US3272854A - Cycloaliphatic sulfite esters - Google Patents

Cycloaliphatic sulfite esters Download PDF

Info

Publication number
US3272854A
US3272854A US296107A US29610763A US3272854A US 3272854 A US3272854 A US 3272854A US 296107 A US296107 A US 296107A US 29610763 A US29610763 A US 29610763A US 3272854 A US3272854 A US 3272854A
Authority
US
United States
Prior art keywords
sulfite
tert
cyclohexyl
butylphenoxy
propargyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US296107A
Inventor
Rupert A Covey
Allen E Smith
Winchester L Hubbard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uniroyal Inc
Original Assignee
United States Rubber Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Rubber Co filed Critical United States Rubber Co
Priority to US296107A priority Critical patent/US3272854A/en
Priority to GB16101/64A priority patent/GB1012496A/en
Priority to DE1964U0010732 priority patent/DE1567205B2/en
Priority to FR975767A priority patent/FR1404674A/en
Priority to BE648821D priority patent/BE648821A/xx
Priority to LU46280D priority patent/LU46280A1/xx
Priority to CH787264A priority patent/CH430314A/en
Priority to NL6406854A priority patent/NL124312C/xx
Priority to SE7965/64A priority patent/SE319168B/xx
Priority to BR160747/64A priority patent/BR6460747D0/en
Priority to ES302149A priority patent/ES302149A1/en
Priority to US536621A priority patent/US3463859A/en
Application granted granted Critical
Publication of US3272854A publication Critical patent/US3272854A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C301/00Esters of sulfurous acid
    • C07C301/02Esters of sulfurous acid having sulfite groups bound to carbon atoms of six-membered aromatic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C301/00Esters of sulfurous acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the new compounds of the present invention are useful as insecticides, particularly for the control of mites. They may also be used as plasticizers.
  • R is an aliphatic radical, e.g. alkyl, alkenyl, alkynyl, cycloalkyl, alkoxycycloalkyl, haloalkyl, cyanoallkyl, alkoxyalkyl, or aryloxyalkyl
  • R is an aromatic radical, e.g., phenyl or naphthyl, or a phenyl or naphthyl (aryl) radical having one or more substituents in the aryl nucleus selected from the group consisting of alkyl, cycloalkyl, haloalkyl, alkoxy, halo and nitro
  • R" is an aliphatic radical, e.g.
  • alkyl alkenyl, alkynyl, cycloalkyl, alkoxycycloalkyl, haloalkyl, cyanoalkyl, alkoxyalkyl, aryloxyalkyl or carbalkoxyalkyl, or R is an aromatic radical, e.g.
  • phenyl or naphthyl or a phenyl or naphthyl (aryl) radical having one or more substituents in the aryl nucleus selected from the group consisting of alkyl, cycloalkyl, haloalkyl, alkoxy and halo; and R is a divalent cycloaliphatic radical in which the two valences are on two different carbon atoms, e.g. cycloalkylene, alkyl substituted cycloalkylene or alkenyl substituted cycloalkylene.
  • the aliphatic and aromatic radicals R and R" will generally have not more than 18 carbon atoms each and the cycloaliphatic radical R will generally have 4 to 8 carbon atoms in the cycloalkylene nucleus and contain not more than 12 carbon atoms.
  • R, R and R" are the same as in the above general formula.
  • R and R are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, see-butyl, tert.-buty1, amyl, hexyl, Z-ethylhexyl, octyl, decyl, isodecyl, dodecyl, hexadecyl, octadecyl, allyl, methallyl, alkynyl radicals having 3 to carbon atoms, e.g.
  • R is nitrophenyl.
  • R" is carbethoxymethyl.
  • R are 1,2-cyolohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene, 2,2,4,4-tetramethyl-1,3-cyclobutylene, methyl cyclohexylenes, vinylcyclohexylenes, 1,2-cyclooctylene, 1,2- cyclopentylene.
  • the compounds of the present invention may be prepared by reacting the selected aliphatic or aromatic monohydroxy compound having the formula R"OH with the separately prepared chloro'sulfinate of the selected glycol ether having the formula ROR'OH as illustrated in the following reaction and in Example 1 below.
