US4730076A - Process for producing α-aspartyl-phenylalanine ester - Google Patents

Process for producing α-aspartyl-phenylalanine ester Download PDF

Info

Publication number
US4730076A
US4730076A US06/942,146 US94214686A US4730076A US 4730076 A US4730076 A US 4730076A US 94214686 A US94214686 A US 94214686A US 4730076 A US4730076 A US 4730076A
Authority
US
United States
Prior art keywords
aspartyl
general formula
phenylalanine
group
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/942,146
Inventor
Tadashi Fujii
Hiroshi Yagiuchi
Akikazu Mitsunobu
Shigeru Aoki
Makoto Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP60283048A external-priority patent/JPS62145100A/en
Priority claimed from JP61004251A external-priority patent/JPS62164692A/en
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Assigned to NIPPON KAYAKU KABUSHIKI KAISHA, A CORP. OF JAPAN reassignment NIPPON KAYAKU KABUSHIKI KAISHA, A CORP. OF JAPAN ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AOKI, SHIGERU, FUJII, TADASHI, MITSUNOBU, AKIKAZU, TSUDA, MAKOTO, YAGIUCHI, HIROSHI
Application granted granted Critical
Publication of US4730076A publication Critical patent/US4730076A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06104Dipeptides with the first amino acid being acidic
    • C07K5/06113Asp- or Asn-amino acid
    • C07K5/06121Asp- or Asn-amino acid the second amino acid being aromatic or cycloaliphatic
    • C07K5/0613Aspartame

Definitions

  • the present invention relates to ⁇ -aspartyl-phenylalanine ester represented by the general formula (I) ##STR3## wherein R' represents an alkyl group having 1 to 4 carbon atoms.
  • ⁇ -Aspartyl-phenylalanine ester is useful as a low calorie sweetening agent, and have attracted public attention recently.
  • ⁇ -aspartyl-phenylalanine ester represented by the general formula (I) ##STR8## wherein R' is an alkyl group having 1 to 4 carbon atoms, by reducing an N-protected-N-hydroxymethyl- ⁇ -aspartyl-phenylalanine ester represented by the general formula (IV) ##STR9## wherein R represents an organic moiety which can be substituted reductively by hydrogen, and R' is as defined above, with hydrogen gas or formic acid in the presence of a reduction catalyst and an aromatic primary amine.
  • any organic moiety may be used so long as they can be substituted by hydrogen reductively, among those used as a protective group of amino group in the peptide synthesis.
  • substituted or unsubstituted benzyloxy carbonyl groups such as benzyloxycarbonyl group, alkoxybenzyloxycarbonyl groups (e.g., p-methoxybenzyloxycarbonyl group), halogenobenzyloxycarbonyl groups (e.g., p-chlorobenzyloxycarbonyl group), and nitrobenzyloxycarbonyl groups (e.g., p-nitrobenzyloxycarbonyl group).
  • unsubstituted benzyloxycarbonyl group is preferred.
  • R' in the compound represented by the general formula (IV) there may be illustrated a lower alkyl group having 1 to 4 carbon atoms such as methyl, ethyl, propyl, and butyl groups.
  • Reduction reaction of the present invention can be carried out in a solvent in the presence of a reduction catalyst and an aromatic primary amine with hydrogen gas or formic acid under normal pressure or an elevated pressure.
  • any solvents may be used so long as they do not give any adverse effects to the reaction, and there may be illustrated lower alcohols such as methanol, ethanol, propanol, etc., ethers such as tetrahydrofuran, dioxane, etc., ketones such as acetone, methyl ethyl ketone, etc., esters such as methyl acetate, ethyl acetate, propyl acetate, etc., and mixed solvent of water and the above-mentioned organic solvent. Among these, a mixed solvent of water and methanol is specifically preferred. When formic acid is used, there may be also used as solvent water, N,N-dimethylformamide, dimethylsulfoxide, etc.
  • the amount of catalyst is 0.5% by weight or more to the compound represented by the general formula (IV), preferably 0.5 to 40% by weight, more preferably 1 to 15% by weight when hydrogen gas is used, and 5 to 30% by weight when formic acid is used.
  • anilines which may be substituted by a lower alkyl group, a halogen atom, a nitro group or a lower alkoxy group are preferred.
  • lower alkyl-substituted aniline such as o-toluidine, p-toluidine, etc.
  • halogen-substituted aniline such as o-chloroaniline, m-chloroaniline, p-chloroaniline, etc.
  • nitro-substituted aniline such as o-nitroaniline, m-nitroaniline, p-nitroaniline, etc.
  • lower alkoxy aniline such as o-methoxyaniline, m-methoxyaniline, p-methoxyaniline, etc.
  • aniline is preferred.
  • the amount of aromatic primary amine to be used is 0.1 to 3 equivalents, preferably 0.5 to 1.5 equivalents to the compound represented by the general formula (IV).
  • the amount of formic acid used in the present invention is 1 to 10 moles, preferably 1 to 3 moles per mole of the compound represented by the general formula (IV).
  • Reaction temperature depends on the solvent to be used, so that there is no special limitation thereto. However, it is generally within -10° to 80° C., preferably 0° to 40° C.
  • the reaction time is 0.5 to 3 hours.
  • ⁇ -Aspartyl-phenolalanine ester represented by the general formula (I) can be separated from the reaction solution by the following way:
  • reaction solution is heated as it is or together with water to dissolve the product, a catalyst is removed by filtration from the solution, a solvent is concentrated under reduced pressure, and the residue is cooled to solidify it.
  • pH of the reaction solution is adjusted to 1 to 2 with a hydrochloric acid solution to dissolve the product, a catalyst is removed by filtration, and then the filtrate is adjusted to pH of 4.5 to 5.5 with an aqueous ammonia to precipitate the product as crystal, which is then separated by filtration.

