) 1988-12-01 1990-06-26 Medilase, Incorporated Single axis/angled beam laser catheter
US5749914A (en) 1989-01-06 1998-05-12 Advanced Coronary Intervention Catheter for obstructed stent
US5055109A (en) 1989-10-05 1991-10-08 Advanced Cardiovascular Systems, Inc. Torque transmitting assembly for intravascular devices
AU7072891A (en) 1990-01-09 1991-08-05 Candela Laser Corporation Method and apparatus for fragmentation of hard substances
US5354324A (en) 1990-10-18 1994-10-11 The General Hospital Corporation Laser induced platelet inhibition
US5304171A (en) 1990-10-18 1994-04-19 Gregory Kenton W Catheter devices and methods for delivering
US5217483A (en) * 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US5383199A (en) * 1992-07-02 1995-01-17 Advanced Interventional Systems, Inc. Apparatus and method for optically controlling the output energy of a pulsed laser source
DE4240182C2 (en) 1992-11-30 1994-11-17 Technolas Laser Technik Gmbh Device for the controlled removal of biological tissue
US5395361A (en) 1994-06-16 1995-03-07 Pillco Limited Partnership Expandable fiberoptic catheter and method of intraluminal laser transmission
US5573531A (en) 1994-06-20 1996-11-12 Gregory; Kenton W. Fluid core laser angioscope
DE4437578A1 (en) 1994-10-20 1996-05-02 Medolas Ges Fuer Medizintechni Device for removing tissue material in intracorporeal hollow channels with a laser catheter
WO1996029943A1 (en) 1995-03-28 1996-10-03 Eli Lilly And Company Photodynamic therapy system and method
US5709653A (en) 1996-07-25 1998-01-20 Cordis Corporation Photodynamic therapy balloon catheter with microporous membrane
US6083232A (en) * 1996-09-27 2000-07-04 Advanced Cardivascular Systems, Inc. Vibrating stent for opening calcified lesions
US6210404B1 (en) 1998-10-28 2001-04-03 John H. Shadduck Microjoule electrical discharge catheter for thrombolysis in stroke patients
US6547779B2 (en) 1998-07-22 2003-04-15 Endovasix, Inc. Flexible flow apparatus and method for the disruption of occlusions
US6123718A (en) 1998-11-02 2000-09-26 Polymerex Medical Corp. Balloon catheter
US7166098B1 (en) 1999-12-30 2007-01-23 Advanced Cardiovascular Systems, Inc. Medical assembly with transducer for local delivery of a therapeutic substance and method of using same
US6660001B2 (en) 2000-01-21 2003-12-09 Providence Health System-Oregon Myocardial revascularization-optical reflectance catheter and method
US6752800B1 (en) 2000-02-18 2004-06-22 Intraluminal Therapeutics Inc. Catheter handle for controlling the advancement of a guide wire
US6648874B2 (en) 2000-02-28 2003-11-18 Scimed Life Systems, Inc. Guide catheter with lubricious inner liner
EP1458301A1 (en) 2001-12-28 2004-09-22 The Spectranetics Corporation Method for treatment of vascular occlusions with inhibition of platelet aggregation
US7153315B2 (en) * 2002-06-11 2006-12-26 Boston Scientific Scimed, Inc. Catheter balloon with ultrasonic microscalpel blades
US20130197555A1 (en) 2002-07-01 2013-08-01 Recor Medical, Inc. Intraluminal devices and methods for denervation
US7494497B2 (en) * 2003-01-02 2009-02-24 Boston Scientific Scimed, Inc. Medical devices
JP2004215862A (en) 2003-01-15 2004-08-05 Tohoku Techno Arch Co Ltd Shock wave producing device
US7686824B2 (en) * 2003-01-21 2010-03-30 Angioscore, Inc. Apparatus and methods for treating hardened vascular lesions