  • glycol ethers ROR'OH which contain cycloalkylene groups having the two valences in 1,2- or 1,3- or 1,4-relationship may be prepared by reacting an alkalimetal salt of the aliphatic or aromatic hydroxy compound ROH with a chlorocycloalkanol, as illustrated in the following reaction and in Example 4 below:
  • the compounds of the present invention may also be prepared by reacting the selected glycol ether having the formula ROR-OH with the separately prepared chlorosulfinate of the monohydroxy compound R"O'II where the R" is alkyl, cycloalkyl, alkoxycycloalkyl, haloalkyl, cyanoalkyl, alkoxyalkyl, aryloxyalkyl or carbalkoxyalkyl, as illustrated in the following reaction and in Examples 2 and 3 below.
  • the preparation of the sulfite esters is carried out in the presence of an HCl acceptor, such as pyridine, dimethylaniline or trimethylamine, and in a solvent such as benzene, xylene or solvent naphtha.
  • the reaction temperature is generally between 10 C. and 50 C., preferably near 0 C.
  • sulfite diesters of the present invention are:
  • Xylene 500 ml. was added and the mixture was cooled to 100 C. and neutralized with 12.8 g. concentrated sulfuric acid. Some of the xylene was distilled ofi in order to azeotrope out the water formed in the neutralization. The resulting xylene solution of the product is suitable for use in making the chlorosulfinate.
  • the 2-(p-tert.-butylphenoxy)cyclohexyl chlorosulfinate was prepared as follows: The xylene solution of Z-(p-tertbutylphenoxy)cyclohexanol (1653 g. of solution containing 1025 g., 4.13 moles) was warmed to 60 C. whereupon a clear solution was obtained. Thionyl chloride (540 g., 4.54 moles) was added during 30 min. with enough cooling to cause the temperature to drop continuously. The mixture was allowed to stir at 5-10 C. for 2.5 hours and then stored at room temperature for 15 hours. The volatile materials were removed by warming the mixture to 40 C.
  • the 2-(o-toloxy)cyclohexanol was made as follows: o-Cresol (31.6 ml, 32.4 g., 0.3 mole) and 0.3 g. sodium hydroxide were combined and heated to ISO- C. Cyclohexene oxide (29.4 g., 0.3 mole) was added dropwise during 30 min., maintaining this temperature. The mixture was then heated for 30 min. at 160175 C. and was allowed to cool to room temperature. Concentrated sulfuric acid (0.3 ml.) was added to neutralize the solution and the product was distilled; B.P. 107-115 C. (0.4 mm.). Yield, 39.5 g. (64%).
  • the 2-methoxyethyl chlorosulfinate was prepared as follows: Thionyl chloride (80.0 ml., 131. g., 1.1 moles) was added dropwise during 0.5 hour to 78.8 ml. (76.0 g., 1 mole) methyl Cellosolve previously cooled to 05 C. The temperature during the addition was maintained below 10 C. The reaction mixture was allowed to warm to room temperature and stand for hrs. The excess thionyl chloride was removed under reduced pressure and the product distilled; B.P. 85 C. mm.), yield 144.5 g. (91.2%).
  • EXAMPLE 4 The following illustrates the preparation of the 2-(ptert.-butylphenoxy)cyclohexanol intermediate of Example 1 by reacting an alkali metal salt of p-tert.-butylphenol with 2-chlorocyclohexanol.
  • the 2-(p-tert.-butylphenoxy)cyclohexanol so prepared may be reacted as in Example 1 with thionyl chloride to form the 2-(p-tert.- butylphenoxy)cyclohexy1 chlorosulfinate which may be reacted with propargyl alcohol to form the propargyl 2- p-tert.-butylphenoxy cyclohexyl sulfite.
  • the 2-chlorocyclohexanol was prepared as follows: To 62.5 ml. (0.75 mole) concentrated hydrochloric acid was added 49.1 g. (0.5 mole) cyclohexene oxide with stirring during 50 min., keeping the reaction temperature mainly below 10 C. The mixture was cooled to 0 C. and stirred for 40 min. During this time the reaction mixture partially solidified. The mixture was poured over 34.5 g. (0.25 mole) solid potassium carbonate. Ether was added and the two layers were separated. The aqueous layer was washed twice with ether. The ether layers were combined and dried over anhydrous potassium carbonate. The ether was removed and the residue distilled; B.P. 108115 C. (50 mm.). Yield, 42.7 g. (63.3%).