Abstract

The present invention relates to a process for producing alpha -aspartyl-phenylalanine ester represented by the general formula <IMAGE> wherein R' represents an alkyl group having 1 to 4 carbon atoms, by reducing an N-protected-N-hydroxymethyl- alpha -aspartyl-phenylalanine ester represented by the general formula <IMAGE> wherein R represents an organic mioety which can be substituted reductively by hydrogen, and R' is as defined above, with hydrogen gas or formic acid, in the presence of a reduction catalyst and an aromatic primary amine. According to the present invention, there can be obtained a high purity alpha -aspartyl-phenylalanine ester with a high yield.

Description

BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
The present invention relates to α-aspartyl-phenylalanine ester represented by the general formula (I) ##STR3## wherein R' represents an alkyl group having 1 to 4 carbon atoms.
α-Aspartyl-phenylalanine ester is useful as a low calorie sweetening agent, and have attracted public attention recently.
2. DESCRIPTION OF THE PRIOR ART
As a process for producing α-aspartyl-phenylalanine ester, there has already been proposed a process which comprises condensing α-[3-substituted-5-oxooxazolidinyl-(4)]acetic acid represented by the general formula (II) ##STR4## wherein R represents an organic moiety which can be substituted reductively by hydrogen, with phenylalanine alkyl ester represented by the general formula (III) ##STR5## (wherein R' is as defined above) to obtain an N-protected-α-aspartyl-phenylalanine ester represented by the general formula (V) ##STR6## (wherein R and R' are as defined above) and reducing the compound (V) in a hydrogen atmosphere to obtain α-aspartyl-phenylalanine ester represented by the general formula (I) (Japanese Patent Publication No. 812/73). However, according to detailed study of the above-mentioned process made by the present inventors, it was found that the condensation of the compound (II) with the compound (III) does not give the compound (V), but give an N-protected-N-hydroxymethyl-α-aspartyl-phenylalanine ester represented by the general formula (IV) mentioned later, and that during reduction step, a hydroxymethyl group of the compound of the general formula (IV) is reduced to form a methyl group to give N-methyl-α-aspartyl-phenylalanine methyl ester (hereinafter referred to as "N-methyl form") as by-product, so that the yield of the compound of the general formula (I) is low.
On the other hand, there has also been proposed a process for producing a compound of the general formula (I) which comprises reducing an N-protected-α-aspartyl-phenylalanine ester represented by the general formula (V) ##STR7## wherein R and R' are as defined above, with formic acid in the presence of a palladium catalyst (EP 99855).
SUMMARY OF THE INVENTION
According to the present invention, there is provided a process for producing α-aspartyl-phenylalanine ester represented by the general formula (I) ##STR8## wherein R' is an alkyl group having 1 to 4 carbon atoms, by reducing an N-protected-N-hydroxymethyl-α-aspartyl-phenylalanine ester represented by the general formula (IV) ##STR9## wherein R represents an organic moiety which can be substituted reductively by hydrogen, and R' is as defined above, with hydrogen gas or formic acid in the presence of a reduction catalyst and an aromatic primary amine.
According to the process of the present invention, there can be obtained a compound represented by the general formula (I) with high purity and high yield, because an N-protected group and N-hydroxymethyl group can be removed simultaneously without forming an N-methyl form as by-product.
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be explained below in more detail.
As the R in the compound represented by the general formula (IV), any organic moiety may be used so long as they can be substituted by hydrogen reductively, among those used as a protective group of amino group in the peptide synthesis. For example, there may be illustrated substituted or unsubstituted benzyloxy carbonyl groups such as benzyloxycarbonyl group, alkoxybenzyloxycarbonyl groups (e.g., p-methoxybenzyloxycarbonyl group), halogenobenzyloxycarbonyl groups (e.g., p-chlorobenzyloxycarbonyl group), and nitrobenzyloxycarbonyl groups (e.g., p-nitrobenzyloxycarbonyl group). Among these, unsubstituted benzyloxycarbonyl group is preferred.
As the R' in the compound represented by the general formula (IV), there may be illustrated a lower alkyl group having 1 to 4 carbon atoms such as methyl, ethyl, propyl, and butyl groups.
As an asymmetric carbon in the compound represented by the general formula (IV), there may be L, D or DL.
