US5037502A - Process for producing a single-crystal substrate of silicon carbide - Google Patents

Process for producing a single-crystal substrate of silicon carbide Download PDF

Info

Publication number
US5037502A
US5037502A US06/683,651 US68365184A US5037502A US 5037502 A US5037502 A US 5037502A US 68365184 A US68365184 A US 68365184A US 5037502 A US5037502 A US 5037502A
Authority
US
United States
Prior art keywords
silicon carbide
crystal
gas
process according
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/683,651
Inventor
Akira Suzuki
Katsuki Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Assigned to SHARP KABUSHIKI KAISHA, (OKANO, KOHSAKU, EXECUTIVE DIRECTOR) reassignment SHARP KABUSHIKI KAISHA, (OKANO, KOHSAKU, EXECUTIVE DIRECTOR) ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FURUKAWA, KATSUKI, SUZUKI, AKIRA
Application granted granted Critical
Publication of US5037502A publication Critical patent/US5037502A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/931Silicon carbide semiconductor

Definitions

  • the present invention relates to a process for producing a single-crystal substrate of ⁇ -silicon carbide (SiC).
  • Silicon carbide is a semiconductor material, which has a wide forbidden energy gap of 2.2 to 3.3 electronvolts (eV) and is thermally, chemically and mechanically stable and also has a great resistance to radiation damage
  • Both p-type and n-type silicon carbides have good stability, which is rare for wide-gap semiconductors, making it useful as a semiconductor material for optoelectronic devices utilizing visible light of short wavelengths, for electronic devices operable at high temperatures or with great electric power, for highly reliable semiconductor devices, for radiation-resistant devices, etc., and usable in an environment where difficulties are encountered with devices made of conventional semiconductor materials, thereby greatly enlarging the range of applications for semiconductor devices.
  • Silicon carbide has many varient structures (i.e., polytype structures), which are classified into two types, and ⁇ - and ⁇ -silicon carbides.
  • ⁇ -silicon carbide has a hexagonal or rhombohedral crystal structure having a forbidden energy gap of as wide as 2.9 to 3.3 eV, while ⁇ -silicon carbide has a cubic crystal structure having an energy gap of as narrow as 2.2 eV. Therefore, ⁇ -silicon carbide is a semiconductor material which can be used as optoelectronic devices such as light emitting devices, photo detectors, etc., for visible light of short wavelengths including blue and near-ultraviolet light.
  • ⁇ -silicon carbide allows the production of a crystal having both p-type and n-type conductivities thereby enabling the formation of a p-n junction structure, so that light emitting devices and photo detectors having excellent optical and electrical characteristics can be produced.
  • ⁇ -silicon carbide is so stable thermally, chemically and mechanically that it can make possible an enlarged range of applications for semiconductor devices as compared with other semiconductor materials.
  • silicon carbide including ⁇ -types and ⁇ -types
  • silicon carbide has not yet been placed in actual use because the technique for growing silicon carbide crystals with good reproducibility which is required for commercially producing high quality silicon carbide substrates having a large surface area has yet to be developed.
  • a single-crystal layer of ⁇ -silicon carbide is epitaxially grown by the liquid phase epitaxial (LPE) technique and/or the chemical vapor deposition (CVD) technique to form a p-n junction, resulting in blue emitting diodes.
  • LPE liquid phase epitaxial
  • CVD chemical vapor deposition
  • light emitting diodes can be produced by the liquid phase epitaxial technique or the chemical vapor deposition technique as mentioned above, no process for commercially producing high quality ⁇ -type single-crystal substrates having a large surface area is known so that it is impossible to produce industrially the ⁇ -type single-crystal substrates in large quantities.
  • This process includes growing a thin film of silicon carbide on a silicon substrate by the CVD method at a low temperature and then growing a single-crystal film of silicon carbide on the said thin film by the CVD method at a higher temperature, thereby allowing the production of large-sized single-crystal substrates of ⁇ -silicon carbide having a high quality on a single-crystal substrate of silicon which is available at low cost, while controlling the polytype, the concentration of impurities, the electrical conductivity, the size, the shape or the like of single-crystals.
  • the process of this invention which overcomes the above-discussed and numerous other disadvantages and deficiencies of the prior art, comprises growing a single-crystal film of ⁇ -silicon carbide on a single-crystal film of ⁇ -silicon carbide as a growth substrate.
  • the growth substrate is, in a preferred embodiment, heated at a temperature in the range of 1,400° C. to 1,900° C.
  • a mixture of monosilane gas and propane gas is, in a preferred embodiment, supplied as a source gas to the surface of said growth substrate with hydrogen gas as a carrier gas.
  • the single-crystal film of ⁇ -silicon carbide is, in a preferred embodiment, produced by covering the surface of a silicon substrate with a uniform thin film of ⁇ -silicon silicon carbide grown in accordance with the CVD method at a low temperature, and thereafter growing a single-crystal film of ⁇ -silicon carbide on the thin film in accordance with the CVD method at a higher temperature than in the preceding step.
  • the invention described herein makes possible the objects of (1) providing a process for producing a high quality single-crystal substrate of ⁇ -silicon carbide having a large surface area, and being producible on a commercial scale; (2) providing a practical approach to stably supply the said single-crystal substrate of ⁇ -silicon carbide as optoelectronic device materials for light emitting devices, photo detectors, etc., for visible light of short wavelengths including blue and near-ultraviolet light; and (3) providing the possibility of an enlarged range of applications of the said single-crystal to semiconductor devices by utilizing the thermal, chemical and mechanical stability of the said single-crystal.
  • FIG. 1 is a sectional side view of a growth apparatus for growing an ⁇ -SiC single-crystal film on a ⁇ -SiC single-crystal substrate according to this invention.
  • FIG. 2 is a representation of a side view of a composite according to the process of the invention.
