US5796182A - Capacator storage circuit for sustaining a DC converter - Google Patents

Capacator storage circuit for sustaining a DC converter Download PDF

Info

Publication number
US5796182A
US5796182A US08/671,141 US67114196A US5796182A US 5796182 A US5796182 A US 5796182A US 67114196 A US67114196 A US 67114196A US 5796182 A US5796182 A US 5796182A
Authority
US
United States
Prior art keywords
converter
capacitor
charging
power
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/671,141
Inventor
Richard A. Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US08/671,141 priority Critical patent/US5796182A/en
Priority to TW85115182A priority patent/TW469685B/en
Application granted granted Critical
Publication of US5796182A publication Critical patent/US5796182A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads

Definitions

  • the present invention relate to DC converter power supplies.
  • the present invention discloses circuitry for sustaining and stabilizing a DC power converter over short duration power outages, sags and other power line disturbances.
  • This invention relates to switch mode DC power supplies as commonly used by but not limited to computers and communication systems, for example to convert AC line power to one or more regulated DC voltage for powering electronic circuitry or other electrical loads. More particularly the present invention is directed to a circuit for sustaining the operation of such power supplies in the event of a momentary interruption of the commercial AC line to which the computer or other electronic apparatus or loads are connected. Additionally the invention improves performance and reduces the element count of my personnel prior art invention, U.S. Pat. No. 5,111,058. It is therefore a principle object of the present invention to produce a circuit that incorporates all the performance improvements mentioned here-in and to produce the present invention more economically and efficiently. Further objects and advantages of the invention will become apparent from a consideration of the drawings and ensuring descriptions.
  • FIG. 2 A simple prior art solution as shown in FIG. 2 that is utilized to increase the hold-up time of linear power supplies does not work with converter systems.
  • the circuit shown introduces periodic ringing oscillations across the primary side of the DC converter if the output of the DC power source contains any ripple component and the voltage of that ripple component is greater than the forward conducting voltage of the diode utilized to create the discharge path.
  • the oscillations are directly determined by the RC time constant of the series charging resistor and the capacitor. It is highly undesirable to add any instabilities to the DC power converter. Adding instability to the DC converter directly defeats the purpose and benefits of directly stabilizing the converter through the use of the invention.
  • Capacitors behave like small storage batteries. Batteries will exhibit an open terminal voltage under a no load condition or lightly loaded condition and a closed terminal voltage under a load. The open terminal voltage is always greater than the loaded or closed terminal condition. This operating condition is imposed by the characteristic source impedance of the batteries. Charged capactors behaves very similarly. DC converters when operating exhibit low impedance across the capacitors and exhibits an extremely high impedance when the DC converter is turned off. A DC converter does have a specific minimum cutoff operating voltage level. The minimum operating voltage level is dependent upon several factors and it is beyond the scope of this document to explain all the design parameters involved but the usual range of minimum operating voltage is typically between 50 and one hundred and 130 volts DC.
  • the filter section capacitor discharges and the voltage available to the DC converter rapidly decreases. If the load presented to the DC converter( and subsequently the storage capacitor) has not been sufficient to drain the capacitor charge below the minimum threshold operating voltage level of the DC converter, the following actions occur;
  • the DC converter will operate until the minimum operating voltage level is reached.
  • the DC converter switching circuitry stops oscillating and the load impedance across the storage capacitor becomes extremely high.
  • the open terminal voltage of the capacitors now increases to a level sufficient to once again turn on the DC converter and the voltage of the capacators again rapidly decreases until the capacitor voltage falls below the necessary level to operate the switching transistors and the process keeps repeating itself until the capacitor finally does not have enough charge remaining to allow the open terminal voltage to once again turn on the DC power converter.
  • One problem often encountered is that every time the DC converter turns on and off in this uncontrolled manner the output section of the converter is induced with spikes and these spikes have proven to damage electronic components and in the application of computers have literally been known to corrupt data that is stored on hard drives.
  • the second characteristic observed was that the invention would not function at all if the power supply was connected to fifty Hz 220 volts AC power.
  • the source of both these characteristics is that the lowest value SIDAC that could be commercially purchased was one that would trigger with a minimum voltage differential of 120 volts.
  • the voltage differential required between the storage capacitor and the nominal filter section for the SIDAC to fire created too large a window and the storage capacitor would not recharge fast enough due to the RC time constant of the charging resistor and the storage capacitor to allow the voltage of the storage capacitor to rise sufficiently to fire the SIDAC when the next 100 millisecond power interruption occurred.
  • the second characteristic of the invention not operating when connected to 50 Hz 220 volt AC power sources, that when the power was interrupted, the 120 volt differential required to force the SIDAC into conduction and the lower operating voltage of the rectifier output and DC converter along with the 50 Hz recharging rate of the filter capacitors simply allowed the Dc converter to stop oscillating before the reserve capacitor could connect in and continue to power the DC converter.
  • the third characteristic discovered was that when the storage capacitor would connect to the DC converter and the filter ection capacitors that either the SIDAC would short out due to the excessive current flow caused by the large voltage differential required to fire the device requiring that an additional current limiting resistor be added in series with the SIDAC and that even when the SIDAC did not self destruct due to the excessive current, the sudden increasing operating voltage caused by the capacitor connecting into the circuit created a voltage spike across the primary side of the DC converter and of this course was reflected to the secondary side of the DC converter. A typical 5 or 12 volt power buss would receive spikes that were between five and seven times the output voltage and this is not acceptable.
  • a substitution of the SIDAC was made with a sensitive gate SCR This substitution does allow the voltage differential level required to bring the SCR into conduction to be reduced sufficiently to allow the invention to operate through the previously mentioned and defined repeated short duration power breaks and the invention would now function and operate when connected to 220 v AC 50 Hz sources but the for-mentioned spiking across the primary side of the DC converter and reflected spikes across the secondary still manifested. Additional short comings of the substitution of the SIDAC with the SCR is that the SCR requires two additional resistors to allow the SCR to function as a break-over device and the SCR firing threshold was not always predictable for any given batch of SCRs' and or resistor programming values.
  • the SCR is more difficult to utilize in manufacturing when compared to the SIDAC because the SCR is a three lead device and the SIDAC is a two lead device. It is advantageous to replace the SCR with a series zener and power diode and eliminate the series charging diode that was in series with the charging resistor and eliminate the two biasing resistors required to allow the SCR to trigger.
  • the preferred embodiment of the invention solvers the above mentioned problems and reduces the actual parts count for production units from 8 ea for the SCR version to 4 ea for the new invention and still performs all the necessary functions and grants the performance improvements over U.S. Pat. No. 5,111,058.
  • the invention utilizes a zener diode in series with a low cost rectifier diode to perform the necessary differential voltage offset function for disconnecting the capacitor upon discharge to prevent oscillation and to prevent the aforementioned periodic oscillation across the primary side of the DC converter during continual operation of the converter.
  • the Zenior diode/rectifier switch is in parallel with the capacitor charging resistor.
  • the charging resistor may be replaced with a diode to isolate the charge and discharge functions.
  • the differential voltage of the discharge circuit can now be set to the minimum voltage differential required to prevent the converter from oscillating with five or six volts being the preferred voltage offset.
  • the series charging diode that was utilized in the previous embodiment can now be eliminated from the invention.
  • the embodiment of the invention utilizing the SIDAC or SCR required the series charging diode because if the charging resistor was not isolated from the discharge path the SIDAC or SCR would not go into conduction because a sufficient quantify of the stored energy in the capacitor would dissipate through the charging resistor while attempting to recharge the filter capacitors and power the DC converter and yet not develop enough voltage differential across the charging resistor because the differential voltage required to bring the SIDAC or SCR into conduction was extreme.
  • the new embodiment of the invention eliminates the requirement for a bleeder resistor to be installed across the storage capacitor because the storage capacitor can now be discharged through the series charging resistor and the typical bleeder resistor or resistors that are installed across the filter capacitor or capacitors in the power supply source.
  • the storage capacitor will always discharge to the voltage level remaining in the filter capacitor or capacitors plus the off-set level that is determined by the value of the zener diode and the forward voltage drop of reverse blocking diode. This level will usually be sufficient to satisfy any safety considerations.
  • the invention out performs the previous embodiment considerably.
  • the voltage differential required between the filter capacitor and the storage capacitor can be significantly reduced.
  • the output spiking as previously mentioned is virtually eliminated.
  • the 5 to 10 volt spikes that were observed on a typical 5 volt buss even when the substitute SCR was utilized are now reduced to a 50 millivolt or less. This represents at least a 99.5 percent reduction in output power spikes as caused by surge currents when the storage capacitor is connected to the DC converter and filter capacitors.
  • FIG. 1 is a block diagram of the functional invention showing an AC to DC power conversion source, a path to charge and discharge the storage capacator and a DC converter for powering a load.
  • FIG. 2 is a detailed schemitic of a 110/220 v AC source, a voltave doubbling or fullwave bridge power supply, the preferred embodiment of the invention and a block diagram of the DC power converter and a load.
  • FIG. 3 is a detailed schemitic of how invention U.S. Pat. No. 5,111,058 is built in actual production.
  • FIG. 4 is a detailed schemitic of an alternative embodiment of the charging circuit.
  • FIGS. 5,6 and 7 seven are schemitics of possible substutions of the zener diode with a MOV, a series string of two or more diodes and or other possible break over devices in the discharge path.
  • FIGS. 8,9 and 10 are schemitics of the alternative charging path that utilizes the charging diode and replaces the zener diode with a MOV or the series string of diodes and or other possible break over devices in the discharge path.
  • FIG. 11 is a schemitic of a prior art capacator storage circuit as used in conjunction with linear power supplies.
  • the invention is coupled to the output of the DC source of the power supply 62 that powers the DC converter 44.
  • Ref. 2, 10 through 34 show a 115/220 volt full wave rectifier source as typically implemented in personnel computer power supplies and is not intended in any manor to limit the scope or application of the invention.
  • FIG. 1 shows that the invention 72 utilizes a charge path, a discharge path and a capacitor energy storage section.
  • the invention is connected in parallel with the DC source and the DC converter.
  • Resistor 36 is connected in series to capacitor 38.
  • Current production utilize a storage capacitor 38 in the range of between 470 and 1500 uf.
  • the purpose of the resistor is to limit the charging current that is applied to the capacitor.
  • the resistor can range in values from less than one ohm to several thousand ohms.
  • the value of the resistor is chosen to limit the additional inrush current placed upon the power supply to about a tenth of an ampere. This is a small current increase when compared to the typical 20 or 30 ampere or even greater levels of peak inrush current imposed by typical capacitor input power supplies.
  • the current production value is 1500 ohms.
  • resistor 36 may be substituted with a rectifier diode 52 of FIG. 4.
  • rectifier diode 52 One purpose of rectifier diode 52 is to isolate the charge and discharge paths.
  • the purpose of capacitor 38 is to store energy.
  • the series combination of the diode 40 and the zener diode 42 form a unidirectional voltage sensitive switch.
  • the diode prevents the zener 42 from acting as a conducting path that would directly charge the capacitor 38 from the DC source and destroy the zener.
  • the isolation diode 40 installed in the discharge path ensures that the capacitor 38 will charge only through the series charging resistor 36 or charging diode 40.
  • the reduced zener 42 and isolation diode 40 voltage conducting level eliminate the need to utilize the isolation diode 52 in the charging path of FIG. 3.
  • zener diode 42 could be replaced with a string of 2 or more diodes 40, 68 as shown in FIG. 6 or even a MOV 64 as shown in FIG. 5 and FIG. 8.
  • a 1 watt zener is very low in cost when compared to the cost of a 10 ampere sensitive gate SCR 56 FIG. 3 and support components and manufacturing required to provide the same voltage switching and necessary threshold to prevent the formentioned problems of spiking and oscillation.
  • the current production value of the zener diode is 4.7 volts.
  • Bleeder resistor 54 of FIG. 3 has been eliminated from the production circuit because with the removal of diode 52 a direct discharge path exist through charging resistor 36 and the balancing/bleeder resistors 32, 34 of diagram 2.
  • FIG. 1 watt zener is very low in cost when compared to the cost of a 10 ampere sensitive gate SCR 56 FIG. 3 and support components and manufacturing required to provide the same voltage switching and necessary threshold to prevent the formentioned problems of
  • An adequate bleed down path is provided for the circuits of diagram 8,9 and 10 by the direct conducting path of diode 40, and either the MOV 64, the additional diode 68, the transient voltage protector 66 and the bleeder/balancing resistors 32 and 34 of diagram 2.
  • the capacitor discharge paths will work with other filter capacitor bleeder means.