  • the 2-(p-tert.-butylphenoxy)cyclohexanol was prepared as follows: p-tert.-butylphenol (25 g., 0.165 mole), 7.2 g. (0.18 mole) sodium hydroxide, and 115 ml. ethanol were combined and the mixture heated to reflux. A solution of 20.1 g. (0.15 mole) 2-chlorocyclohexanol in 25 ml. ethanol was added during min. Sodium chloride started to precipitate immediately. The mixture was refluxed for 6 hrs. and then filtered. The sodium chloride obtained was washed with a small amount of ethanol and dried; wt. 8.5 g. (97% of the theoretical).
  • EXAMPLE 5 This example illustrates the effectiveness of the chemicals of the present invention for controlling mites.
  • Aqueous suspensions of the chemicals were prepared by adding to 0.2 gram of the chemical one drop (0.03 gram) of a commercial surface-active dispersing agent (isooctylphenyl polyethoxy ethanol) and 1 ml. of acetone, washing into 200 ml. of water, agitating to form a dispersion and diluting with water to the desired concentrations of 1000 ppm. and 200 p.p.m.
  • a commercial surface-active dispersing agent isooctylphenyl polyethoxy ethanol
  • the plants were sprayed with the dispersions of the chemicals at the various concentration and the check plants were sprayed with aqueous solutions containing surface-active agent and acetone without the chemicals. The sprayings thoroughly wet the upper surface of the leaves. The plants were returned to the greenhouse. The following day (20-24 hours later), rings of an adhesive preparation non-toxic to the organisms under test, such as is used on fly papers and for ringing trees, were placed around the borders of the upper surfaces of the leaves to restrict the mites to the upper leaf surface. Mites were transferred to the thus treated leaves by placing bean leaflets heavily infested with two-spotted adult mites, T elmnyclms Ielarius L.
  • Control l00 (1 Q i living mites) Original count.
  • the chemicals of the present invention are preferably applied as aqueous emulsions containing a surface-active dispersing agent, which may be an anionic, non-ionic or cationic surface-active agent.
  • the chemicals of the invention may be mixed with such surface-active dispersing agents, with or without an organic solvent as insecticidal concentrates for subsequent addition of water to make aqueous suspensions of the chemicals of the desired concentration.
  • the chemicals of the invention may be admixed with powdered solid carriers, such as mineral silicates, together with a surface-active dispersing agent so that a wettable powder may be obtained, which may be applied directly to loci to be protected against insects, or which may be shaken up with water to form a suspension of the chemical (and powdered solid carrier) in Water for application in that form.
  • the chemicals of the present invention may be applied to loci to be protected against insects by the aerosol method.
  • Solutions for the aerosol treatment may be prepared by dissolving the chemical directly in the aerosol carrier which is liquid under pressure but which is a gas at ordinary temperature (e.g. 20 C.) and atmospheric pressure, or the aerosol solution may be prepared by first dissolving the chemical in a less volatile solvent and then admixing such solution With the highly volatile liquid aerosol carrier.
  • the chemicals may be used admixed with carriers that are active of themselves, for example, other insecticides, fungicides, or bactericides.
  • R has not more than 18 carbon atoms and is selected from the group consisting of alkyl, alkenyl, alkynyl having from 3 to carbon atoms, cycloalkyl, alkoxycycloalkyl, chloroalkyl, bromoalkyl, cyanoalkyl, phenyl, naphthyl, phenyl and naphthyl having substituents selected from the group consisting of alkyl, cycloalkyl, chloroalkyl, bromoalkyl, alkoxy, chloro, bromo and nitro,
  • R has not more than 18 carbon atoms and is selected from the group consisting of alkyl, alkenyl, alkynyl having from 3 to 10 carbon atoms, cycloalkyl, alkoxycycloalkyl, chloroalkyl, bromoalkyl, cyanoalkyl, alkoxyalkyl, carbalkoxyalkyl, phenyl, naphthyl, phenyl and naphthyl having substituents selected from the group consisting of alkyl, cycloalkyl, chloroalkyl, bromoalkyl alkoxy and chloro, bromo, and R has not more than 12 carbon atoms and is a divalent cycloaliphatic radical having from 4 to 8 ring carbons in which the two valences are on two different carbon atoms selected from the group consisting of cycloalkylene, alkyl substituted cycloalkylene and alkenyl substituted cycloalkylene.