  • the crystal quality of the epitaxially grown layer which results from a heteroepitaxial growth namely, a semiconductor crystal is grown on a foreign single-crystal substrate by an epitaxial technique
  • the crystal quality of the epitaxially grown layer deteriorates to the difference in size between the crystal lattices thereof, i.e., lattice mismatch.
  • the size of the crystal lattice exhibits the interatomic distances of each atom.
  • ⁇ -silicon carbide is different from ⁇ -silicon carbide in crystal structure, crystal lattice is almost the same size as ⁇ -silicon carbide so that the quality of a single-crystal of ⁇ -silicon carbide grown on a single-crystal substrate of ⁇ -silicon carbide does not deteriorate.
  • the ⁇ -silicon carbide substrate consists of the same atoms as the growth layer of ⁇ -silicon carbide, so the growth layer is not contaminated with impurities from the substrate thereby obtaining a single-crystal film of ⁇ -silicon carbide having a good quality and parity.
  • FIG. 1 shows a growth apparatus used for the growth of a single-crystal film of ⁇ -silicon carbide on a single-crystal substrate of ⁇ -silicon carbide according to this invention.
  • the apparatus comprises a water-cooled horizontal quartz double reactor tube 1 which is internally provided with a graphite susceptor supported by a graphite support bar 3.
  • the reactor tube 1 is wound with a working coil 4, through which a radio-frequency current is passed to heat the susceptor 2 by induction.
  • the susceptor 2 may be positioned horizontally or is suitably inclined.
  • the reactor tube 1 has at its one end a branch tube 5 providing a gas inlet. Through branch tubes 6, 7, cooling water is supplied to the interior of the outer tube of the reactor tube 1.
  • the other end of the reactor tube 1 is sealed by a stainless steel flange 8, a holding plate 9, bolts 10, nuts 11 and an O-ring 12.
  • the flange 8 has a branch tube 13 providing a gas outlet.
  • a fixing portion 14 in the flange 8 fixes the graphite bar 3.
  • a single-crystal substrate 15 of ⁇ -silicon carbide having a thickness of about 30 ⁇ m and a surface area of 1 cm ⁇ 1 cm is placed on the susceptor 2. Crystals are grown in the following manner using this apparatus:
  • the air within the reactor tube 1 is replaced by hydrogen gas, and a radio-frequency current is passed through the working coil 4 to heat the graphite sample table 2 and raise the temperature of the ⁇ -silicon carbide substrate 15 up to 1,400° C.-1,900° C., preferably 1,500° C.-1,700° C.
  • a source gas monosilane (SiH 4 ) is fed to the reactor tube 1 at a rate of 0.1-0.4 cm 3 /min. and propane (C 3 H 8 ) at 0.1-0.4 cm 3 /min.
  • Hydrogen is fed to the reactor tube 1 at a rate of 1-5/min. as a carrier gas. These gases are fed through the branch tube 5 to the reactor tube 1 for 1 hour.
  • a single-crystal film of ⁇ -silicon carbide having a thickness of about 2 ⁇ m is formed over the entire surface of the ⁇ -silicon carbide substrate.
  • the single-crystal of ⁇ -silicon carbide as a growth substrate for the single-crystal film of ⁇ -silicon carbide may be removed, if desired, by an etching technique, etc. to use the remaining single-crystal of ⁇ -silicon carbide as a semiconductor material.
  • the ⁇ -SiC single-crystal substrate to be used as a growth substrate for the ⁇ -SiC single-crystal can be formed, as disclosed in U.S. Pat. application Ser. No. 603,454 filed in the name of Sharp Kabushiki Kaisha on Apr. 24, 1984, by covering the surface of a silicon substrate with a uniform thin film of silicon carbide grown in accordance with the CVD method at a low temperature, and thereafter growing a single-crystal film of ⁇ -silicon carbide on the thin film in accordance with the CVD method at a higher temperature than in the preceding step.
  • low temperature means a temperature which is lower than the temperature for growing a ⁇ -SiC single-crystal and at which a thin SiC film can be formed. More specifically, the low temperature is in the range of 800° C. to 1,200° C., preferably 1,000° C. to 1,100° C., at atmospheric pressure, while the temperature for growing the ⁇ -SiC single crystal is 1,200° C. to 1,400° C., preferably 1,300° C. to 1,350° C., at atmospheric pressure.
  • the CVD method is conducted by supplying a mixture of silicon gas and carbon gas as a source gas to the surface of a silicon substrate.
  • the gas mixture is composed of a silicon source (such as SiH 4 , SiCl 4 , SiH 2 Cl 2 , (CH 3 ) 3 SiCl or (CH 3 ) 2 SiCl 2 ) and a carbon source (such as CCl 4 , CH 4 , C 3 H 8 or C 2 H 6 ).
  • a carrier gas such as hydrogen or argon may be used.
  • the gas mixture is usually fed at a rate of 0.01 to 10 c.c/min., preferably 0.05 to 5 c.c./min..
  • the mixing ratio of the silicon source to the carbon source is generally 0.01 to 10, preferably 0.5 to 5, in terms of the Si/C atomic number ratio.
  • the time taken for the formation of the thin film is 0.5 to 10 minutes, preferably 1 to 5 minutes.
  • the thickness of the thin film is about 10 to 1,000 ⁇ , preferably about 100 to about 500 ⁇ , which can be controlled primarily by adjusting the supply of the gas mixture and the film forming time.
  • a single-crystal film of ⁇ -SiC is formed on the thin SiC film by the CVD method at an elevated growth temperature of 1,200° C. to 1,400° C. at atmospheric pressure.
  • the ⁇ -SiC single-crystal film is suitably 1 to 50 ⁇ m, practically 0.5 to 5 ⁇ m or 10 to 50 ⁇ m, in thickness.
  • a film of such thickness can be obtained generally by supplying the gas mixture at a rate of 0.01 to 10 c.c./min., preferably 0.05 to 5 c.c./min., in a mixing ratio (Si/C atomic number ratio) of 0.01 to 10, preferably 0.5 to 5, for 0.5 to 15 hours (growing time).
  • FIG. 2 is a representation of a side view of a composite according to the process of the invention.
  • a silicon substrate 21 is covered with a uniform thin film of ⁇ -silicon carbide 22 deposited by chemical vapor deposition at a temperature too low to grow single-crystal ⁇ -silicon carbide. That is, the first film of ⁇ -silicon carbide 22 covering the silicon substrate is not single-crystal ⁇ -silicon carbide.
  • Another film, of single-crystal ⁇ -silicon carbide 23 then covers the first film.
  • a single-crystal film of ⁇ -silicon carbide 24 may be grown on the single-crystal film of ⁇ -silicon carbide 23.
  • the silicon substrate covered with the said ⁇ -SiC single-crystal film is, of course, removed using an acid, etc.
  • Either the ⁇ -SiC substrate or the ⁇ -SiC film can be produced by liquid phase epitaxy, the sublimation method, the deposition method, molecular beam epitaxy, the spattering method or the like, in addition to the CVD method.