US8080026B2 (en) * 2003-01-21 2011-12-20 Angioscore, Inc. Apparatus and methods for treating hardened vascular lesions
US7566319B2 (en) * 2004-04-21 2009-07-28 Boston Scientific Scimed, Inc. Traction balloon
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US7306585B2 (en) 2004-09-30 2007-12-11 Engineering Resources Group, Inc. Guide catheter
US20070078500A1 (en) 2005-09-30 2007-04-05 Cornova, Inc. Systems and methods for analysis and treatment of a body lumen
US20080249515A1 (en) 2006-01-27 2008-10-09 The Spectranetics Corporation Interventional Devices and Methods For Laser Ablation
US20080103575A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical elongated member including balloon fixation element
WO2008080121A1 (en) 2006-12-22 2008-07-03 Cornova, Inc. Fluid media for bio-sensitive applications
US8104483B2 (en) 2006-12-26 2012-01-31 The Spectranetics Corporation Multi-port light delivery catheter and methods for the use thereof
EP2150194B1 (en) 2007-04-27 2012-09-12 Tyco Healthcare Group LP System for treating hollow anatomical structures
JP4635233B2 (en) 2007-09-06 2011-02-23 株式会社ハイレックスコーポレーション Shock wave ablation system
US9848952B2 (en) 2007-10-24 2017-12-26 The Spectranetics Corporation Liquid light guide catheter having biocompatible liquid light guide medium
US9408665B2 (en) 2008-12-12 2016-08-09 The Spectranetics Corporation Offset catheter
EP2451422B1 (en) 2009-07-08 2016-10-12 Sanuwave, Inc. Usage of extracorporeal and intracorporeal pressure shock waves in medicine
US9743980B2 (en) 2010-02-24 2017-08-29 Safepass Vascular Ltd Method and system for assisting a wire guide to cross occluded ducts
US8790386B2 (en) 2010-05-14 2014-07-29 Medtronic Vascular, Inc. Catheter handle and methods of operating
JP5948326B2 (en) * 2010-07-21 2016-07-06 ノバルティス アーゲー Salts and solvates of tetrahydroisoquinoline derivatives
US20120303011A1 (en) 2010-11-27 2012-11-29 Cook Medical Technologies Llc Catheters and Methods for Identification and Treatment of Bodily Passages
US8864762B2 (en) * 2011-05-13 2014-10-21 Sanovas, Inc. Balloon catheter mesh
WO2013056125A2 (en) 2011-10-14 2013-04-18 RA Medical Systems Small flexible liquid core catheter for laser ablation in body lumens and methods for use
WO2013169807A1 (en) 2012-05-07 2013-11-14 Djt, Llc. Non-cavitation shockwave balloon catheter system
US9320530B2 (en) 2013-03-13 2016-04-26 The Spectranetics Corporation Assisted cutting balloon
US10201387B2 (en) 2013-03-13 2019-02-12 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US10383691B2 (en) 2013-03-13 2019-08-20 The Spectranetics Corporation Last catheter with helical internal lumen
US10842567B2 (en) 2013-03-13 2020-11-24 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US20160184022A1 (en) 2013-03-13 2016-06-30 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
US10729498B2 (en) 2013-09-03 2020-08-04 The Spectranetics Corporation Laser assisted thrombolysis
US9962527B2 (en) 2013-10-16 2018-05-08 Ra Medical Systems, Inc. Methods and devices for treatment of stenosis of arteriovenous fistula shunts
US11246659B2 (en) 2014-08-25 2022-02-15 The Spectranetics Corporation Liquid laser-induced pressure wave emitting catheter sheath
US10850078B2 (en) 2014-12-30 2020-12-01 The Spectranetics Corporation Electrically-induced fluid filled balloon catheter
US11058492B2 (en) 2014-12-30 2021-07-13 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath

Patent Citations (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1240182B (en) 1960-04-14 1967-05-11 Philips Nv Gas-filled electric light bulb
DE1437578A1 (en) 1963-10-31 1968-10-24 Western Electric Co Call arrangement for time division multiplex telephone systems
DE2517019A1 (en) 1975-04-17 1976-10-28 Friedrich Dipl Phys Bodem Laser beam input into fibre optic cable - uses heat dissipating and loss reducing immersion fluid
US5876397A (en) 1984-01-24 1999-03-02 Boston Scientific Corporation Reduction of an arteriosclerotic lesion by selective absorption of electromagnetic energy in a component thereof
US5026366A (en) 1984-03-01 1991-06-25 Cardiovascular Laser Systems, Inc. Angioplasty catheter and method of use thereof
US5470330A (en) 1984-12-07 1995-11-28 Advanced Interventional Systems, Inc. Guidance and delivery system for high-energy pulsed laser light
EP0189329A3 (en) 1985-01-25 1987-06-03 Robert E. Fischell A tunneling catheter system for transluminal arterial angioplasty
US5192278A (en) 1985-03-22 1993-03-09 Massachusetts Institute Of Technology Multi-fiber plug for a laser catheter
US4862886A (en) 1985-05-08 1989-09-05 Summit Technology Inc. Laser angioplasty
US4785806A (en) 1987-01-08 1988-11-22 Yale University Laser ablation process and apparatus
US4793359A (en) 1987-04-24 1988-12-27 Gv Medical, Inc. Centering balloon structure for transluminal angioplasty catheter
US4832023A (en) 1987-06-03 1989-05-23 Mcm Laboratories, Inc. Method and apparatus for reducing blockage in body channels
US4770653A (en) 1987-06-25 1988-09-13 Medilase, Inc. Laser angioplasty
US4878492A (en) 1987-10-08 1989-11-07 C. R. Bard, Inc. Laser balloon catheter
JPH01148278A (en) 1987-12-04 1989-06-09 Olympus Optical Co Ltd Laser irradiator
US5026367A (en) 1988-03-18 1991-06-25 Cardiovascular Laser Systems, Inc. Laser angioplasty catheter and a method for use thereof
US6024738A (en) 1988-07-08 2000-02-15 Surgical Laser Technologies, Inc. Laser catheter apparatus for use in arteries or other narrow paths within living organisms
US4966596A (en) 1988-08-08 1990-10-30 The Beth Israel Hospital Association Laser atherectomy catheter
EP0355200A1 (en) 1988-08-12 1990-02-28 Advanced Cardiovascular Systems, Inc. Balloon dilatation catheter with laser cutting capability
US5029588A (en) 1989-06-15 1991-07-09 Cardiovascular Imaging Systems, Inc. Laser catheter with imaging capability
US4993412A (en) 1989-08-02 1991-02-19 Eclipse Surgical Technologies, Inc. Method and apparatus for removal of obstructive substance from body channels
US5010886A (en) 1989-08-18 1991-04-30 Intertherapy, Inc. Medical probe assembly having combined ultrasonic imaging and laser ablation capabilities
US5176674A (en) 1990-03-05 1993-01-05 Schneider (Europe) Ag Angioplasty light guide catheter for the removal of stenoses using laser light energy
US7125404B2 (en) 1990-08-06 2006-10-24 Levatter Jeffrey I Fiber optic laser catheter and method of using it
US5053033A (en) 1990-10-10 1991-10-01 Boston Advanced Technologies, Inc. Inhibition of restenosis by ultraviolet radiation
US5423805A (en) 1992-02-05 1995-06-13 Angeion Corporation Laser catheter with moveable integral fixation wires
US5281212A (en) 1992-02-18 1994-01-25 Angeion Corporation Laser catheter with monitor and dissolvable tip