  • R is an alkylphenyl group having no more than 18 carbon atoms
  • R" is an alkynyl group having from 3 to 10 carbon atoms, o-tolyl group, or ,B-chloroethyl group
  • R is a. cyclohexyl or cyclopentyl group.

Description

United States Patent "ice 3,272,854 CYCLOALHPHATIC SULFITE ESTERS Rupert A. Covey, Wolcott, Allen E. Smith, Oxford, and Winchester L. Hubbard, Woodbridge, Conn., assignors to United States Rubber Company, New York, N.Y., a corporation of New Jersey No Drawing. Filed July 18, 1963, Ser. No. 296,107 9 Claims. (Cl. 260-456) This invention relates to new chemicals, namely new organic esters of sulfurous acid, more particularly to mixed sulfite diesters of aliphatic or aromatic monohydroxy compounds and glycol ethers.
The new compounds of the present invention are useful as insecticides, particularly for the control of mites. They may also be used as plasticizers.
The chemicals of the invention may be represented by the formula in which R is an aliphatic radical, e.g. alkyl, alkenyl, alkynyl, cycloalkyl, alkoxycycloalkyl, haloalkyl, cyanoallkyl, alkoxyalkyl, or aryloxyalkyl, or R is an aromatic radical, e.g., phenyl or naphthyl, or a phenyl or naphthyl (aryl) radical having one or more substituents in the aryl nucleus selected from the group consisting of alkyl, cycloalkyl, haloalkyl, alkoxy, halo and nitro; R" is an aliphatic radical, e.g. alkyl, alkenyl, alkynyl, cycloalkyl, alkoxycycloalkyl, haloalkyl, cyanoalkyl, alkoxyalkyl, aryloxyalkyl or carbalkoxyalkyl, or R is an aromatic radical, e.g. phenyl or naphthyl, or a phenyl or naphthyl (aryl) radical having one or more substituents in the aryl nucleus selected from the group consisting of alkyl, cycloalkyl, haloalkyl, alkoxy and halo; and R is a divalent cycloaliphatic radical in which the two valences are on two different carbon atoms, e.g. cycloalkylene, alkyl substituted cycloalkylene or alkenyl substituted cycloalkylene. The aliphatic and aromatic radicals R and R" will generally have not more than 18 carbon atoms each and the cycloaliphatic radical R will generally have 4 to 8 carbon atoms in the cycloalkylene nucleus and contain not more than 12 carbon atoms. In the formulae and reactions referred to below, R, R and R" are the same as in the above general formula.
Examples of R and R are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, see-butyl, tert.-buty1, amyl, hexyl, Z-ethylhexyl, octyl, decyl, isodecyl, dodecyl, hexadecyl, octadecyl, allyl, methallyl, alkynyl radicals having 3 to carbon atoms, e.g. propargyl and 1-(3-nonynyl), cyclohexyl, 4 methoxycyclohexyl, 3 p toloxycyclohexyl, 2- chloroethyl, 2,2,2-trichloroethyl, 'y-chloropropyl, 2,4-dichlorobutyl, w-trichloroamyl, 2-cyanoethyl, methoxyethyl, sec.-butoxyisopropyl, o-toloxyethyl, phenyl, 1- naphthyl, Z-naphthyl, p-tolyl, o-tolyl, 2-methyl-4-t-butylphenyl, isopropylphenyl, tert.-butylphenyl, tert.-amylphenyl, nonylphenyl, cyclohexylphenyl, chloromethylphenyl, methoxyphenyl, bromophenyl, 2-chlorophenyl, 2,4-dichlorophenyl, trichlorophenyl, pentachlorophenyl. An additional example of R is nitrophenyl. An additional example of R" is carbethoxymethyl. Examples of R are 1,2-cyolohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene, 2,2,4,4-tetramethyl-1,3-cyclobutylene, methyl cyclohexylenes, vinylcyclohexylenes, 1,2-cyclooctylene, 1,2- cyclopentylene.
The compounds of the present invention may be prepared by reacting the selected aliphatic or aromatic monohydroxy compound having the formula R"OH with the separately prepared chloro'sulfinate of the selected glycol ether having the formula ROR'OH as illustrated in the following reaction and in Example 1 below.