Typical examples of the compound represented by the general formula (IV) include
N-Benzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanine methyl ester,
N-Benzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanine ethyl ester,
N-p-Methoxybenzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanine methyl ester,
N-p-Methoxybenzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanine ethyl ester,
N-p-Nitrobenzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanine methyl ester,
N-p-Nitrobenzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanine ethyl ester,
N-p-Chlorobenzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanine methyl ester and
N-p-Chlorobenzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanine ethyl ester.
Reduction reaction of the present invention can be carried out in a solvent in the presence of a reduction catalyst and an aromatic primary amine with hydrogen gas or formic acid under normal pressure or an elevated pressure.
As a solvent used in the present invention, any solvents may be used so long as they do not give any adverse effects to the reaction, and there may be illustrated lower alcohols such as methanol, ethanol, propanol, etc., ethers such as tetrahydrofuran, dioxane, etc., ketones such as acetone, methyl ethyl ketone, etc., esters such as methyl acetate, ethyl acetate, propyl acetate, etc., and mixed solvent of water and the above-mentioned organic solvent. Among these, a mixed solvent of water and methanol is specifically preferred. When formic acid is used, there may be also used as solvent water, N,N-dimethylformamide, dimethylsulfoxide, etc.
As a catalyst, there is no limitation so long as the catalyst can make reduction, but palladium type catalysts are preferred, and palladium-carbon as well as palladium black are specifically preferred. The amount of catalyst is 0.5% by weight or more to the compound represented by the general formula (IV), preferably 0.5 to 40% by weight, more preferably 1 to 15% by weight when hydrogen gas is used, and 5 to 30% by weight when formic acid is used.
As an aromatic primary amine used in the present invention, anilines which may be substituted by a lower alkyl group, a halogen atom, a nitro group or a lower alkoxy group are preferred. Concretely, there may be illustrated aniline, lower alkyl-substituted aniline such as o-toluidine, p-toluidine, etc., halogen-substituted aniline such as o-chloroaniline, m-chloroaniline, p-chloroaniline, etc., nitro-substituted aniline such as o-nitroaniline, m-nitroaniline, p-nitroaniline, etc., lower alkoxy aniline such as o-methoxyaniline, m-methoxyaniline, p-methoxyaniline, etc. Among them, aniline is preferred.
The amount of aromatic primary amine to be used is 0.1 to 3 equivalents, preferably 0.5 to 1.5 equivalents to the compound represented by the general formula (IV).
The amount of formic acid used in the present invention is 1 to 10 moles, preferably 1 to 3 moles per mole of the compound represented by the general formula (IV).
Reaction temperature depends on the solvent to be used, so that there is no special limitation thereto. However, it is generally within -10° to 80° C., preferably 0° to 40° C. The reaction time is 0.5 to 3 hours.
α-Aspartyl-phenolalanine ester represented by the general formula (I) can be separated from the reaction solution by the following way:
The reaction solution is heated as it is or together with water to dissolve the product, a catalyst is removed by filtration from the solution, a solvent is concentrated under reduced pressure, and the residue is cooled to solidify it. Alternatively, pH of the reaction solution is adjusted to 1 to 2 with a hydrochloric acid solution to dissolve the product, a catalyst is removed by filtration, and then the filtrate is adjusted to pH of 4.5 to 5.5 with an aqueous ammonia to precipitate the product as crystal, which is then separated by filtration.
Next, an intended product obtained by Example 1 (mentioned later) and an intended product obtained by the known method (Japanese Patent publication No. 812/73, Example 3, reduction temperature=25 C.) are shown in Table 1 to compare the ratio of the intended product and the by-product (N-methyl form).
              TABLE 1                                                     
______________________________________                                    
            Product                                                       
              Intended                                                    
Method        product  By-product                                         