US5468239A (en) 1992-04-13 1995-11-21 Sorenson Laboratories, Inc. Apparatus and methods for using a circumferential light-emitting surgical laser probe
US5514128A (en) 1992-08-18 1996-05-07 Spectranetics Corporation Fiber optic guide wire and support catheter therefor
US5350375A (en) 1993-03-15 1994-09-27 Yale University Methods for laser induced fluorescence intensity feedback control during laser angioplasty
US5334207A (en) 1993-03-25 1994-08-02 Allen E. Coles Laser angioplasty device with magnetic direction control
US5722972A (en) 1993-08-12 1998-03-03 Power; John A. Method and apparatus for ablation of atherosclerotic blockage
US5733301A (en) 1996-01-11 1998-03-31 Schneider (Usa) Inc. Laser ablation of angioplasty catheters and balloons
US5769843A (en) 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US6283958B1 (en) 1996-04-04 2001-09-04 Somatex Medizintechnische Instrumente Gmbh Laser applicator set
US5741246A (en) 1996-04-15 1998-04-21 Prescott; Marvin A. Method and apparatus for laser balloon angioplasty treatment of medical conditions
US5944687A (en) 1996-04-24 1999-08-31 The Regents Of The University Of California Opto-acoustic transducer for medical applications
US6022309A (en) 1996-04-24 2000-02-08 The Regents Of The University Of California Opto-acoustic thrombolysis
US6379325B1 (en) 1996-04-24 2002-04-30 The Regents Of The University Of California Opto-acoustic transducer for medical applications
US5876373A (en) 1997-04-04 1999-03-02 Eclipse Surgical Technologies, Inc. Steerable catheter
US5722979A (en) * 1997-04-08 1998-03-03 Schneider (Usa) Inc. Pressure assisted ultrasonic balloon catheter and method of using same
US6551302B1 (en) 1997-09-24 2003-04-22 Michael J. Rosinko Steerable catheter with tip alignment and surface contact detector
US6561998B1 (en) 1998-04-07 2003-05-13 Transvascular, Inc. Transluminal devices, systems and methods for enlarging interstitial penetration tracts
US20030181938A1 (en) 1998-04-07 2003-09-25 Roth Alex T. Transluminal devices, systems and methods for enlarging interstitial penetration tracts
US6106515A (en) 1998-08-13 2000-08-22 Intraluminal Therapeutics, Inc. Expandable laser catheter
WO2000012168A1 (en) 1998-09-01 2000-03-09 Cardeon Corporation System and methods for catheter procedures with circulatory support in high risk patients
US6167315A (en) 1999-04-05 2000-12-26 Spectranetics Corporation Lead locking device and method
EP1200002B1 (en) 1999-07-14 2006-04-12 Cardiofocus, Inc. Photoablation system
US6592612B1 (en) 2000-05-04 2003-07-15 Cardeon Corporation Method and apparatus for providing heat exchange within a catheter body
US20060189930A1 (en) 2000-07-21 2006-08-24 Lary Banning G Methods and Apparatus for Sclerosing the Wall of a Varicose Vein
US7226470B2 (en) 2001-08-10 2007-06-05 Rhinolight Corporation Phototherapeutical apparatus and method for the treatment and prevention of diseases of body cavities
US7891361B2 (en) 2001-10-18 2011-02-22 Photomedex Methods for UV photo-therapy
US8454669B2 (en) 2001-10-18 2013-06-04 Photomedex Device for UV photo-therapy
US7144248B2 (en) 2001-10-18 2006-12-05 Irwin Dean S Device for oral UV photo-therapy
US7818053B2 (en) 2003-02-21 2010-10-19 Dtherapeutics, Llc Devices, systems and methods for plaque type determination