3,272,854 Patented Sept. 13, 1966 The glycol ethers ROR'OH which contain cycloalkylene groups having the two valences in 1,2- or 1,3- or 1,4-relationship may be prepared by reacting an alkalimetal salt of the aliphatic or aromatic hydroxy compound ROH with a chlorocycloalkanol, as illustrated in the following reaction and in Example 4 below:
The compounds of the present invention may also be prepared by reacting the selected glycol ether having the formula ROR-OH with the separately prepared chlorosulfinate of the monohydroxy compound R"O'II where the R" is alkyl, cycloalkyl, alkoxycycloalkyl, haloalkyl, cyanoalkyl, alkoxyalkyl, aryloxyalkyl or carbalkoxyalkyl, as illustrated in the following reaction and in Examples 2 and 3 below.
+ Nacl RO- Cl are prepared in known manner by reacting the selected alcohol ROH with thionyl chloride, as illustrated in the following reaction and in Examples 2 and 3 below.
o ROH S0012 R"O C1 HCl The preparation of the chlorosulfinates of the glycol ethers and the chlorosulfinates of the alcohols as described above is carried out at a temperature of between 5C. and 60 C. and the yield of chlorosulfinate is nearly quantitative. An inert solvent such as benzene, xylene or solvent naphtha may be used.
The preparation of the sulfite esters is carried out in the presence of an HCl acceptor, such as pyridine, dimethylaniline or trimethylamine, and in a solvent such as benzene, xylene or solvent naphtha. The reaction temperature is generally between 10 C. and 50 C., preferably near 0 C.
Examples of sulfite diesters of the present invention are:
allyl Z-methoxycyclohexyl sulfite phenyl 2-ethoxycyclohexyl sulfite Z-ethylhexyl Z-butoxycyclohexyl sulfite m-(n-propyl)phenyl 2-tert.-'butoxycyclohexyl sul-fite cyclohexyl 2-(2-ethylhexoxy)cyclohexyl sulfite propargyl 2-hexadecoxycyclohexyl sulfite p-t-amylphenyl 2-allyloxycyclohexyl sulfite ethyl 2-propargyloxyclohexyl sulfite 'y-Chlorobutyl 2-cyclohexoxycyclohexyl sulfite propargyl 2-(2-chloroethoxy)cyclohexyl sulfite butyl 2-( -chlorobutoxy)cyclohexyl sulfite hexadecyl 2-(2-cyanoethoxy)cyclohexyl sulfite p-chloromethylphenyl 2-(methoxyethoxy)cyclohexyl sulfite carbethoxymethyl 2-phenoxycylohexyl sulfite propargly 2-(o-toloxy)cyclohexyl sul-fite methyl 2-(m-n-propylphenoxy)cyclohexyl sulfite p-methoxyphenyl 2- (p-isopropylphenoxy cyclohexyl sulfite propargyl 2-(p-tert.-amylphenoxy)cyclohexyl sulfite 2-cyanoethyl 2-(2-cyclohexylphenoxy)cyclohexyl sul'fite p-isopropylphenyl 2-(p-chloromethylphenoxy)cyclohexyl sulfite 2-chloroethyl 2-(p-methoxyphenoxy)cyclohexyl sulfite tert.-butyl 2-(p-tert.-butylphenoxy)cyclohexyl sultfite o-tolyl 2-(2-chlorophenoxy)cyclohexyl sulfite 2-methoxyethyl 2-(1-naphthoxy)cyclohexyl sulfite 2-cyclohexylphenyl 2- (m-nitrophenoxy) cyclohexyl sul'fite 2-chlorophenyl 2-(p-tert.butylphenoxy)cyclohexyl sulfite l-naphthyl 2-(p-terL-butylphenoxy)cyclohexyl sulfite propargyl 3(p-tert. butylphenoxy)cyclohexyl sulfite propargyl 4-(p-tertabutylphenoxy)cyclohexyl sulfite propargyl 3-(p-tert.-butylphenoxy)-2,2,4,4-tetramethylcyclobutyl sultfite propargyl 2-(p-tert.-butylphenoxy)-4-(or 5-)vinylcyclohexyl sufite propargyl 2-(p-tert.-butylphenoxy)cyclooctyl sulfite 2-chloroethy1 4-methoxycyclohexyl sulfite o-tolyl 3-( 2-chloroethoxy)-2,-2,4,4-tetramethylcyclobutyl sulfite carbethoxymethyl 5-(allyloxy)cyclooctyl sulfite propargyl 2-(4-methoxyclohexoxy)cyclohexyl sulfite propargyl 2-(0-toloxyethoxy)cyclopentyl sulfite Examples 1 to 4 illustrate the preparation of the compounds of the present invention. All parts and percentages referred to herein are by weight.