______________________________________                                    
Present       100%      0%                                                
invention                                                                 
Known          50%     50%                                                
method                                                                    
______________________________________                                    
As is apparent from Table 1, according to the known method, formation of by-product is very much, so that it is difficult to separate the intended product with a high purity. Thus, a purification step is absolutely necessary to obtain an intended product according to the known method. On the contrary, according to the present invention, there is produced no by-product, so that a high purity intended product can be obtained with a high yield, which is an excellent effect of the present invention.
The present invention will be explained below by way of Examples, but the invention is not restricted thereto.
EXAMPLE 1 Preparation of L-N-α-aspartyl-L-phenylalanine methyl ester
In 30 ml of a mixture of methanol and water (8:2), were dissolved 1.5 g (3.28 mmol) of L-N-benzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-L-phenylalanine methyl ester and 0.24 g (2.62 mmol) of aniline. To the mixture, 0.15 g of 5%-palladium-carbon was added and hydrogen gas was passed therethrough for 2 hours while keeping the mixture at 0° to 5° C.
Then, the reaction mixture was heated to 45° to 50° C. to dissolve the crystal formed, a catalyst was removed by filtration, methanol was distilled off under reduced pressure to concentrate the filtrate until 15 ml, which was cooled to 5° to 0° C. to precipitate the product as crystal, which was then separated by filtration to give 0.95 g of the intended compound in the form of crystal (yield, 98.3%).
The resulting product had the same Rf value of TLC (Silica gel, developing solvent, n-butanol/acetic acid/water=4:1:1), IR, NMR, optical rotation and melting point as those of the standard sample separately synthesized.
EXAMPLE 2
Reaction was conducted in the same manner as in Example 1, except that the reduction with hydrogen gas was conducted at 20° to 25° C. in place of 0° to 5° C. to obtain 0.94 g of the intended compound (yield, 97.3%).
EXAMPLE 3 Preparation of L-N-α-aspartyl-L-phenylalanine methyl ester
L-N-benzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-L-phenylalanine, methyl ester (1.5 g, 3.28 mmole) was dissolved in 17.6 ml of a mixture of methanol and water (10:1). Then, 0.61 g (13.12 mmol) of 98%-formic acid, 0.60 g (6.06 mmol) of aniline and 0.15 g of 5%-pallagium-carbon were added to the solution and the mixture was stirred for one hour at room temperature. The reaction solution was then adjusted to pH 2 to 2.5 with 6N-hydrochloric acid to dissolve crystals formed and then a catalyst was removed by filtration. To the filtrate, was added 28%-aqueous ammonia to adjust pH to 4.5 to 5.5, the filtrate was then stirred for one hour at 0° to 5° C. and subjected to filtration to give 1.11 g of the intended compound in the form of crystal (yield, 99.4%). The resulting crystal had the same Rf value of TLC (silicagel, developing solvent, n-butanol/acetic acid/water=4:1:1), IR, NMR, optical rotation and melting point as those of the standard sample separately synthesized.
EXAMPLE 4
Reaction was conducted in the same manner as in Example 3, except that 1.60 g (3.28 mmol) of L-N-p-methoxybenzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanin methyl ester was used in place of L-N-benzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-L-phenylalamine methyl ester. There was obtained 0.92 g of the intended compound (yield, 82.4%).
REFERENCE EXAMPLE Preparation of L-N-Benzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-L-phenylalanine methyl ester
To 55 ml benzene solution containing 8.08 g (80 mmol) of triethylamine, were added 5.58 g (20 mmol) of α-[3-benzyloxycarbonyl-5-oxooxazolidinyl-(4)]-acetic acid and 12.93 g (60 mmol) of phenylalanine methyl ester hydrochloride and dissolved. The resulting solution was stirred for 6 hours at 45° C. The reaction solution was admixed with 60 ml of benzene and extracted twice with 60 ml of water. The aqueous layers were combined, adjusted with 10%-hydrochloric acid to pH of 2 and then extracted twice with 80 ml of ethyl acetate. The ethyl acetate layers were combined, washed with once 40 ml of 1% hydrochloric acid, thrice with 70 ml of 10% saline water, and then the organic layer was dried over anhydrous magnesium sulfate and evaporated under reduced pressure to obtain 8.93 g of the intended compound (yield, 97.5%).