Abstract

Circuitry for extending the sustain time of a DC converter power supply in the event of interruption of AC power. Where in the circuit includes a capacitor storage element, an associated charge path for controllably charging the capacitor bank and discharge and disconnect paths for discharging the energy stored in the capacitor to sustain operation of the DC power converter and for disconnecting the capacitor from the DC converter when the voltage across the capacitor has discharged below a threshold level and prevents the capacitor from creating and introducing periodic ringing transient oscillations into the same charging means, with the charging means and discharging means therefore being connected to said DC voltage source to provide a charging path to said raw DC voltage source during normal operation of the AC power source, and a discharging means to provide a discharging path for said capacitor means to sustain operation of a power converter means during momentary interruption of the AC power source and to disconnect said capacitor means from the DC source means and dc converter means wherein said capacitor means has been discharged to a minimum level required to insure proper operation of said power converter means.

Description

REFERENCE TO RELATED APPLICATION PATENTS
This application is related to U.S. Pat. No. 5,111,058 (May 5, 1992) to R. Martin.
Page three and the diagrams on page six of Disclosure Document No. 381348 (Nov. 11, 1995) contains information and drawings that are prevelent to the present invention. It is requested that the aforementioned disclosure document be made a parmenant part of this application.
FIELD OF THE INVENTION
The present invention relate to DC converter power supplies. In particular the present invention discloses circuitry for sustaining and stabilizing a DC power converter over short duration power outages, sags and other power line disturbances.
BACKGROUND OF THE INVENTION
This invention relates to switch mode DC power supplies as commonly used by but not limited to computers and communication systems, for example to convert AC line power to one or more regulated DC voltage for powering electronic circuitry or other electrical loads. More particularly the present invention is directed to a circuit for sustaining the operation of such power supplies in the event of a momentary interruption of the commercial AC line to which the computer or other electronic apparatus or loads are connected. Additionally the invention improves performance and reduces the element count of my personnel prior art invention, U.S. Pat. No. 5,111,058. It is therefore a principle object of the present invention to produce a circuit that incorporates all the performance improvements mentioned here-in and to produce the present invention more economically and efficiently. Further objects and advantages of the invention will become apparent from a consideration of the drawings and ensuring descriptions.
A seemingly obvious solution to creating switch mode power supplies with extended "hold-up time" is to utilize extremely large value filter capacitors in the AC power supply rectifier filter or AC to DC converter filter section that provides power to the DC converter. The same reasoning could be applied to the filter section of power factor corrected AC to DC sources preceding the DC converter or other AC to DC conversion means.
One reason not to utilize excessively large value filter capacitors in the DC filter section is the peculiar habit of the DC converter tending to operate sporadically and intermittently as the filter section capacitor voltage is reduced to the point of not being able to sustain the DC converter when AC power is removed from the supply. The sporadic operation creates damaging voltage spikes on the output of the DC converter. Another reason as to why not use excessively large filter capacitors is that the inrush current demands require that heavy duty rectifier and line filter components be utilized that can withstand the peak and recurrent current demands during the charging cycle of the filter capacitors and that additional inrush current limiting circuitry be designed into the power supply. This significantly increases design and manufacturing cost.
A simple prior art solution as shown in FIG. 2 that is utilized to increase the hold-up time of linear power supplies does not work with converter systems. The circuit shown introduces periodic ringing oscillations across the primary side of the DC converter if the output of the DC power source contains any ripple component and the voltage of that ripple component is greater than the forward conducting voltage of the diode utilized to create the discharge path. The oscillations are directly determined by the RC time constant of the series charging resistor and the capacitor. It is highly undesirable to add any instabilities to the DC power converter. Adding instability to the DC converter directly defeats the purpose and benefits of directly stabilizing the converter through the use of the invention.
The following is a detailed explanation of the behavior of the DC converter and storage capacitor interaction. Capacitors behave like small storage batteries. Batteries will exhibit an open terminal voltage under a no load condition or lightly loaded condition and a closed terminal voltage under a load. The open terminal voltage is always greater than the loaded or closed terminal condition. This operating condition is imposed by the characteristic source impedance of the batteries. Charged capactors behaves very similarly. DC converters when operating exhibit low impedance across the capacitors and exhibits an extremely high impedance when the DC converter is turned off. A DC converter does have a specific minimum cutoff operating voltage level. The minimum operating voltage level is dependent upon several factors and it is beyond the scope of this document to explain all the design parameters involved but the usual range of minimum operating voltage is typically between 50 and one hundred and 130 volts DC.
During a power interruption or after line power has been turned off, the filter section capacitor (or capacitors) discharges and the voltage available to the DC converter rapidly decreases. If the load presented to the DC converter( and subsequently the storage capacitor) has not been sufficient to drain the capacitor charge below the minimum threshold operating voltage level of the DC converter, the following actions occur;
The DC converter will operate until the minimum operating voltage level is reached. The DC converter switching circuitry stops oscillating and the load impedance across the storage capacitor becomes extremely high. The open terminal voltage of the capacitors now increases to a level sufficient to once again turn on the DC converter and the voltage of the capacators again rapidly decreases until the capacitor voltage falls below the necessary level to operate the switching transistors and the process keeps repeating itself until the capacitor finally does not have enough charge remaining to allow the open terminal voltage to once again turn on the DC power converter. One problem often encountered is that every time the DC converter turns on and off in this uncontrolled manner the output section of the converter is induced with spikes and these spikes have proven to damage electronic components and in the application of computers have literally been known to corrupt data that is stored on hard drives.
In my previous invention, U.S. Pat. No. 5,111,058, the circuit relied upon a commercially available SIDAC to resolve the turn-off oscillation problem and three additional characteristics were observed. The power supply would not sustain two consecutive 100 millisecond interruptions of the commercial AC power that were separated by as little as a 75 millisecond interval even though the energy level in the capacitor was sufficient to sustain the DC converter and load for 1.5 seconds.
The second characteristic observed was that the invention would not function at all if the power supply was connected to fifty Hz 220 volts AC power. The source of both these characteristics is that the lowest value SIDAC that could be commercially purchased was one that would trigger with a minimum voltage differential of 120 volts. The voltage differential required between the storage capacitor and the nominal filter section for the SIDAC to fire created too large a window and the storage capacitor would not recharge fast enough due to the RC time constant of the charging resistor and the storage capacitor to allow the voltage of the storage capacitor to rise sufficiently to fire the SIDAC when the next 100 millisecond power interruption occurred. The second characteristic of the invention not operating when connected to 50 Hz 220 volt AC power sources, that when the power was interrupted, the 120 volt differential required to force the SIDAC into conduction and the lower operating voltage of the rectifier output and DC converter along with the 50 Hz recharging rate of the filter capacitors simply allowed the Dc converter to stop oscillating before the reserve capacitor could connect in and continue to power the DC converter.
The third characteristic discovered was that when the storage capacitor would connect to the DC converter and the filter ection capacitors that either the SIDAC would short out due to the excessive current flow caused by the large voltage differential required to fire the device requiring that an additional current limiting resistor be added in series with the SIDAC and that even when the SIDAC did not self destruct due to the excessive current, the sudden increasing operating voltage caused by the capacitor connecting into the circuit created a voltage spike across the primary side of the DC converter and of this course was reflected to the secondary side of the DC converter. A typical 5 or 12 volt power buss would receive spikes that were between five and seven times the output voltage and this is not acceptable.