EXAMPLE 1 Preparation of propargyl 2-(p-tert.-butylphen0xy) cyclohexyl sulfite The 2-(p-tert.-butylphenoxy)cyclohexanol was made as follows: p-Tert.-butylphcnol (711 g., 4.74 moles) and 10.6 g. sodium hydroxide were combined and heated to 150 C. Cyclohexene oxide, i.e. 1,2-epoxycyclohexane, (465 g., 4.74 moles) was added dropwise during 1 hr., maintaining the reaction temperature at 150-160 C. After the addition was completed, the mixture was stirred at this temperature for 30 min. Xylene (500 ml.) was added and the mixture was cooled to 100 C. and neutralized with 12.8 g. concentrated sulfuric acid. Some of the xylene was distilled ofi in order to azeotrope out the water formed in the neutralization. The resulting xylene solution of the product is suitable for use in making the chlorosulfinate.
An aliquot of this solution was heated under reduced pressure to remove the xylene and other volatiles. Analysis of the residue showed that the product was obtained in 98.3% yield. The product can be recrystallized from hexane and melts 9395 C.
The 2-(p-tert.-butylphenoxy)cyclohexyl chlorosulfinate was prepared as follows: The xylene solution of Z-(p-tertbutylphenoxy)cyclohexanol (1653 g. of solution containing 1025 g., 4.13 moles) was warmed to 60 C. whereupon a clear solution was obtained. Thionyl chloride (540 g., 4.54 moles) was added during 30 min. with enough cooling to cause the temperature to drop continuously. The mixture was allowed to stir at 5-10 C. for 2.5 hours and then stored at room temperature for 15 hours. The volatile materials were removed by warming the mixture to 40 C. (5 mm.) to obtain 2-(p-tert.- butylphenoxy)cyclohexyl chlorosulfinate. Propargyl alcohol (254 g., 4.54 moles), 326 g. (4.13 moles) pyridine and 250 ml. xylene were combined and the solution was cooled to 05 C. The chlorosulfinate was added during 1 hr. keeping the reaction temperature between 5 and 15 C. The mixture was stirred for 30 min. and was washed with 2 1. water. The aqueous layer was extracted with ether and the ether layer combined with the product. The crude product was washed with 1 l. saturated salt solution. The solvents were removed and the residue heated to C. (0.3 mm.). Yield, 1348 g. (93.3%).
AnaIysis.Calculated for C H O S: S, 9.15%. Found: 5, 8.57%.
Sulfur analyses of other chemicals of the present invention made by the method illustrated in this example were:
Propargyl 2-(o-toloxy)cyclohexyl sulfite. Calculated S, 10.40%. Found: 9.92%, 9.48%.
o-Tolyl 2-(o-toloxy)cyclohexyl sulfite. 8.89%. Found: 8.27%, 8.13%.
Carbethoxymethyl 2-(p-toloxy)cyclohexyl sulfite. culated S, 8.99%. Found: 8.14%.
o-Tolyl 2 (p tert. butylphenoxy)cyclohexyl sulfite. Calculated S, 7.97%. Found: 7.26%, 7.28%.
Ethyl 2-(p-tert.-butylphenoxy)cyclohexyl sulfite. culated S, 9.42%. Found: 7.75%.
Propargyl 2-(p-tert.-butylphenoxy)-4-(or 5-)vinylcyclohexyl sulfite. Calculated S, 8.25%. Found: 7.43%, 7.57%.
o-Tolyl 2-(p-tert.-butylphenoxy)-4-(or 5-)vinylcyclohexyl sulfite. Calculated S, 7.11%. Found: 7.21%, 6.98%.
Propargyl 2-(p-tert.-butylphen0xy)cyclopentyl sulfite. Calculated S, 9.47%. Found: 8.64, 8.97%.
o-Tolyl 2 (p tert. butylphenoxy)cyclopentyl sulfite. Calculated S, 8.28%. Found: 7.65%, 7.66%.