Claims (11)

What is claimed is:
1. A process for producing α-aspartyl-phenylalanine ester represented by the general formula (I) ##STR10## wherein R' represents an alkyl group having 1 to 4 carbon atoms, which comprises reducing an N-protected-N-hydroxymethyl-α-aspartyl-phenylalanine ester represented by the general formula (IV) ##STR11## wherein R represents an organic moiety which can be substituted by hydrogen reductively, and R' is as defined above, with hydrogen gas or formic acid in the presence of a reduction catalyst and an aromatic primary amine.
2. A process according to claim 1, wherein R represents an unsubstituted benzyloxycarbonyl group or a benzyloxycarbonyl group substituted by a halogen atom, a lower alkoxy group, a lower alkyl group or a nitro group, R' represents a methyl group, a reduction catalyst represents a palladium type catalyst, and an aromatic primary amine represents an aniline which may be substituted by a lower alkyl group, a halogen atom, a nitro group or a lower alkoxy group.
3. A process according to claim 2, wherein R represents unsubstituted benzyloxycarbonyl group.
4. A process according to claim 1, wherein an amount of reduction catalyst is 0.5 to 40% by weight of the compound represented by the general formula (IV).
5. A process according to claim 1, wherein an amount of reduction catalyst is 1 to 15% by weight of the compound represented by the general formula (IV), when hydrogen gas is used, and is 5 to 30% by weight, when formic acid is used.
6. A process according to claim 1, wherein the aromatic primary amine is aniline.
7. A process according to claim 1, wherein an amount of the aromatic primary amine is 0.1 to 3 equivalents of the compound represented by the general formula (IV).
8. A process according to claim 1, wherein an amount of formic acid is 1 to 10 times by mol the compound represented by the general formula (IV).
9. A process according to claim 1, wherein the amount of aromatic primary amine is 0.5 to 1.5 equivalents and the amount of formic acid is 1 to 3 times by mol to the compound represented by the general formula (IV).
10. A process for producing α-aspartyl-phenylalanine lower alkyl ester which comprises reducing N-benzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanine lower alkyl ester with hydrogen gas in a mixed solvent of water and a lower alcohol in the presence of palladium-carbon and aniline.
11. A process for producing α-aspartyl-phenylalanine lower alkyl ester which comprises reducing N-benzyloxycarbonyl-N-hydroxymethyl-α-aspartyl-phenylalanine lower alkyl ester with formic acid in a mixed solvent of water and a lower alcohol in the presence of palladium-carbon and aniline.
US06/942,146 1985-12-18 1986-12-16 Process for producing α-aspartyl-phenylalanine ester Expired - Fee Related US4730076A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP60283048A JPS62145100A (en) 1985-12-18 1985-12-18 Novel production of alpha-aspartyl-phenylalanine ester
JP60-283048 1985-12-18
JP61-4251 1986-01-14
JP61004251A JPS62164692A (en) 1986-01-14 1986-01-14 Novel production of alpha-aspartyl-phenylalanine ester