A substitution of the SIDAC was made with a sensitive gate SCR This substitution does allow the voltage differential level required to bring the SCR into conduction to be reduced sufficiently to allow the invention to operate through the previously mentioned and defined repeated short duration power breaks and the invention would now function and operate when connected to 220 v AC 50 Hz sources but the for-mentioned spiking across the primary side of the DC converter and reflected spikes across the secondary still manifested. Additional short comings of the substitution of the SIDAC with the SCR is that the SCR requires two additional resistors to allow the SCR to function as a break-over device and the SCR firing threshold was not always predictable for any given batch of SCRs' and or resistor programming values. The SCR is more difficult to utilize in manufacturing when compared to the SIDAC because the SCR is a three lead device and the SIDAC is a two lead device. It is advantageous to replace the SCR with a series zener and power diode and eliminate the series charging diode that was in series with the charging resistor and eliminate the two biasing resistors required to allow the SCR to trigger.
The preferred embodiment of the invention solvers the above mentioned problems and reduces the actual parts count for production units from 8 ea for the SCR version to 4 ea for the new invention and still performs all the necessary functions and grants the performance improvements over U.S. Pat. No. 5,111,058.
The invention utilizes a zener diode in series with a low cost rectifier diode to perform the necessary differential voltage offset function for disconnecting the capacitor upon discharge to prevent oscillation and to prevent the aforementioned periodic oscillation across the primary side of the DC converter during continual operation of the converter. The Zenior diode/rectifier switch is in parallel with the capacitor charging resistor. In power supply designs that provide sufficient in-rush current limiting means the charging resistor may be replaced with a diode to isolate the charge and discharge functions. The differential voltage of the discharge circuit can now be set to the minimum voltage differential required to prevent the converter from oscillating with five or six volts being the preferred voltage offset. The series charging diode that was utilized in the previous embodiment can now be eliminated from the invention. The embodiment of the invention utilizing the SIDAC or SCR required the series charging diode because if the charging resistor was not isolated from the discharge path the SIDAC or SCR would not go into conduction because a sufficient quantify of the stored energy in the capacitor would dissipate through the charging resistor while attempting to recharge the filter capacitors and power the DC converter and yet not develop enough voltage differential across the charging resistor because the differential voltage required to bring the SIDAC or SCR into conduction was extreme. The new embodiment of the invention eliminates the requirement for a bleeder resistor to be installed across the storage capacitor because the storage capacitor can now be discharged through the series charging resistor and the typical bleeder resistor or resistors that are installed across the filter capacitor or capacitors in the power supply source.
In the embodiment of the invention that uses a charging diode rather than the charging resistor the storage capacitor will always discharge to the voltage level remaining in the filter capacitor or capacitors plus the off-set level that is determined by the value of the zener diode and the forward voltage drop of reverse blocking diode. This level will usually be sufficient to satisfy any safety considerations.
The invention out performs the previous embodiment considerably. By changing the SIDAC or SCR to a low voltage zener diode the voltage differential required between the filter capacitor and the storage capacitor can be significantly reduced. The output spiking as previously mentioned is virtually eliminated. The 5 to 10 volt spikes that were observed on a typical 5 volt buss even when the substitute SCR was utilized are now reduced to a 50 millivolt or less. This represents at least a 99.5 percent reduction in output power spikes as caused by surge currents when the storage capacitor is connected to the DC converter and filter capacitors.
Another area of improvement that is directly related to the reduction of the required differential voltage to connect the storage capacitor to the converter and DC filter section is the line sensing ability of the invention. The previous design would not connect the capacitor into the circuit until the AC source line voltage drooped about 40 percent. The new invention will now responds to line sags typically as small as 2 percent.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of the functional invention showing an AC to DC power conversion source, a path to charge and discharge the storage capacator and a DC converter for powering a load.
FIG. 2 is a detailed schemitic of a 110/220 v AC source, a voltave doubbling or fullwave bridge power supply, the preferred embodiment of the invention and a block diagram of the DC power converter and a load.
FIG. 3 is a detailed schemitic of how invention U.S. Pat. No. 5,111,058 is built in actual production.
FIG. 4 is a detailed schemitic of an alternative embodiment of the charging circuit.
FIGS. 5,6 and 7 seven are schemitics of possible substutions of the zener diode with a MOV, a series string of two or more diodes and or other possible break over devices in the discharge path.
FIGS. 8,9 and 10 are schemitics of the alternative charging path that utilizes the charging diode and replaces the zener diode with a MOV or the series string of diodes and or other possible break over devices in the discharge path.
FIG. 11 is a schemitic of a prior art capacator storage circuit as used in conjunction with linear power supplies.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1; the invention is coupled to the output of the DC source of the power supply 62 that powers the DC converter 44. Ref. 2, 10 through 34 show a 115/220 volt full wave rectifier source as typically implemented in personnel computer power supplies and is not intended in any manor to limit the scope or application of the invention.
FIG. 1 shows that the invention 72 utilizes a charge path, a discharge path and a capacitor energy storage section. The invention is connected in parallel with the DC source and the DC converter.
Referring to FIG. 2, Resistor 36 is connected in series to capacitor 38. Current production utilize a storage capacitor 38 in the range of between 470 and 1500 uf. The purpose of the resistor is to limit the charging current that is applied to the capacitor. The resistor can range in values from less than one ohm to several thousand ohms. Typically the value of the resistor is chosen to limit the additional inrush current placed upon the power supply to about a tenth of an ampere. This is a small current increase when compared to the typical 20 or 30 ampere or even greater levels of peak inrush current imposed by typical capacitor input power supplies. The current production value is 1500 ohms. For power supplies that can tolerate the increased inrush current demands resistor 36 may be substituted with a rectifier diode 52 of FIG. 4.
One purpose of rectifier diode 52 is to isolate the charge and discharge paths. Referring to FIG. 2, the purpose of capacitor 38 is to store energy. The series combination of the diode 40 and the zener diode 42 form a unidirectional voltage sensitive switch. The diode prevents the zener 42 from acting as a conducting path that would directly charge the capacitor 38 from the DC source and destroy the zener. The isolation diode 40 installed in the discharge path ensures that the capacitor 38 will charge only through the series charging resistor 36 or charging diode 40. The reduced zener 42 and isolation diode 40 voltage conducting level eliminate the need to utilize the isolation diode 52 in the charging path of FIG. 3. In actual practice the zener diode 42 could be replaced with a string of 2 or more diodes 40, 68 as shown in FIG. 6 or even a MOV 64 as shown in FIG. 5 and FIG. 8. A 1 watt zener is very low in cost when compared to the cost of a 10 ampere sensitive gate SCR 56 FIG. 3 and support components and manufacturing required to provide the same voltage switching and necessary threshold to prevent the formentioned problems of spiking and oscillation. The current production value of the zener diode is 4.7 volts. Bleeder resistor 54 of FIG. 3 has been eliminated from the production circuit because with the removal of diode 52 a direct discharge path exist through charging resistor 36 and the balancing/ bleeder resistors 32, 34 of diagram 2. FIG. 3 does show a possible series bleed down path through resistors 58 and 60 but the actual manufacturing value of these resistors combined is well over 800 Kilo ohms and the time required for bleed down of the storage capacator by this path is not considered effective for saftey reasons.
An adequate bleed down path is provided for the circuits of diagram 8,9 and 10 by the direct conducting path of diode 40, and either the MOV 64, the additional diode 68, the transient voltage protector 66 and the bleeder/ balancing resistors 32 and 34 of diagram 2. The capacitor discharge paths will work with other filter capacitor bleeder means.