Abstract

A process for producing a single-crystal substrate of silicon carbide comprises growing a single-crystal film of α-silicon carbide on a single-crystal film of β-silicon carbide as a growth substrate, thereby obtaining a high quality single-crystal substrate of α-silicon carbide having a large area, which is producible on a commercial scale.

Description

BACKGROUND OF THE INVENTION
1. Field of the invention:
The present invention relates to a process for producing a single-crystal substrate of α-silicon carbide (SiC).
2. Description of the prior art
Silicon carbide is a semiconductor material, which has a wide forbidden energy gap of 2.2 to 3.3 electronvolts (eV) and is thermally, chemically and mechanically stable and also has a great resistance to radiation damage Both p-type and n-type silicon carbides have good stability, which is rare for wide-gap semiconductors, making it useful as a semiconductor material for optoelectronic devices utilizing visible light of short wavelengths, for electronic devices operable at high temperatures or with great electric power, for highly reliable semiconductor devices, for radiation-resistant devices, etc., and usable in an environment where difficulties are encountered with devices made of conventional semiconductor materials, thereby greatly enlarging the range of applications for semiconductor devices. Whereas other wide-gap semiconductor materials such as semiconductors made of II-VI groups, III-V groups, etc., generally contain a heavy metal as a main component therein and thus entail problems of pollution and availability of raw materials, silicon carbide is free of these problems.
Silicon carbide has many varient structures (i.e., polytype structures), which are classified into two types, and α- and β-silicon carbides. α-silicon carbide has a hexagonal or rhombohedral crystal structure having a forbidden energy gap of as wide as 2.9 to 3.3 eV, while β-silicon carbide has a cubic crystal structure having an energy gap of as narrow as 2.2 eV. Therefore, α-silicon carbide is a semiconductor material which can be used as optoelectronic devices such as light emitting devices, photo detectors, etc., for visible light of short wavelengths including blue and near-ultraviolet light. As conventional semiconductor materials which are usable as light emitting devices for visible light of short wavelengths including blue, zinc sulfide (ZnS), zinc selenide (ZnSe), gallium nitride (GaN), etc., have been used. However, crystals having either p-type or n-type conductivity can be obtained therefrom. On the contrary, α-silicon carbide allows the production of a crystal having both p-type and n-type conductivities thereby enabling the formation of a p-n junction structure, so that light emitting devices and photo detectors having excellent optical and electrical characteristics can be produced. Moreover, α-silicon carbide is so stable thermally, chemically and mechanically that it can make possible an enlarged range of applications for semiconductor devices as compared with other semiconductor materials.
Despite these many advantages and capabilities, silicon carbide (including α-types and β-types) has not yet been placed in actual use because the technique for growing silicon carbide crystals with good reproducibility which is required for commercially producing high quality silicon carbide substrates having a large surface area has yet to be developed.
Conventional processes for preparing single-crystal substrates of silicon carbide on a laboratory scale include the so-called sublimation method (i.e., the Lely method) wherein silicon carbide powder is sublimed in a graphite crucible at 2,200° C. to 2,600° C. and recrystallized to obtain a silicon carbide substrate, the so-called solution method wherein silicon or a mixture of silicon with impurities such as iron, cobalt, platinum or the like is melted in a graphite crucible to obtain a silicon carbide substrate, and the Acheson method which is generally used for commercially producing abrasives and by which silicon carbide substrates are obtained incidentally. On the α-silicon carbide substrates prepared by these crystal growth methods, a single-crystal layer of α-silicon carbide is epitaxially grown by the liquid phase epitaxial (LPE) technique and/or the chemical vapor deposition (CVD) technique to form a p-n junction, resulting in blue emitting diodes.
Although a large number of crystals can be obtained by either the sublimation method or the solution method, it is difficult to prepare large single-crystal substrates of silicon carbide since many crystal nuclei occur at the initial stage of crystal growth. Silicon carbide substrates incidentally obtained by the Acheson method are so inferior in purity and crystallinity that they cannot be used as semiconductor materials. Even though large single-crystal substrates are obtained, they are only incidental and therefore, insignificant to commercial production of silicon carbide substrates. Thus, according to these conventional processes for the production of single-crystal substrates of silicon carbide, it is difficult to control the size, shape and quality, of single-crystal substrates of silicon carbide on an industrial scale. Although on the α-silicon carbide substrates obtained by the above-mentioned crystal growth methods, light emitting diodes can be produced by the liquid phase epitaxial technique or the chemical vapor deposition technique as mentioned above, no process for commercially producing high quality α-type single-crystal substrates having a large surface area is known so that it is impossible to produce industrially the α-type single-crystal substrates in large quantities.