Publications (1)

Publication Number Publication Date
US4730076A true US4730076A (en) 1988-03-08

Family

ID=26337992

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/942,146 Expired - Fee Related US4730076A (en) 1985-12-18 1986-12-16 Process for producing α-aspartyl-phenylalanine ester

Country Status (1)

Country Link
US (1) US4730076A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017418A2 (en) * 1993-12-22 1995-06-29 The Coca-Cola Company NOVEL INTERMEDIATES FOR THE SYNTHESIS OF L-ASPARTYL-D-α-AMINOALKANOYL-(S)-N-α-ALKYLBENZYL AMIDES USEFUL AS ARTIFICIAL SWEETENERS
DE19505933A1 (en) * 1995-02-21 1996-08-22 Degussa Process for the preparation of L-aspartyl-D-alanine-N- (thietan-3-yl) amides
CN101270092B (en) * 2008-04-30 2010-12-08 厦门大学 Method for synthesizing neotame
US10442834B2 (en) 2013-04-04 2019-10-15 Ajinomoto Co., Inc. Deprotection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48812U (en) * 1971-05-25 1973-01-08
US3879372A (en) * 1971-11-19 1975-04-22 Stamicarbon Preparation of aspartyl dipeptide-alkylesters using aqueous solvent
US3933781A (en) * 1973-11-05 1976-01-20 Monsanto Company Process for the preparation of α-L-aspartyl-L-phenylalanine alkyl esters
US4021418A (en) * 1974-12-05 1977-05-03 Ajinomoto Co., Inc. Method of removing formyl groups from N-formyl-amino acid and N-formyl-peptide esters
EP0099855A1 (en) * 1982-07-07 1984-02-01 Orgamol S.A. Process for the preparation of a dipeptide ester from L-aspartic acid
CA1187075A (en) * 1981-02-10 1985-05-14 Yasuo Ariyoshi Method of removing n-formyl group
WO1985002609A1 (en) * 1983-12-08 1985-06-20 Alkaloida Vegyészeti Gyár Preparation of phenyl alanines by hydrogenation of phenyl serines
EP0149263A2 (en) * 1984-01-13 1985-07-24 DE-BI DERIVATI BIOLOGICI INTERNATIONAL S.p.A. Process for preparing alpha-L-aspartyl-L-phenylalanine methyl ester

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48812U (en) * 1971-05-25 1973-01-08
US3879372A (en) * 1971-11-19 1975-04-22 Stamicarbon Preparation of aspartyl dipeptide-alkylesters using aqueous solvent
US3933781A (en) * 1973-11-05 1976-01-20 Monsanto Company Process for the preparation of α-L-aspartyl-L-phenylalanine alkyl esters
US4021418A (en) * 1974-12-05 1977-05-03 Ajinomoto Co., Inc. Method of removing formyl groups from N-formyl-amino acid and N-formyl-peptide esters
CA1187075A (en) * 1981-02-10 1985-05-14 Yasuo Ariyoshi Method of removing n-formyl group
EP0099855A1 (en) * 1982-07-07 1984-02-01 Orgamol S.A. Process for the preparation of a dipeptide ester from L-aspartic acid
WO1985002609A1 (en) * 1983-12-08 1985-06-20 Alkaloida Vegyészeti Gyár Preparation of phenyl alanines by hydrogenation of phenyl serines
EP0149263A2 (en) * 1984-01-13 1985-07-24 DE-BI DERIVATI BIOLOGICI INTERNATIONAL S.p.A. Process for preparing alpha-L-aspartyl-L-phenylalanine methyl ester

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Geiger et al., Chem. Ber. 102,2487 2490 (1969). *
Geiger et al., Chem. Ber. 102,2487-2490 (1969).