Claims (4)

I claim:
1. An anti-oscillation circuit to provide DC electrical energy from a DC storage means to a load comprising: a main power source means providing power to a DC converter means, a charging means for charging said DC storage means connected to a node disposed between said main power source means and said DC converter means, and a discharge means for discharging said DC storage means and connected in parallel with said charging means;
said DC storage means providing stored DC electrical energy to said DC converter means through said discharge means during momentary interruption of said main power source means, said DC charging means also providing a discharging path to allow residual energy of said DC storage means to dissipate through said DC charging means, after said power source means has been interrupted and said discharge means has disconnected said storage means from said DC converter means due to the depletion of electrical energy of the storage means,
said residual energy of the DC storage means being dissipated through the charging means prevents the DC power converter means from producing intermittent output power pulses and spikes.
2. The anti-oscillation circuit of claim 1, wherein said charging means comprises only a resistor wherein a first end of said resistor is directly connected to said node and a second end of said resistor is directly connected to said DC storage means,
said discharging means comprising a diode and a zener diode connected together in series wherein the cathode of said diode is directly connected to said first end of said resistor and the anode of said diode is directly connected to the anode of said zener diode and the cathode of said zener diode is connected to said second end of said resistor.
3. An anti-oscillation circuit of claim 1, wherein said main power supply comprises a fullwave voltage doubler; and wherein said DC converter means supplies power to said loads.
4. An anti-oscillation circuit of claim 1, wherein said electrical storage means comprises a capacitor.
US08/671,141 1996-06-27 1996-06-27 Capacator storage circuit for sustaining a DC converter Expired - Fee Related US5796182A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/671,141 US5796182A (en) 1996-06-27 1996-06-27 Capacator storage circuit for sustaining a DC converter
TW85115182A TW469685B (en) 1996-06-27 1996-12-07 Capacitor storage circuit for sustaining a DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/671,141 US5796182A (en) 1996-06-27 1996-06-27 Capacator storage circuit for sustaining a DC converter