US20100222786A1 (en) 2003-02-21 2010-09-02 Kassab Ghassan S Devices, systems, and methods for removing targeted lesions from vessels
US8465452B2 (en) 2003-02-21 2013-06-18 3Dt Holdings, Llc Devices, systems, and methods for removing stenotic lesions from vessels
US7238178B2 (en) 2004-02-20 2007-07-03 Siemens Aktiengesellschaft Device for performing laser angioplasty with OCT monitoring
US20050216044A1 (en) 2004-03-25 2005-09-29 Hong Mun K Total occlusion recanalization facilitating device
US7754047B2 (en) 2004-04-08 2010-07-13 Boston Scientific Scimed, Inc. Cutting balloon catheter and method for blade mounting
US7959608B2 (en) 2004-04-27 2011-06-14 The Spectranetics Corporation Thrombectomy and soft debris removal device
US7666161B2 (en) 2004-04-27 2010-02-23 The Spectranetics Corporation Thrombectomy and soft debris removal device
US20050251116A1 (en) 2004-05-05 2005-11-10 Minnow Medical, Llc Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter
US20060190022A1 (en) * 2004-07-14 2006-08-24 By-Pass, Inc. Material delivery system
US7572254B2 (en) 2004-09-17 2009-08-11 The Spectranetics Corporation Apparatus and methods for directional delivery of laser energy
US20060259005A1 (en) 2005-05-11 2006-11-16 Angioscore, Inc. Methods and systems for delivering substances into luminal walls
US20090270846A1 (en) 2005-10-25 2009-10-29 Teiji Nakayama Catheter, examination system and thrombus removing device
US8167810B2 (en) 2005-12-12 2012-05-01 Siemens Aktiengesellschaft Catheter device for treating a blockage of a vessel
US20070198047A1 (en) 2005-12-20 2007-08-23 Medical Components, Inc. Cutting balloon catheter assembly
US20080154296A1 (en) 2006-12-22 2008-06-26 The Spectranetics Corporation Tissue Separating Systems and Methods
US20080154293A1 (en) 2006-12-22 2008-06-26 The Spectranetics Corporation Retractable Separating Systems and Methods
US20090270850A1 (en) 2007-06-20 2009-10-29 Tea Time Partners, L.P., Organized In Texas Devices and methods for the ablation of tissue in the lateral direction
US20090112239A1 (en) 2007-10-31 2009-04-30 Specialized Vascular Technologies, Inc. Sticky dilatation balloon and methods of using
US8162964B2 (en) * 2008-06-05 2012-04-24 Cardiovascular Systems, Inc. Split flexible tube biasing and directional atherectomy device and method
US8956374B2 (en) 2008-06-13 2015-02-17 Shockwave Medical, Inc. Shockwave balloon catheter system
US9011462B2 (en) 2008-06-13 2015-04-21 Shockwave Medical, Inc. Shockwave balloon catheter system
US9072534B2 (en) 2008-06-13 2015-07-07 Shockwave Medical, Inc. Non-cavitation shockwave balloon catheter system
US20120221013A1 (en) 2008-06-13 2012-08-30 Daniel Hawkins Non-cavitation shockwave balloon catheter system
US20130030431A1 (en) 2008-06-13 2013-01-31 Adams John M Shock wave balloon catheter system with off center shock wave generator
US20150238208A1 (en) 2008-06-13 2015-08-27 Shockwave Medical, Inc. Shockwave balloon catheter system
US8956371B2 (en) 2008-06-13 2015-02-17 Shockwave Medical, Inc. Shockwave balloon catheter system
US20100016862A1 (en) 2008-07-16 2010-01-21 Daniel Hawkins Method of providing embolic protection and shockwave angioplasty therapy to a vessel
US9180280B2 (en) 2008-11-04 2015-11-10 Shockwave Medical, Inc. Drug delivery shockwave balloon catheter system