In recent years, the inventors have completed a process for growing large-sized single-crystals of β-type silicon carbide of good quality on a single-crystal substrate of silicon by the chemical vapor deposition technique and filed a Japanese Patent Application No. 58-76842 (76842/1983) which corresponds to U.S. Pat. application Ser. No. 603,454. This process includes growing a thin film of silicon carbide on a silicon substrate by the CVD method at a low temperature and then growing a single-crystal film of silicon carbide on the said thin film by the CVD method at a higher temperature, thereby allowing the production of large-sized single-crystal substrates of β-silicon carbide having a high quality on a single-crystal substrate of silicon which is available at low cost, while controlling the polytype, the concentration of impurities, the electrical conductivity, the size, the shape or the like of single-crystals.
SUMMARY OF THE INVENTION
The process of this invention which overcomes the above-discussed and numerous other disadvantages and deficiencies of the prior art, comprises growing a single-crystal film of α-silicon carbide on a single-crystal film of β-silicon carbide as a growth substrate.
The growth substrate is, in a preferred embodiment, heated at a temperature in the range of 1,400° C. to 1,900° C.
A mixture of monosilane gas and propane gas is, in a preferred embodiment, supplied as a source gas to the surface of said growth substrate with hydrogen gas as a carrier gas.
The single-crystal film of β-silicon carbide is, in a preferred embodiment, produced by covering the surface of a silicon substrate with a uniform thin film of β-silicon silicon carbide grown in accordance with the CVD method at a low temperature, and thereafter growing a single-crystal film of β-silicon carbide on the thin film in accordance with the CVD method at a higher temperature than in the preceding step.
Thus, the invention described herein makes possible the objects of (1) providing a process for producing a high quality single-crystal substrate of α-silicon carbide having a large surface area, and being producible on a commercial scale; (2) providing a practical approach to stably supply the said single-crystal substrate of α-silicon carbide as optoelectronic device materials for light emitting devices, photo detectors, etc., for visible light of short wavelengths including blue and near-ultraviolet light; and (3) providing the possibility of an enlarged range of applications of the said single-crystal to semiconductor devices by utilizing the thermal, chemical and mechanical stability of the said single-crystal.
BRIEF DESCRIPTION OF THE DRAWINGS
This invention may be better understood and its numerous objects and advantages will become apparent to those skilled in the art by reference to the accompanying drawing as follows:
FIG. 1 is a sectional side view of a growth apparatus for growing an α-SiC single-crystal film on a β-SiC single-crystal substrate according to this invention.
FIG. 2 is a representation of a side view of a composite according to the process of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In general, the crystal quality of the epitaxially grown layer which results from a heteroepitaxial growth (namely, a semiconductor crystal is grown on a foreign single-crystal substrate by an epitaxial technique) deteriorates to the difference in size between the crystal lattices thereof, i.e., lattice mismatch. The size of the crystal lattice exhibits the interatomic distances of each atom.
Although β-silicon carbide is different from α-silicon carbide in crystal structure, crystal lattice is almost the same size as α-silicon carbide so that the quality of a single-crystal of α-silicon carbide grown on a single-crystal substrate of β-silicon carbide does not deteriorate. In addition, the β-silicon carbide substrate consists of the same atoms as the growth layer of α-silicon carbide, so the growth layer is not contaminated with impurities from the substrate thereby obtaining a single-crystal film of α-silicon carbide having a good quality and parity.
FIG. 1 shows a growth apparatus used for the growth of a single-crystal film of α-silicon carbide on a single-crystal substrate of β-silicon carbide according to this invention. The apparatus comprises a water-cooled horizontal quartz double reactor tube 1 which is internally provided with a graphite susceptor supported by a graphite support bar 3. The reactor tube 1 is wound with a working coil 4, through which a radio-frequency current is passed to heat the susceptor 2 by induction. The susceptor 2 may be positioned horizontally or is suitably inclined. The reactor tube 1 has at its one end a branch tube 5 providing a gas inlet. Through branch tubes 6, 7, cooling water is supplied to the interior of the outer tube of the reactor tube 1. The other end of the reactor tube 1 is sealed by a stainless steel flange 8, a holding plate 9, bolts 10, nuts 11 and an O-ring 12. The flange 8 has a branch tube 13 providing a gas outlet. A fixing portion 14 in the flange 8 fixes the graphite bar 3. A single-crystal substrate 15 of β-silicon carbide having a thickness of about 30 μm and a surface area of 1 cm×1 cm is placed on the susceptor 2. Crystals are grown in the following manner using this apparatus:
The air within the reactor tube 1 is replaced by hydrogen gas, and a radio-frequency current is passed through the working coil 4 to heat the graphite sample table 2 and raise the temperature of the β-silicon carbide substrate 15 up to 1,400° C.-1,900° C., preferably 1,500° C.-1,700° C. As a source gas, monosilane (SiH4) is fed to the reactor tube 1 at a rate of 0.1-0.4 cm3 /min. and propane (C3 H8) at 0.1-0.4 cm3 /min. Hydrogen is fed to the reactor tube 1 at a rate of 1-5/min. as a carrier gas. These gases are fed through the branch tube 5 to the reactor tube 1 for 1 hour. A single-crystal film of α-silicon carbide having a thickness of about 2 μm is formed over the entire surface of the β-silicon carbide substrate. The single-crystal of β-silicon carbide as a growth substrate for the single-crystal film of α-silicon carbide may be removed, if desired, by an etching technique, etc. to use the remaining single-crystal of α-silicon carbide as a semiconductor material.
The β-SiC single-crystal substrate to be used as a growth substrate for the α-SiC single-crystal can be formed, as disclosed in U.S. Pat. application Ser. No. 603,454 filed in the name of Sharp Kabushiki Kaisha on Apr. 24, 1984, by covering the surface of a silicon substrate with a uniform thin film of silicon carbide grown in accordance with the CVD method at a low temperature, and thereafter growing a single-crystal film of β-silicon carbide on the thin film in accordance with the CVD method at a higher temperature than in the preceding step.
The terminology "low temperature" herein used means a temperature which is lower than the temperature for growing a β-SiC single-crystal and at which a thin SiC film can be formed. More specifically, the low temperature is in the range of 800° C. to 1,200° C., preferably 1,000° C. to 1,100° C., at atmospheric pressure, while the temperature for growing the β-SiC single crystal is 1,200° C. to 1,400° C., preferably 1,300° C. to 1,350° C., at atmospheric pressure.
The CVD method is conducted by supplying a mixture of silicon gas and carbon gas as a source gas to the surface of a silicon substrate. The gas mixture is composed of a silicon source (such as SiH4, SiCl4, SiH2 Cl2, (CH3)3 SiCl or (CH3)2 SiCl2) and a carbon source (such as CCl4, CH4, C3 H8 or C2 H6). A carrier gas such as hydrogen or argon may be used. For the low-temperature CVD method, the gas mixture is usually fed at a rate of 0.01 to 10 c.c/min., preferably 0.05 to 5 c.c./min.. The mixing ratio of the silicon source to the carbon source is generally 0.01 to 10, preferably 0.5 to 5, in terms of the Si/C atomic number ratio. The time taken for the formation of the thin film is 0.5 to 10 minutes, preferably 1 to 5 minutes. The thickness of the thin film is about 10 to 1,000 Å, preferably about 100 to about 500 Å, which can be controlled primarily by adjusting the supply of the gas mixture and the film forming time.
Subsequently a single-crystal film of β-SiC is formed on the thin SiC film by the CVD method at an elevated growth temperature of 1,200° C. to 1,400° C. at atmospheric pressure. The β-SiC single-crystal film is suitably 1 to 50 μm, practically 0.5 to 5 μm or 10 to 50 μm, in thickness. A film of such thickness can be obtained generally by supplying the gas mixture at a rate of 0.01 to 10 c.c./min., preferably 0.05 to 5 c.c./min., in a mixing ratio (Si/C atomic number ratio) of 0.01 to 10, preferably 0.5 to 5, for 0.5 to 15 hours (growing time).
FIG. 2 is a representation of a side view of a composite according to the process of the invention. A silicon substrate 21 is covered with a uniform thin film of β-silicon carbide 22 deposited by chemical vapor deposition at a temperature too low to grow single-crystal β-silicon carbide. That is, the first film of β-silicon carbide 22 covering the silicon substrate is not single-crystal β-silicon carbide. Another film, of single-crystal β-silicon carbide 23 then covers the first film. Finally, a single-crystal film of α-silicon carbide 24 may be grown on the single-crystal film of β-silicon carbide 23.
Prior to the use of the resulting β-SiC single-crystal film as a growth substrate for the α-SiC single-crystal, the silicon substrate covered with the said β-SiC single-crystal film is, of course, removed using an acid, etc.
Either the β-SiC substrate or the α-SiC film can be produced by liquid phase epitaxy, the sublimation method, the deposition method, molecular beam epitaxy, the spattering method or the like, in addition to the CVD method.
It is understood that various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the scope and spirit of this invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but rather that the claims be construed as encompassing all the features of patentable novelty which reside in the present invention, including all features which would be treated as equivalents thereof by those skilled in the art to which this invention pertains.