Publications (1)

Publication Number Publication Date
US5796182A true US5796182A (en) 1998-08-18

Family

ID=24693287

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/671,141 Expired - Fee Related US5796182A (en) 1996-06-27 1996-06-27 Capacator storage circuit for sustaining a DC converter

Country Status (2)

Country Link
US (1) US5796182A (en)
TW (1) TW469685B (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094036A (en) * 1995-12-05 2000-07-25 Siemens Aktiengesellschaft Electrical power supply with low-loss inrush current limiter and step-up converter circuit
US6121694A (en) * 1996-12-05 2000-09-19 Alcatel Back-up power supply serving to compensate temporarily for main power supply deficiency
US6157553A (en) * 1997-05-30 2000-12-05 Siemens Aktiengesellschaft Osterreich System for maintaining electric power during a momentary power interruption
US20010007134A1 (en) * 2000-01-05 2001-07-05 Shigefumi Odaohhara Power supply unit and computer
US6288918B1 (en) * 1998-11-16 2001-09-11 Alcatel Switched power converter with hold-up time and harmonics reduction
US6388392B1 (en) * 1999-03-23 2002-05-14 Hubbell Incorporated System for providing auxiliary power to lighting unit for heavy equipment having a direct current power supply and no uninterruptible power supply
US6630750B2 (en) * 1999-12-16 2003-10-07 Jomahip, Llc Spare bus power plant
US20040227494A1 (en) * 2003-05-15 2004-11-18 Cal Swanson Constant voltage discharge device
US20050057100A1 (en) * 2003-09-12 2005-03-17 Crusius Steven Carl DC power backup
US20080179961A1 (en) * 2007-01-26 2008-07-31 Kimball Jonathan W Apparatus and method for controlling a power supply
US20090110214A1 (en) * 2007-10-30 2009-04-30 Litovsky Roman N Controlled charging and use of power source
US20110083733A1 (en) * 2009-10-12 2011-04-14 SolarBridge Technologies Power inverter docking system for photovoltaic modules
US8174856B2 (en) 2011-04-27 2012-05-08 Solarbridge Technologies, Inc. Configurable power supply assembly
US8279649B2 (en) 2010-10-11 2012-10-02 Solarbridge Technologies, Inc. Apparatus and method for controlling a power inverter
US8284574B2 (en) 2011-10-17 2012-10-09 Solarbridge Technologies, Inc. Method and apparatus for controlling an inverter using pulse mode control
US8325499B2 (en) 2007-10-11 2012-12-04 Solarbridge Technologies, Inc. Methods for minimizing double-frequency ripple power in single-phase power conditioners
US20130027005A1 (en) * 2010-03-09 2013-01-31 Universidad Del Pais Vasco- Euskal Herriko Unibertsitatea System for eliminating current surges in electronic systems and equipment having intermittent current consumption
US8503200B2 (en) 2010-10-11 2013-08-06 Solarbridge Technologies, Inc. Quadrature-corrected feedforward control apparatus and method for DC-AC power conversion
US8611107B2 (en) 2011-04-27 2013-12-17 Solarbridge Technologies, Inc. Method and system for controlling a multi-stage power inverter
US8824178B1 (en) 2009-12-31 2014-09-02 Solarbridge Technologies, Inc. Parallel power converter topology
US20140278168A1 (en) * 2013-03-14 2014-09-18 Medtronic, Inc. Elective replacement indication generation
US8842454B2 (en) 2010-11-29 2014-09-23 Solarbridge Technologies, Inc. Inverter array with localized inverter control
US8922185B2 (en) 2011-07-11 2014-12-30 Solarbridge Technologies, Inc. Device and method for global maximum power point tracking
US9043669B1 (en) 2012-05-18 2015-05-26 Bitmicro Networks, Inc. Distributed ECC engine for storage media
US9065354B2 (en) 2011-04-27 2015-06-23 Sunpower Corporation Multi-stage power inverter for power bus communication
US9093919B2 (en) 2009-07-31 2015-07-28 Sunpower Corporation Apparatus for converting direct current to alternating current using a frequency converter
US9099187B2 (en) 2009-09-14 2015-08-04 Bitmicro Networks, Inc. Reducing erase cycles in an electronic storage device that uses at least one erase-limited memory device
US9160408B2 (en) 2010-10-11 2015-10-13 Sunpower Corporation System and method for establishing communication with an array of inverters
US20150340890A1 (en) * 2014-05-21 2015-11-26 Dialog Semiconductor Inc. Power Supply with Fast Discharging for Configurable Output Voltage
US9276635B2 (en) 2012-06-29 2016-03-01 Sunpower Corporation Device, system, and method for communicating with a power inverter using power line communications
US20160124029A1 (en) * 2014-11-04 2016-05-05 Stmicroelectronics S.R.L. Detection circuit for an active discharge circuit of an x-capacitor, related active discharge circuit, integrated circuit and method
US9372755B1 (en) 2011-10-05 2016-06-21 Bitmicro Networks, Inc. Adaptive power cycle sequences for data recovery
US9400617B2 (en) 2013-03-15 2016-07-26 Bitmicro Networks, Inc. Hardware-assisted DMA transfer with dependency table configured to permit-in parallel-data drain from cache without processor intervention when filled or drained
US9423457B2 (en) 2013-03-14 2016-08-23 Bitmicro Networks, Inc. Self-test solution for delay locked loops
US9430386B2 (en) 2013-03-15 2016-08-30 Bitmicro Networks, Inc. Multi-leveled cache management in a hybrid storage system
US9467063B2 (en) 2010-11-29 2016-10-11 Sunpower Corporation Technologies for interleaved control of an inverter array
US9501436B1 (en) 2013-03-15 2016-11-22 Bitmicro Networks, Inc. Multi-level message passing descriptor
US9564835B2 (en) 2013-03-15 2017-02-07 Sunpower Corporation Inverter communications using output signal
US9584044B2 (en) 2013-03-15 2017-02-28 Sunpower Corporation Technologies for converter topologies
US9672178B1 (en) 2013-03-15 2017-06-06 Bitmicro Networks, Inc. Bit-mapped DMA transfer with dependency table configured to monitor status so that a processor is not rendered as a bottleneck in a system
US9720603B1 (en) 2013-03-15 2017-08-01 Bitmicro Networks, Inc. IOC to IOC distributed caching architecture
US9734067B1 (en) 2013-03-15 2017-08-15 Bitmicro Networks, Inc. Write buffering
US9798688B1 (en) 2013-03-15 2017-10-24 Bitmicro Networks, Inc. Bus arbitration with routing and failover mechanism
US9811461B1 (en) 2014-04-17 2017-11-07 Bitmicro Networks, Inc. Data storage system
US9842024B1 (en) 2013-03-15 2017-12-12 Bitmicro Networks, Inc. Flash electronic disk with RAID controller
US9858084B2 (en) 2013-03-15 2018-01-02 Bitmicro Networks, Inc. Copying of power-on reset sequencer descriptor from nonvolatile memory to random access memory
US9875205B1 (en) 2013-03-15 2018-01-23 Bitmicro Networks, Inc. Network of memory systems
US9916213B1 (en) 2013-03-15 2018-03-13 Bitmicro Networks, Inc. Bus arbitration with routing and failover mechanism
US9934045B1 (en) 2013-03-15 2018-04-03 Bitmicro Networks, Inc. Embedded system boot from a storage device
US9952991B1 (en) 2014-04-17 2018-04-24 Bitmicro Networks, Inc. Systematic method on queuing of descriptors for multiple flash intelligent DMA engine operation
US9971524B1 (en) 2013-03-15 2018-05-15 Bitmicro Networks, Inc. Scatter-gather approach for parallel data transfer in a mass storage system
US10025736B1 (en) 2014-04-17 2018-07-17 Bitmicro Networks, Inc. Exchange message protocol message transmission between two devices
US10042792B1 (en) 2014-04-17 2018-08-07 Bitmicro Networks, Inc. Method for transferring and receiving frames across PCI express bus for SSD device
US10055150B1 (en) 2014-04-17 2018-08-21 Bitmicro Networks, Inc. Writing volatile scattered memory metadata to flash device
US10078604B1 (en) 2014-04-17 2018-09-18 Bitmicro Networks, Inc. Interrupt coalescing
US10120586B1 (en) 2007-11-16 2018-11-06 Bitmicro, Llc Memory transaction with reduced latency
US10133686B2 (en) 2009-09-07 2018-11-20 Bitmicro Llc Multilevel memory bus system
US10149399B1 (en) 2009-09-04 2018-12-04 Bitmicro Llc Solid state drive with improved enclosure assembly
US10489318B1 (en) 2013-03-15 2019-11-26 Bitmicro Networks, Inc. Scatter-gather approach for parallel data transfer in a mass storage system
US10552050B1 (en) 2017-04-07 2020-02-04 Bitmicro Llc Multi-dimensional computer storage system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672293A (en) * 1985-08-26 1987-06-09 Crampton Timothy P Power-supply/battery back-up power supply/battery charger combination
US4795914A (en) * 1986-12-26 1989-01-03 Kabushiki Kaisha Toshiba Power supply circuit with backup function
US4810936A (en) * 1986-12-01 1989-03-07 Hubbell Incorporated Failing lamp monitoring and deactivating circuit
US4948987A (en) * 1989-02-21 1990-08-14 Weber Harold J Secondary electric power source produced by current flow through a primary a.c. power circuit
US4956584A (en) * 1985-11-04 1990-09-11 Tomar Electronics, Inc. Strobe trigger pulse generator
US4962354A (en) * 1989-07-25 1990-10-09 Superconductivity, Inc. Superconductive voltage stabilizer
US5012121A (en) * 1990-03-22 1991-04-30 The United States Of America As Represented By The Secretary Of The Navy Electrical power supply for short term power interruptions
US5111058A (en) * 1990-05-23 1992-05-05 Martin Richard A Circuit for sustaining power supply output following momentary interruption of commercial a.c. power
US5258901A (en) * 1992-03-25 1993-11-02 At&T Bell Laboratories Holdover circuit for AC-to-DC converters
US5612581A (en) * 1995-01-18 1997-03-18 Fujitsu Limited Power supply apparatus with a back-up power unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672293A (en) * 1985-08-26 1987-06-09 Crampton Timothy P Power-supply/battery back-up power supply/battery charger combination
US4956584A (en) * 1985-11-04 1990-09-11 Tomar Electronics, Inc. Strobe trigger pulse generator
US4810936A (en) * 1986-12-01 1989-03-07 Hubbell Incorporated Failing lamp monitoring and deactivating circuit
US4795914A (en) * 1986-12-26 1989-01-03 Kabushiki Kaisha Toshiba Power supply circuit with backup function
US4948987A (en) * 1989-02-21 1990-08-14 Weber Harold J Secondary electric power source produced by current flow through a primary a.c. power circuit
US4962354A (en) * 1989-07-25 1990-10-09 Superconductivity, Inc. Superconductive voltage stabilizer
US5012121A (en) * 1990-03-22 1991-04-30 The United States Of America As Represented By The Secretary Of The Navy Electrical power supply for short term power interruptions
US5111058A (en) * 1990-05-23 1992-05-05 Martin Richard A Circuit for sustaining power supply output following momentary interruption of commercial a.c. power
US5258901A (en) * 1992-03-25 1993-11-02 At&T Bell Laboratories Holdover circuit for AC-to-DC converters
US5612581A (en) * 1995-01-18 1997-03-18 Fujitsu Limited Power supply apparatus with a back-up power unit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Silicon Zener diode and Rectifier Handbook, Motorola Inc., pp. 96 1106, Dec. 61. *
Silicon Zener diode and Rectifier Handbook, Motorola Inc., pp. 96-1106, Dec. 61.