US9044619B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US20150238209A1 (en) 2008-11-05 2015-08-27 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US9044618B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US20100152717A1 (en) 2008-12-17 2010-06-17 Spectranetics Eccentric balloon laser catheter
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
KR100996733B1 (en) 2010-01-12 2010-11-25 (주)휴엔텍 High powered laser irradiation device
US20130046293A1 (en) 2010-03-09 2013-02-21 Keio University System for preventing blood charring at laser beam emitting site of laser catheter
US20120116289A1 (en) 2010-11-09 2012-05-10 Daniel Hawkins Shockwave valvuloplasty device with guidewire and debris basket
US20120203255A1 (en) 2011-02-04 2012-08-09 Daniel Hawkins High pressure balloon shockwave catheter and method
US20140052114A1 (en) 2011-02-24 2014-02-20 Eximo Medical Ltd. Hybrid catheter for endoluminal intervention
US20110152683A1 (en) 2011-03-01 2011-06-23 Gerrans Lawrence J Abrading Balloon Catheter for Extravasated Drug Delivery
US8684970B1 (en) 2011-04-30 2014-04-01 Medical Shockwaves Inc. Stereotactic shockwave surgery and drug delivery apparatus
US8709075B2 (en) 2011-11-08 2014-04-29 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US8574247B2 (en) 2011-11-08 2013-11-05 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US20140214061A1 (en) 2011-11-08 2014-07-31 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US20140005576A1 (en) 2012-06-27 2014-01-02 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
US9011463B2 (en) 2012-06-27 2015-04-21 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
US9220521B2 (en) 2012-08-06 2015-12-29 Shockwave Medical, Inc. Shockwave catheter
US20140163592A1 (en) 2012-08-06 2014-06-12 Shockwave Medical, Inc. Shockwave catheter
US20150073430A1 (en) 2012-08-06 2015-03-12 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
US8747416B2 (en) 2012-08-06 2014-06-10 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
US8888788B2 (en) 2012-08-06 2014-11-18 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
US20140046353A1 (en) 2012-08-08 2014-02-13 Shockwave Medical, Inc. Shockwave valvuloplasty with multiple balloons
US20140046229A1 (en) 2012-08-10 2014-02-13 Shockwave Medical, Inc. Shockwave nerve therapy system and method
US9237984B2 (en) 2012-08-10 2016-01-19 Shockwave Medical, Inc. Shockwave nerve therapy system and method
US20140052145A1 (en) 2012-08-17 2014-02-20 Shockwave Medical, Inc. Shock wave catheter system with arc preconditioning
US9138249B2 (en) 2012-08-17 2015-09-22 Shockwave Medical, Inc. Shock wave catheter system with arc preconditioning
US20140074113A1 (en) 2012-09-13 2014-03-13 Shockwave Medical, Inc. Shockwave catheter system with energy control
US9005216B2 (en) 2012-09-13 2015-04-14 Shockwave Medical, Inc. Shockwave catheter system with energy control
US20140288570A1 (en) 2012-09-13 2014-09-25 Shockwave Medical, Inc. Shockwave catheter system with energy control
US8728091B2 (en) 2012-09-13 2014-05-20 Shockwave Medical, Inc. Shockwave catheter system with energy control
US20150039002A1 (en) 2013-07-31 2015-02-05 Shockwave Medical, Inc. Angioplasty balloon
CN103462688A (en) 2013-08-29 2013-12-25 珠海市司迈科技有限公司 Laser fiber sheath and manipulator for using same
US20150320432A1 (en) 2014-05-08 2015-11-12 Shockwave Medical, Inc. Shock wave guide wire