Claims (15)

What is claimed is:
1. A process for producing a single-crystal substrate of silicon carbide comprising growing a single-crystal film of α-silicon carbide on a single-crystal film of β-silicon carbide as a growth substrate.
2. A process according to claim 1, wherein said growth substrate is heated at a temperature in the range of 1,400° C. to 1,900° C.
3. A process according to claim 1, wherein a mixture of monosilane gas and propane gas is supplied as a source gas to the surface of said growth substrate with hydrogen gas as a carrier gas.
4. A process of producing a single-crystal substrate of silicon carbide comprising steps for:
producing a single-crystal film of β-silicon carbide as a growth substrate by (1) covering the surface of a silicon substrate with a uniform thin film of β-silicon carbide grown by chemical vapor deposition at a temperature lower than the temperature for growing a β-silicon carbide single crystal, and (2) growing a single-crystal film of β-silicon carbide on the thin film by chemical vapor deposition at a higher temperature than in the preceding step, and
growing a single-crystal film of α-silicon carbide on said single-crystal film of β-silicon carbide as a growth substrate.
5. A process according to claim 4, wherein said low temperature is in the range of 800° C. to 1,200° C. and said higher temperature is in the range of 1,200° C. to 1,400° C., at atmospheric pressure.
6. A process according to claim 4, wherein said low temperature is in the range of 1,000° C. to 1,100° C. and said higher temperature is in the range of 1,300° C. to 1,350° C., at atmospheric pressure.
7. A process according to claim 4, wherein each of the two steps by the CVD method is conducted by supplying a mixture of silicon gas and carbon gas to the surface of the silicon substrate.
8. A process according to claim 7, wherein said silicon gas is one selected from the groups consisting of gases of SiH4, SiCl4, SiH2 Cl2, (CH3)3 SiCl and (CH3)2 SiCl2, and said carbon gas is one selected from the groups consisting of gases of CCl4, CH4, C3 H8 and C2 H6.
9. A process according to claim 7, wherein the mixing ratio of the mixture of the silicon gas and the carbon gas is 0.01 to 10 as the Si/C atomic number ratio.
10. A process according to claim 7, wherein said mixing ratio is in the range of 0.5 to 5.
11. A process according to claim 4, wherein said thin film of silicon carbide grown by the CVD method at a low temperature has a thickness in the range of 10 to 1,000 Å.
12. A process according to claim 4, wherein said thin film has a thickness in the range of 100 to 500 Å.
13. A process according to claim 4, wherein said single-crystal film of β-silicon carbide on the thin film has a thickness in the range of 0.1 to 50 μm.
14. A process according to claim 4, wherein said single-crystal film of β-silicon carbide has a thickness in the range of 0.5 to 5 μm or 10 to 50 μm.
15. A process according to claim 4, wherein each of the two steps by the CVD method is conducted by supplying a mixture of silicon gas, carbon gas, and a carrier gas to the surface of the silicon substrate.
US06/683,651 1983-12-29 1984-12-19 Process for producing a single-crystal substrate of silicon carbide Expired - Lifetime US5037502A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58246512A JPS60145992A (en) 1983-12-29 1983-12-29 Preparation of silicon carbide single crystal base
JP58-246512 1983-12-29

Publications (1)

Publication Number Publication Date
US5037502A true US5037502A (en) 1991-08-06

Family

ID=17149491

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/683,651 Expired - Lifetime US5037502A (en) 1983-12-29 1984-12-19 Process for producing a single-crystal substrate of silicon carbide

Country Status (3)