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094036A (en) * 1995-12-05 2000-07-25 Siemens Aktiengesellschaft Electrical power supply with low-loss inrush current limiter and step-up converter circuit
US6121694A (en) * 1996-12-05 2000-09-19 Alcatel Back-up power supply serving to compensate temporarily for main power supply deficiency
US6157553A (en) * 1997-05-30 2000-12-05 Siemens Aktiengesellschaft Osterreich System for maintaining electric power during a momentary power interruption
US6288918B1 (en) * 1998-11-16 2001-09-11 Alcatel Switched power converter with hold-up time and harmonics reduction
US6388392B1 (en) * 1999-03-23 2002-05-14 Hubbell Incorporated System for providing auxiliary power to lighting unit for heavy equipment having a direct current power supply and no uninterruptible power supply
US6630750B2 (en) * 1999-12-16 2003-10-07 Jomahip, Llc Spare bus power plant
US20010007134A1 (en) * 2000-01-05 2001-07-05 Shigefumi Odaohhara Power supply unit and computer
US7370213B2 (en) * 2000-01-05 2008-05-06 Lenovo (Singapore) Pte. Ltd. Power supply unit and computer
US20040227494A1 (en) * 2003-05-15 2004-11-18 Cal Swanson Constant voltage discharge device
US7098557B2 (en) * 2003-05-15 2006-08-29 Stmicroelectronics, Inc. Constant voltage discharge device
US20060290207A1 (en) * 2003-05-15 2006-12-28 Stmicroelectronics, Inc. Constant voltage discharge device
US7355303B2 (en) 2003-05-15 2008-04-08 Stmicroelectronics, Inc. Constant voltage discharge device
US20050057100A1 (en) * 2003-09-12 2005-03-17 Crusius Steven Carl DC power backup
US7786619B2 (en) * 2003-09-12 2010-08-31 The Chamberlain Group, Inc. DC power backup
US7982434B2 (en) 2007-01-26 2011-07-19 Solarbridge Technologies, Inc. Apparatus and method for controlling a power supply
US20100283326A1 (en) * 2007-01-26 2010-11-11 Kimball Jonathan W Apparatus and method for controlling a power supply
US20080179961A1 (en) * 2007-01-26 2008-07-31 Kimball Jonathan W Apparatus and method for controlling a power supply
US7663342B2 (en) 2007-01-26 2010-02-16 Solarbridge Technologies, Inc. Apparatus, system, and method for controlling multiple power supplies
US8325499B2 (en) 2007-10-11 2012-12-04 Solarbridge Technologies, Inc. Methods for minimizing double-frequency ripple power in single-phase power conditioners
US20090110214A1 (en) * 2007-10-30 2009-04-30 Litovsky Roman N Controlled charging and use of power source
US7888907B2 (en) * 2007-10-30 2011-02-15 Bose Corporation Controlled charging and use of power source
US10120586B1 (en) 2007-11-16 2018-11-06 Bitmicro, Llc Memory transaction with reduced latency
US9225256B2 (en) 2009-07-31 2015-12-29 Sunpower Corporation Apparatus and method for controlling DC-AC power conversion
US9093919B2 (en) 2009-07-31 2015-07-28 Sunpower Corporation Apparatus for converting direct current to alternating current using a frequency converter
US10149399B1 (en) 2009-09-04 2018-12-04 Bitmicro Llc Solid state drive with improved enclosure assembly
US10133686B2 (en) 2009-09-07 2018-11-20 Bitmicro Llc Multilevel memory bus system
US10082966B1 (en) 2009-09-14 2018-09-25 Bitmicro Llc Electronic storage device
US9484103B1 (en) * 2009-09-14 2016-11-01 Bitmicro Networks, Inc. Electronic storage device
US9099187B2 (en) 2009-09-14 2015-08-04 Bitmicro Networks, Inc. Reducing erase cycles in an electronic storage device that uses at least one erase-limited memory device
US8462518B2 (en) 2009-10-12 2013-06-11 Solarbridge Technologies, Inc. Power inverter docking system for photovoltaic modules
US20110083733A1 (en) * 2009-10-12 2011-04-14 SolarBridge Technologies Power inverter docking system for photovoltaic modules
US8929094B2 (en) 2009-10-12 2015-01-06 Solarbridge Technologies, Inc. Power inverter docking system for photovoltaic modules
US8824178B1 (en) 2009-12-31 2014-09-02 Solarbridge Technologies, Inc. Parallel power converter topology
US20130027005A1 (en) * 2010-03-09 2013-01-31 Universidad Del Pais Vasco- Euskal Herriko Unibertsitatea System for eliminating current surges in electronic systems and equipment having intermittent current consumption
US9041362B2 (en) * 2010-03-09 2015-05-26 Universidad Del Pais Vasco—Euskal Herriko Unibertsitatea System for eliminating current surges in electronic systems and equipment having intermittent current consumption
US8503200B2 (en) 2010-10-11 2013-08-06 Solarbridge Technologies, Inc. Quadrature-corrected feedforward control apparatus and method for DC-AC power conversion
US8817510B2 (en) 2010-10-11 2014-08-26 Solarbridge Technologies, Inc. Apparatus and method for controlling a power inverter
US10483795B2 (en) 2010-10-11 2019-11-19 Enphase Energy, Inc. System and method for establishing communication with an array of inverters
US9160408B2 (en) 2010-10-11 2015-10-13 Sunpower Corporation System and method for establishing communication with an array of inverters
US8279649B2 (en) 2010-10-11 2012-10-02 Solarbridge Technologies, Inc. Apparatus and method for controlling a power inverter
US9467063B2 (en) 2010-11-29 2016-10-11 Sunpower Corporation Technologies for interleaved control of an inverter array
US8842454B2 (en) 2010-11-29 2014-09-23 Solarbridge Technologies, Inc. Inverter array with localized inverter control
US9263183B2 (en) 2011-04-27 2016-02-16 Sunpower Corporation Modular photovoltaic power supply assembly
US8193788B2 (en) 2011-04-27 2012-06-05 Solarbridge Technologies, Inc. Method and device for controlling a configurable power supply to provide AC and/or DC power output
US8174856B2 (en) 2011-04-27 2012-05-08 Solarbridge Technologies, Inc. Configurable power supply assembly
US8461813B2 (en) 2011-04-27 2013-06-11 Solarbridge Technologies Inc. Method and device for controlling a configurable power supply to provide AC and/or DC power output
US8456876B2 (en) 2011-04-27 2013-06-04 Solarbridge Technologies, Inc. Configurable power supply assembly
US8599587B2 (en) 2011-04-27 2013-12-03 Solarbridge Technologies, Inc. Modular photovoltaic power supply assembly
US8611107B2 (en) 2011-04-27 2013-12-17 Solarbridge Technologies, Inc. Method and system for controlling a multi-stage power inverter
US9065354B2 (en) 2011-04-27 2015-06-23 Sunpower Corporation Multi-stage power inverter for power bus communication