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
International Search Report and Written Opinion issued in PCT/US2014/019268 on Jun. 13, 2014, 13 pages.
U.S. Appl. No. 14/984,050 entitled Laser-Induced Fluid Filled Balloon Catheter, filed Dec. 30, 2015.
U.S. Appl. No. 14/984,294 entitled Electrically-Induced Fluid Filled Balloon Catheter, filed Dec. 30, 2015.
U.S. Appl. No. 14/984,308 entitled Laser-Induced Pressure Wave Emitting Catheter Sheath, filed Dec. 30, 2015.
U.S. Appl. No. 14/984,710 entitled Electrically-Induced Pressure Wave Emitting Catheter Sheath, lied Dec. 30, 2015.

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11166742B2 (en) 2008-03-21 2021-11-09 Cagent Vascular, Inc. Method of enhancing drug uptake from a drug-eluting balloon
US11529501B2 (en) 2008-03-21 2022-12-20 Gagent Vascular, Inc. System and method for plaque serration
US11229777B2 (en) 2008-03-21 2022-01-25 Cagent Vascular, Inc. System and method for plaque serration
US11219750B2 (en) 2008-03-21 2022-01-11 Cagent Vascular, Inc. System and method for plaque serration
US11576724B2 (en) 2011-02-24 2023-02-14 Eximo Medical Ltd. Hybrid catheter for vascular intervention
US10842567B2 (en) 2013-03-13 2020-11-24 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US10201387B2 (en) 2013-03-13 2019-02-12 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US10786661B2 (en) 2013-03-13 2020-09-29 The Spectranetics Corporation Apparatus and method for balloon angioplasty
US11116573B2 (en) 2014-05-18 2021-09-14 Eximo Medical Ltd System for tissue ablation using pulsed laser
US10792103B2 (en) 2014-05-18 2020-10-06 Eximo Medical Ltd. System for tissue ablation using pulsed laser
US10772683B2 (en) 2014-05-18 2020-09-15 Eximo Medical Ltd. System for tissue ablation using pulsed laser
US11738181B2 (en) 2014-06-04 2023-08-29 Cagent Vascular, Inc. Cage for medical balloon
US11246659B2 (en) 2014-08-25 2022-02-15 The Spectranetics Corporation Liquid laser-induced pressure wave emitting catheter sheath
US11298513B2 (en) 2014-11-03 2022-04-12 Cagent Vascular, Inc. Serration balloon
US11040178B2 (en) 2014-11-03 2021-06-22 Cagent Vascular, Llc Serration balloon
US11701502B2 (en) 2014-11-03 2023-07-18 Cagent Vascular, Inc. Serration balloon
US10471238B2 (en) 2014-11-03 2019-11-12 Cagent Vascular, Llc Serration balloon
US11058492B2 (en) 2014-12-30 2021-07-13 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
US10898213B2 (en) 2014-12-30 2021-01-26 The Spectranetics Corporation Electrically-induced pressure wave emitting catheter sheath
US10850078B2 (en) 2014-12-30 2020-12-01 The Spectranetics Corporation Electrically-induced fluid filled balloon catheter
US10689154B2 (en) 2015-09-17 2020-06-23 Cagent Vascular, Llc Wedge dissectors for a medical balloon
US11717654B2 (en) 2015-09-17 2023-08-08 Cagent Vascular, Inc. Wedge dissectors for a medical balloon
US11266818B2 (en) 2015-09-17 2022-03-08 Cagent Vascular, Inc. Wedge dissectors for a medical balloon
US11266819B2 (en) 2015-09-17 2022-03-08 Cagent Vascular, Inc. Wedge dissectors for a medical balloon
US10166374B2 (en) 2015-09-17 2019-01-01 Cagent Vascular, Llc Wedge dissectors for a medical balloon
US11491314B2 (en) 2015-09-17 2022-11-08 Cagent Vascular Lac. Wedge dissectors for a medical balloon
US11684420B2 (en) 2016-05-05 2023-06-27 Eximo Medical Ltd. Apparatus and methods for resecting and/or ablating an undesired tissue
US10905863B2 (en) 2016-11-16 2021-02-02 Cagent Vascular, Llc Systems and methods of depositing drug into tissue through serrations
US10925632B2 (en) 2017-05-03 2021-02-23 Medtronic Vascular, Inc. Tissue-removing catheter
US10869689B2 (en) 2017-05-03 2020-12-22 Medtronic Vascular, Inc. Tissue-removing catheter
US11051842B2 (en) 2017-05-03 2021-07-06 Medtronic Vascular, Inc. Tissue-removing catheter with guidewire isolation liner
US11690645B2 (en) 2017-05-03 2023-07-04 Medtronic Vascular, Inc. Tissue-removing catheter
US11896260B2 (en) 2017-05-03 2024-02-13 Medtronic Vascular, Inc. Tissue-removing catheter
US10987126B2 (en) 2017-05-03 2021-04-27 Medtronic Vascular, Inc. Tissue-removing catheter with guidewire isolation liner
US11871958B2 (en) 2017-05-03 2024-01-16 Medtronic Vascular, Inc. Tissue-removing catheter with guidewire isolation liner
US11103262B2 (en) 2018-03-14 2021-08-31 Boston Scientific Scimed, Inc. Balloon-based intravascular ultrasound system for treatment of vascular lesions
US11369779B2 (en) 2018-07-25 2022-06-28 Cagent Vascular, Inc. Medical balloon catheters with enhanced pushability
US11622779B2 (en) 2018-10-24 2023-04-11 Boston Scientific Scimed, Inc. Photoacoustic pressure wave generation for intravascular calcification disruption
US11357534B2 (en) 2018-11-16 2022-06-14 Medtronic Vascular, Inc. Catheter
US11819236B2 (en) 2019-05-17 2023-11-21 Medtronic Vascular, Inc. Tissue-removing catheter
US11819229B2 (en) 2019-06-19 2023-11-21 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US11517713B2 (en) 2019-06-26 2022-12-06 Boston Scientific Scimed, Inc. Light guide protection structures for plasma system to disrupt vascular lesions
US11911574B2 (en) 2019-06-26 2024-02-27 Boston Scientific Scimed, Inc. Fortified balloon inflation fluid for plasma system to disrupt vascular lesions
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US11903642B2 (en) 2020-03-18 2024-02-20 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device