Country Link
US (1) US5037502A (en)
JP (1) JPS60145992A (en)
DE (1) DE3446956A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288365A (en) * 1991-03-22 1994-02-22 Sharp Kabushiki Kaisha Method for growing a silicon carbide single crystal
US5433167A (en) * 1992-02-04 1995-07-18 Sharp Kabushiki Kaisha Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
US5463978A (en) * 1993-01-25 1995-11-07 Ohio Aerospace Institute Compound semiconductor and controlled doping thereof
US5937316A (en) * 1996-06-21 1999-08-10 Toshiba Ceramics Co., Ltd. SiC member and a method of fabricating the same
US5944890A (en) * 1996-03-29 1999-08-31 Denso Corporation Method of producing single crystals and a seed crystal used in the method
US6110279A (en) * 1996-03-29 2000-08-29 Denso Corporation Method of producing single-crystal silicon carbide
US6268061B1 (en) * 1998-02-17 2001-07-31 Nippon Pillar Packaging Co., Ltd. Objects constructed of silicon carbide
US6270573B1 (en) 1997-08-27 2001-08-07 Matsushita Electric Industrial Co., Ltd. Silicon carbide substrate, and method for producing the substrate, and semiconductor device utilizing the substrate
US6530990B2 (en) * 1997-03-24 2003-03-11 Cree, Inc. Susceptor designs for silicon carbide thin films
US6706114B2 (en) 2001-05-21 2004-03-16 Cree, Inc. Methods of fabricating silicon carbide crystals
US20050034756A1 (en) * 2003-06-12 2005-02-17 Tohoku University Method for forming a Si film, Si film and solar battery
EP0859879B2 (en) 1995-10-04 2006-08-23 Norstel AB A method for epitaxially growing objects and a device for such a growth
EP0835336B2 (en) 1995-06-26 2009-09-16 Norstel AB A device and a method for epitaxially growing objects by cvd
EP2390298A1 (en) 2006-09-27 2011-11-30 H.B. Fuller Licensing & Financing, Inc. Hot melt pressure sensitive adhesive composition that includes vegetable wax and articles including the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243000A (en) * 1985-04-18 1986-10-29 Sharp Corp Production of substrate of silicon carbide single crystal
US5319220A (en) * 1988-01-20 1994-06-07 Sharp Kabushiki Kaisha Silicon carbide semiconductor device
DE4109005C1 (en) * 1991-03-19 1992-09-10 Cs Halbleiter- Und Solartechnologie Gmbh, 8000 Muenchen, De
DE4121798A1 (en) * 1991-07-02 1993-01-14 Daimler Benz Ag MULTILAYERED MONOCRISTALLINE SILICON CARBIDE COMPOSITION
JP3214868B2 (en) * 1991-07-19 2001-10-02 ローム株式会社 Method for manufacturing heterojunction bipolar transistor
DE4234508C2 (en) * 1992-10-13 1994-12-22 Cs Halbleiter Solartech Method for producing a wafer with a monocrystalline silicon carbide layer
TW337513B (en) * 1992-11-23 1998-08-01 Cvd Inc Chemical vapor deposition-produced silicon carbide having improved properties and preparation process thereof
JP3491436B2 (en) * 1996-03-29 2004-01-26 株式会社デンソー Method for producing silicon carbide single crystal
US9212305B2 (en) * 2009-03-02 2015-12-15 Nalco Company Compositions for inhibiting the formation of hydrate agglomerates

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2324287A1 (en) * 1972-09-20 1974-03-28 Motonosuke Arai JOINT SEAL FOR EXPANSION JOINTS IN CONCRETE SLAB ROAD CONSTRUCTIONS
US3956032A (en) * 1974-09-24 1976-05-11 The United States Of America As Represented By The United States National Aeronautics And Space Administration Process for fabricating SiC semiconductor devices
US3960619A (en) * 1973-12-28 1976-06-01 Consortium Fur Elecktrochemische Industrie Gmbh Process for preparing layers of silicon carbide on a silicon substrate
JPS55116700A (en) * 1979-02-27 1980-09-08 Sharp Corp Production of silicon carbide crystal layer
US4455385A (en) * 1975-06-30 1984-06-19 General Electric Company Silicon carbide sintered body
US4512825A (en) * 1983-04-12 1985-04-23 The United States Of America As Represented By The Secretary Of The Navy Recovery of fragile layers produced on substrates by chemical vapor deposition
US4623425A (en) * 1983-04-28 1986-11-18 Sharp Kabushiki Kaisha Method of fabricating single-crystal substrates of silicon carbide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6814915A (en) * 1968-10-18 1970-04-21
JPS5443200A (en) * 1977-09-13 1979-04-05 Sharp Corp Production of silicon carbide substrate
JPS6045159B2 (en) * 1978-02-03 1985-10-08 シャープ株式会社 Method for manufacturing silicon carbide crystal layer
DE3002671C2 (en) * 1979-01-25 1983-04-21 Sharp K.K., Osaka Process for making a silicon carbide substrate
JPS56140021A (en) * 1980-03-31 1981-11-02 Mitsubishi Electric Corp Manufacture of silicon carbide thin film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2324287A1 (en) * 1972-09-20 1974-03-28 Motonosuke Arai JOINT SEAL FOR EXPANSION JOINTS IN CONCRETE SLAB ROAD CONSTRUCTIONS
US3960619A (en) * 1973-12-28 1976-06-01 Consortium Fur Elecktrochemische Industrie Gmbh Process for preparing layers of silicon carbide on a silicon substrate
US3956032A (en) * 1974-09-24 1976-05-11 The United States Of America As Represented By The United States National Aeronautics And Space Administration Process for fabricating SiC semiconductor devices
US4455385A (en) * 1975-06-30 1984-06-19 General Electric Company Silicon carbide sintered body
JPS55116700A (en) * 1979-02-27 1980-09-08 Sharp Corp Production of silicon carbide crystal layer
US4512825A (en) * 1983-04-12 1985-04-23 The United States Of America As Represented By The Secretary Of The Navy Recovery of fragile layers produced on substrates by chemical vapor deposition
US4623425A (en) * 1983-04-28 1986-11-18 Sharp Kabushiki Kaisha Method of fabricating single-crystal substrates of silicon carbide