US10050446B2 (en) 2011-07-11 2018-08-14 Sunpower Corporation Device and method for global maximum power point tracking
US8922185B2 (en) 2011-07-11 2014-12-30 Solarbridge Technologies, Inc. Device and method for global maximum power point tracking
US9372755B1 (en) 2011-10-05 2016-06-21 Bitmicro Networks, Inc. Adaptive power cycle sequences for data recovery
US10180887B1 (en) 2011-10-05 2019-01-15 Bitmicro Llc Adaptive power cycle sequences for data recovery
US8284574B2 (en) 2011-10-17 2012-10-09 Solarbridge Technologies, Inc. Method and apparatus for controlling an inverter using pulse mode control
US8737100B2 (en) 2011-10-17 2014-05-27 Solarbridge Technologies, Inc. Method and apparatus for controlling an inverter using pulse mode control
US9043669B1 (en) 2012-05-18 2015-05-26 Bitmicro Networks, Inc. Distributed ECC engine for storage media
US9996419B1 (en) 2012-05-18 2018-06-12 Bitmicro Llc Storage system with distributed ECC capability
US9276635B2 (en) 2012-06-29 2016-03-01 Sunpower Corporation Device, system, and method for communicating with a power inverter using power line communications
US9423457B2 (en) 2013-03-14 2016-08-23 Bitmicro Networks, Inc. Self-test solution for delay locked loops
US20140278168A1 (en) * 2013-03-14 2014-09-18 Medtronic, Inc. Elective replacement indication generation
US9977077B1 (en) 2013-03-14 2018-05-22 Bitmicro Llc Self-test solution for delay locked loops
US9934160B1 (en) 2013-03-15 2018-04-03 Bitmicro Llc Bit-mapped DMA and IOC transfer with dependency table comprising plurality of index fields in the cache for DMA transfer
US9400617B2 (en) 2013-03-15 2016-07-26 Bitmicro Networks, Inc. Hardware-assisted DMA transfer with dependency table configured to permit-in parallel-data drain from cache without processor intervention when filled or drained
US10489318B1 (en) 2013-03-15 2019-11-26 Bitmicro Networks, Inc. Scatter-gather approach for parallel data transfer in a mass storage system
US9842024B1 (en) 2013-03-15 2017-12-12 Bitmicro Networks, Inc. Flash electronic disk with RAID controller
US9858084B2 (en) 2013-03-15 2018-01-02 Bitmicro Networks, Inc. Copying of power-on reset sequencer descriptor from nonvolatile memory to random access memory
US9875205B1 (en) 2013-03-15 2018-01-23 Bitmicro Networks, Inc. Network of memory systems
US9916213B1 (en) 2013-03-15 2018-03-13 Bitmicro Networks, Inc. Bus arbitration with routing and failover mechanism
US9734067B1 (en) 2013-03-15 2017-08-15 Bitmicro Networks, Inc. Write buffering
US9934045B1 (en) 2013-03-15 2018-04-03 Bitmicro Networks, Inc. Embedded system boot from a storage device
US10423554B1 (en) 2013-03-15 2019-09-24 Bitmicro Networks, Inc Bus arbitration with routing and failover mechanism
US9971524B1 (en) 2013-03-15 2018-05-15 Bitmicro Networks, Inc. Scatter-gather approach for parallel data transfer in a mass storage system
US9720603B1 (en) 2013-03-15 2017-08-01 Bitmicro Networks, Inc. IOC to IOC distributed caching architecture
US9672178B1 (en) 2013-03-15 2017-06-06 Bitmicro Networks, Inc. Bit-mapped DMA transfer with dependency table configured to monitor status so that a processor is not rendered as a bottleneck in a system
US10013373B1 (en) 2013-03-15 2018-07-03 Bitmicro Networks, Inc. Multi-level message passing descriptor
US10404190B2 (en) 2013-03-15 2019-09-03 Enphase Energy, Inc. Inverter communications using output signal
US10210084B1 (en) 2013-03-15 2019-02-19 Bitmicro Llc Multi-leveled cache management in a hybrid storage system
US10042799B1 (en) 2013-03-15 2018-08-07 Bitmicro, Llc Bit-mapped DMA transfer with dependency table configured to monitor status so that a processor is not rendered as a bottleneck in a system
US9584044B2 (en) 2013-03-15 2017-02-28 Sunpower Corporation Technologies for converter topologies
US9798688B1 (en) 2013-03-15 2017-10-24 Bitmicro Networks, Inc. Bus arbitration with routing and failover mechanism
US9430386B2 (en) 2013-03-15 2016-08-30 Bitmicro Networks, Inc. Multi-leveled cache management in a hybrid storage system
US10120694B2 (en) 2013-03-15 2018-11-06 Bitmicro Networks, Inc. Embedded system boot from a storage device
US9564835B2 (en) 2013-03-15 2017-02-07 Sunpower Corporation Inverter communications using output signal
US9501436B1 (en) 2013-03-15 2016-11-22 Bitmicro Networks, Inc. Multi-level message passing descriptor
US9811461B1 (en) 2014-04-17 2017-11-07 Bitmicro Networks, Inc. Data storage system
US10055150B1 (en) 2014-04-17 2018-08-21 Bitmicro Networks, Inc. Writing volatile scattered memory metadata to flash device
US10042792B1 (en) 2014-04-17 2018-08-07 Bitmicro Networks, Inc. Method for transferring and receiving frames across PCI express bus for SSD device
US10025736B1 (en) 2014-04-17 2018-07-17 Bitmicro Networks, Inc. Exchange message protocol message transmission between two devices
US9952991B1 (en) 2014-04-17 2018-04-24 Bitmicro Networks, Inc. Systematic method on queuing of descriptors for multiple flash intelligent DMA engine operation
US10078604B1 (en) 2014-04-17 2018-09-18 Bitmicro Networks, Inc. Interrupt coalescing
US10063073B2 (en) * 2014-05-21 2018-08-28 Dialog Semiconductor Inc. USB power converter with bleeder circuit for fast correction of output voltage by discharging output capacitor
US20150340890A1 (en) * 2014-05-21 2015-11-26 Dialog Semiconductor Inc. Power Supply with Fast Discharging for Configurable Output Voltage
US20160124029A1 (en) * 2014-11-04 2016-05-05 Stmicroelectronics S.R.L. Detection circuit for an active discharge circuit of an x-capacitor, related active discharge circuit, integrated circuit and method
US10345348B2 (en) * 2014-11-04 2019-07-09 Stmicroelectronics S.R.L. Detection circuit for an active discharge circuit of an X-capacitor, related active discharge circuit, integrated circuit and method
US10890606B2 (en) 2014-11-04 2021-01-12 Stmicroelectronics S.R.L. Detection circuit for an active discharge circuit of an X-capacitor, related active discharge circuit, integrated circuit and method
US11750010B2 (en) 2014-11-04 2023-09-05 Stmicroelectronics S.R.L. Detection circuit for an active discharge circuit of an X-capacitor, related active discharge circuit, integrated circuit and method
US10552050B1 (en) 2017-04-07 2020-02-04 Bitmicro Llc Multi-dimensional computer storage system