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017418A2 (en) * 1993-12-22 1995-06-29 The Coca-Cola Company NOVEL INTERMEDIATES FOR THE SYNTHESIS OF L-ASPARTYL-D-α-AMINOALKANOYL-(S)-N-α-ALKYLBENZYL AMIDES USEFUL AS ARTIFICIAL SWEETENERS
WO1995017418A3 (en) * 1993-12-22 1995-10-19 Coca Cola Co NOVEL INTERMEDIATES FOR THE SYNTHESIS OF L-ASPARTYL-D-α-AMINOALKANOYL-(S)-N-α-ALKYLBENZYL AMIDES USEFUL AS ARTIFICIAL SWEETENERS
DE19505933A1 (en) * 1995-02-21 1996-08-22 Degussa Process for the preparation of L-aspartyl-D-alanine-N- (thietan-3-yl) amides
DE19505933C2 (en) * 1995-02-21 2000-09-21 Degussa Process for the preparation of L-aspartyl-D-alanine-N- (thietan-3-yl) amides
CN101270092B (en) * 2008-04-30 2010-12-08 厦门大学 Method for synthesizing neotame
US10442834B2 (en) 2013-04-04 2019-10-15 Ajinomoto Co., Inc. Deprotection method

Similar Documents

Publication Publication Date Title
KR940006764B1 (en) Process for the preparation of (z)-1-phenyl-1-diethyl amino carbonyl 2-amino methyl cyclo propane hydrochloride
KR0179639B1 (en) New process for preparing formoterol and related compounds
US5110936A (en) Process for the preparation of 3-(lpyroglutamyl)-l-thiazolidine-4-carboxylic acid derivatives
US4730076A (en) Process for producing α-aspartyl-phenylalanine ester
EP0678501B1 (en) Process for producing N-chloroacetylglutamine
US4568754A (en) Processes for the preparation of derivatives of 2-[3-(3-indolyl) 2-amino propionyloxy] acetic acid
US6465677B1 (en) Method for the preparation of N-neohexyl-α-aspartyl-L-phenylalanine methyl ester from imidazolidin-4-one intermediates
CA1211468A (en) Preparation of diamino diphenyl ethers
CN102216303A (en) Process for the preparation of 2-(primary/secondary amino)hydrocarbyl)- carbamoyl-7-oxo-2,6-diaza-bicyclo[3.2.0.]heptane-6-sulfonic acid derivatives
US5952503A (en) Method for producing optically-active 2-piperazinecarboxylic acid derivatives
US4335247A (en) Novel nitrosourea derivatives and process for their production
JP2880744B2 (en) Method for producing α-L-aspartyl-L-phenylalanine ester
US5210231A (en) 4-amino-3-hydroxy-phthalide, and a process for its preparation
JPS6254791B2 (en)
US5565575A (en) Method for the production of 5-cyclohexylmethylhydantoin derivatives
CA1175424A (en) Method for preparing n-¬4-¬¬(2,4-diamino-6- pteridinyl)- methyl|methylamino|benzoyl|glutamic acid and analogues thereto
CA2004606C (en) Process for preparing optically active 2-oxoimidazolidine derivatives
JP2935515B2 (en) 1-Azabicyclo [m, n, 0] alkane derivatives and salts thereof and methods for producing them
EP1358201B1 (en) A process for the preparation of 3-glutamido bile ester derivatives using n-protected methyl pyroglutamate
US4431799A (en) 6&#39;-Modified fortimicin compounds
KR900004218B1 (en) Process for-preparing animo-glycoside antibiotics derivatives
KR890000641B1 (en) Process for the preparation of n-(4-nitro/cyano phenylthio carbarmoyl)-l-asparthyl-l-phenylalaine methylester
KR890001852B1 (en) Process for the preparation of asparaginic acid peptide compounds
JPS62145100A (en) Novel production of alpha-aspartyl-phenylalanine ester
JPH0786102B2 (en) Process for producing optically active 6- (4-imidazolylmethyl) -3-substituted-2,5-piperazinedione

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIPPON KAYAKU KABUSHIKI KAISHA, 11-2, FUJIMI-1-CHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:FUJII, TADASHI;YAGIUCHI, HIROSHI;MITSUNOBU, AKIKAZU;AND OTHERS;REEL/FRAME:004670/0906

Effective date: 19870107

Owner name: NIPPON KAYAKU KABUSHIKI KAISHA, A CORP. OF JAPAN,J

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUJII, TADASHI;YAGIUCHI, HIROSHI;MITSUNOBU, AKIKAZU;AND OTHERS;REEL/FRAME:004670/0906

Effective date: 19870107

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19960313

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362