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288365A (en) * 1991-03-22 1994-02-22 Sharp Kabushiki Kaisha Method for growing a silicon carbide single crystal
US5433167A (en) * 1992-02-04 1995-07-18 Sharp Kabushiki Kaisha Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
US5463978A (en) * 1993-01-25 1995-11-07 Ohio Aerospace Institute Compound semiconductor and controlled doping thereof
EP0835336B2 (en) 1995-06-26 2009-09-16 Norstel AB A device and a method for epitaxially growing objects by cvd
EP0859879B2 (en) 1995-10-04 2006-08-23 Norstel AB A method for epitaxially growing objects and a device for such a growth
US5944890A (en) * 1996-03-29 1999-08-31 Denso Corporation Method of producing single crystals and a seed crystal used in the method
US6110279A (en) * 1996-03-29 2000-08-29 Denso Corporation Method of producing single-crystal silicon carbide
US5937316A (en) * 1996-06-21 1999-08-10 Toshiba Ceramics Co., Ltd. SiC member and a method of fabricating the same
US20080257262A1 (en) * 1997-03-24 2008-10-23 Cree, Inc. Susceptor Designs for Silicon Carbide Thin Films
US6530990B2 (en) * 1997-03-24 2003-03-11 Cree, Inc. Susceptor designs for silicon carbide thin films
US6270573B1 (en) 1997-08-27 2001-08-07 Matsushita Electric Industrial Co., Ltd. Silicon carbide substrate, and method for producing the substrate, and semiconductor device utilizing the substrate
US6268061B1 (en) * 1998-02-17 2001-07-31 Nippon Pillar Packaging Co., Ltd. Objects constructed of silicon carbide
US6706114B2 (en) 2001-05-21 2004-03-16 Cree, Inc. Methods of fabricating silicon carbide crystals
US20040144299A1 (en) * 2001-05-21 2004-07-29 Stephan Mueller Methods of fabricating silicon carbide crystals
US7135072B2 (en) 2001-05-21 2006-11-14 Cree, Inc. Methods of fabricating silicon carbide crystals
US20070022945A1 (en) * 2001-05-21 2007-02-01 Stephan Mueller Methods of fabricating silicon carbide crystals
US7501022B2 (en) 2001-05-21 2009-03-10 Cree, Inc. Methods of fabricating silicon carbide crystals
US20050034756A1 (en) * 2003-06-12 2005-02-17 Tohoku University Method for forming a Si film, Si film and solar battery
EP2390298A1 (en) 2006-09-27 2011-11-30 H.B. Fuller Licensing & Financing, Inc. Hot melt pressure sensitive adhesive composition that includes vegetable wax and articles including the same

Also Published As

Publication number Publication date
JPS60145992A (en) 1985-08-01
JPH0138080B2 (en) 1989-08-10
DE3446956C2 (en) 1992-09-24
DE3446956A1 (en) 1985-07-11

Similar Documents

Publication Publication Date Title
US5037502A (en) Process for producing a single-crystal substrate of silicon carbide
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
US4897149A (en) Method of fabricating single-crystal substrates of silicon carbide
US7449065B1 (en) Method for the growth of large low-defect single crystals
US5679153A (en) Method for reducing micropipe formation in the epitaxial growth of silicon carbide and resulting silicon carbide structures
US4865659A (en) Heteroepitaxial growth of SiC on Si
US6053973A (en) Single crystal SiC and a method of producing the same
US5230768A (en) Method for the production of SiC single crystals by using a specific substrate crystal orientation
EP0069206B1 (en) Single crystals of xsic.(1-x)aln
Dhanaraj et al. Silicon carbide crystals—Part I: Growth and characterization
JPS61243000A (en) Production of substrate of silicon carbide single crystal
JPS6120514B2 (en)
JP2002293694A (en) Silicon carbide single crystal ingot and method of manufacturing for the same
JPS61291495A (en) Production of silicon carbide single crystal base
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6152119B2 (en)
JPS61222992A (en) Production of single crystal substrate of silicon carbide
JPH0364480B2 (en)
Lu et al. Device quality Hg1− x Cd x Te material by low‐temperature precracking metalorganic chemical vapor deposition
JPS6120515B2 (en)
JPH0327515B2 (en)
JPS5830280B2 (en) Method for manufacturing silicon carbide crystal layer
Matsunami Silicon carbide films
Skowronski et al. Silicon Carbide Epitaxy
JPH1160392A (en) Silicon carbide composite material, its production and single crystal silicon carbide

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHARP KABUSHIKI KAISHA, (OKANO, KOHSAKU, EXECUTIVE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SUZUKI, AKIRA;FURUKAWA, KATSUKI;REEL/FRAME:004350/0300

Effective date: 19841214

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12