Also Published As

Publication number Publication date
TW469685B (en) 2001-12-21

Similar Documents

Publication Publication Date Title
US5796182A (en) Capacator storage circuit for sustaining a DC converter
US4864482A (en) Conversion circuit for limiting inrush current
US5111058A (en) Circuit for sustaining power supply output following momentary interruption of commercial a.c. power
US5615097A (en) Transient over voltage protection circuit for electrical power converters
US5815383A (en) High voltage start-up circuit and method therefor
US8472216B2 (en) Circuit arrangement and control circuit for a power-supply unit, computer power-supply unit and method for switching a power-supply unit
EP1226648B1 (en) Protecting switching power supply from fault condition
US5869935A (en) Electronic ballast with inverter protection circuit
EP0966086A2 (en) Integrated protection circuit, method of providing current-limiting and short-circuit protection and converter employing the same
JPH04331458A (en) Dc charge pump booster circuit having variable charging capacity
US6385060B1 (en) Switching power supply with reduced energy transfer during a fault condition
JP2007014193A (en) Efficient rush current limiting circuit having dual-gate two-way hemt
US5978195A (en) Circuit protection arrangement
US5822166A (en) DC power bus voltage transient suppression circuit
EP0625291A1 (en) A boost-converter with low losses.
WO2000067367A1 (en) Activating de-activating switching regulator in regulation cycle
US6600668B1 (en) Crowbar circuit for low output voltage DC/DC converters
JPH02246740A (en) Power back-up circuit
US7907380B2 (en) High power integrating power conditioner
US5877614A (en) Electronic switch-mode power supply
US6111365A (en) Fast starting, surge limited, electronic ballast
US6208194B1 (en) Synchronous rectifier MOFSET with controlled channel voltage drop
US6577485B2 (en) Ultra-wide input range power supply for circuit protection devices
CN109217655B (en) Power supply capable of prolonging maintenance time after power failure
JPH1014134A (en) Stabilizing power circuit

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20020818