Also Published As

Publication number Publication date
US20160213892A1 (en) 2016-07-28
US10786661B2 (en) 2020-09-29
EP2967609A4 (en) 2016-09-07
WO2014163955A1 (en) 2014-10-09
EP3750490B1 (en) 2023-11-15
US20140277002A1 (en) 2014-09-18
EP2967609A1 (en) 2016-01-20
EP3750490A1 (en) 2020-12-16
EP2967609B1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
US10786661B2 (en) Apparatus and method for balloon angioplasty
US20170231649A1 (en) Medical systems and related methods
US8882790B2 (en) Drug eluting sculpting balloon
AU2002235463B2 (en) Method of removing occlusions using ultrasonic medical device operating in a transverse mode
US6464660B2 (en) Balloon catheters having ultrasonically driven interface surfaces and methods for their use
US20080097251A1 (en) Method and apparatus for treating vascular obstructions
US11278300B2 (en) Angioplasty of calcified arteries
AU2002235463A1 (en) Method of removing occlusions using ultrasonic medical device operating in a transverse mode
JPH01288249A (en) Apparatus and method for treating patient having blood vessel clogged with precipitate
EP1009298A1 (en) Balloon catheters having ultrasonically driven interface surfaces and methods for their use
JP2021118909A (en) Systems, methods and devices for progressively softening multi-compositional intravascular tissue
EP0382392A1 (en) Ultrasound targeting system for shockwave lithotripsy
US20190159792A1 (en) Ultrasound Vessel Preparation and Restenosis Therapy
EP3709907B1 (en) Focused intraluminal lithectomy catheter device
WO2023220424A1 (en) Devices, systems, and methods for ultrasound therapy
CN117379134A (en) Lithotripter device
WO2020053624A1 (en) Ultrasonic device
GB2460444A (en) A catheter having vibrating control or guide wires to reduce friction

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE SPECTRANETICS CORPORATION, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRACE, KENNETH P.;REEL/FRAME:030214/0397

Effective date: 20130411

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, COLORADO

Free format text: SECURITY INTEREST;ASSIGNOR:THE SPECTRANETICS CORPORATION;REEL/FRAME:036055/0156

Effective date: 20150626

AS Assignment

Owner name: THE SPECTRANETICS CORPORATION, COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION;REEL/FRAME:037268/0793

Effective date: 20151208

Owner name: MIDCAP FINANCIAL TRUST, AS AGENT, MARYLAND

Free format text: SECURITY INTEREST (REVOLVER);ASSIGNOR:THE SPECTRANETICS CORPORATION;REEL/FRAME:037269/0425

Effective date: 20151207

Owner name: MIDCAP FINANCIAL TRUST, AS AGENT, MARYLAND

Free format text: SECURITY INTEREST (TERM);ASSIGNOR:THE SPECTRANETICS CORPORATION;REEL/FRAME:037269/0506

Effective date: 20151207

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
AS Assignment

Owner name: MIDCAP FINANCIAL TRUST, AS AGENT, MARYLAND

Free format text: SECURITY INTEREST (TERM);ASSIGNOR:THE SPECTRANETICS CORPORATION;REEL/FRAME:042782/0958

Effective date: 20151207

Owner name: MIDCAP FINANCIAL TRUST, AS AGENT, MARYLAND

Free format text: SECURITY INTEREST (REVOLVER);ASSIGNOR:THE SPECTRANETICS CORPORATION;REEL/FRAME:042787/0001

Effective date: 20151207

AS Assignment

Owner name: ANGIOSCORE INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FINANCIAL TRUST;REEL/FRAME:043518/0066

Effective date: 20170809

Owner name: THE SPECTRANETICS CORPORATION, COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FINANCIAL TRUST;REEL/FRAME:043518/0142

Effective date: 20170809

Owner name: ANGIOSCORE INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FINANCIAL TRUST;REEL/FRAME:043518/0142

Effective date: 20170809

Owner name: THE SPECTRANETICS CORPORATION, COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FINANCIAL TRUST;REEL/FRAME:043518/0066

Effective date: 20170809

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8