EXAMPLE 2 Calculated S,
Cal-
Cal-
The 2-(o-toloxy)cyclohexanol was made as follows: o-Cresol (31.6 ml, 32.4 g., 0.3 mole) and 0.3 g. sodium hydroxide were combined and heated to ISO- C. Cyclohexene oxide (29.4 g., 0.3 mole) was added dropwise during 30 min., maintaining this temperature. The mixture was then heated for 30 min. at 160175 C. and was allowed to cool to room temperature. Concentrated sulfuric acid (0.3 ml.) was added to neutralize the solution and the product was distilled; B.P. 107-115 C. (0.4 mm.). Yield, 39.5 g. (64%).
2-(o-toloxy)cyclohexanol (7.3 g., 0.035 mole), 3.1 ml. (3.1 g., 0.039 mole) pyridine and 20 ml. xylene were combined and the solution cooled to 05 C. A solution of 6.4 g. (0.039 mole) 2-chloroethyl chlorosulfinate, prepared by a known procedure as shown in U.S. Patent No. 2,820,808, Ex. I, in 10 ml. xylene was added dropwise with stirring during 15 min., keeping the reaction temperature below 15 C. The mixture was stirred for 15 min. after the addition and was then washed twice with 25 ml. water, once with 25 ml. 2 N NaOH, and three more times with water, until the washings were neutral to pH paper. The xylene was removed, the product was heated to 85 C. (0.15 mm.) and filtered through Dicalite (filteraid). Yield 11.2 g. (95.7%).
Analysis.Calculated for C H O SCl: Found: S, 9.71%, 9.56%.
EXAMPLE 3 Preparation of Z-methoxyethyl Z-methoxycyclohexyl sulfite The Z-methoxycyclohexanol was prepared as follows: Methanol (24.2 ml, 19.2 g., 0.6 mole) and 0.2 g. sodium hydroxide were combined and the mixture heated to reflux. Cyclohexene oxide (29.4 g., 0.3 mole) was added dropwise during 0.5 hour. The mixture was refluxed for 14 hrs. and the excess methanol was distilled off. Concentrated sulfuric acid (0.2 ml.) was added to neutralize the sodium hydroxide and the mixture was distilled; B.P. 6973 C. (9 mm.), yield 28.7 g. (73.5%).
The 2-methoxyethyl chlorosulfinate was prepared as follows: Thionyl chloride (80.0 ml., 131. g., 1.1 moles) was added dropwise during 0.5 hour to 78.8 ml. (76.0 g., 1 mole) methyl Cellosolve previously cooled to 05 C. The temperature during the addition was maintained below 10 C. The reaction mixture was allowed to warm to room temperature and stand for hrs. The excess thionyl chloride was removed under reduced pressure and the product distilled; B.P. 85 C. mm.), yield 144.5 g. (91.2%).
2-rne-thoxycyclohexanol (6.5 g., 0.05 mole), 4.5 ml. (4.4 g., 0.055 mole) pyridine and 40 ml. xylene were com bined and the solution cooled to 0 C. A solution of 8.7 g. (0.055 mole) 2-methoxyethyl chlorosulfinate in 10 ml. xylene was added during 15 min., keeping the temperature below 10 C. The mixture was stirred for two hours and then washed once with 50 ml. water and twice with ml. saturated salt solution. The xylene was removed under reduced pressure and the residue distilled; B.P. 115-118 C. (0.7 mm.). Yield, 10.3 g. (81.8%).
Analysis.-Calculated for C H O S: S, 12.70%. Found: S, 12.44%, 11.92%.
Sulfur analysis of 2-chloroethyl 2-(p-tert.-butylphenoxy)cyclohexyl sulfite made by the method illustrated in Examples 2 and 3 was as follows: Calculated S, 8.55%. Found 8.21%, 8.37%.
EXAMPLE 4 The following illustrates the preparation of the 2-(ptert.-butylphenoxy)cyclohexanol intermediate of Example 1 by reacting an alkali metal salt of p-tert.-butylphenol with 2-chlorocyclohexanol. The 2-(p-tert.-butylphenoxy)cyclohexanol so prepared may be reacted as in Example 1 with thionyl chloride to form the 2-(p-tert.- butylphenoxy)cyclohexy1 chlorosulfinate which may be reacted with propargyl alcohol to form the propargyl 2- p-tert.-butylphenoxy cyclohexyl sulfite.
The 2-chlorocyclohexanol was prepared as follows: To 62.5 ml. (0.75 mole) concentrated hydrochloric acid was added 49.1 g. (0.5 mole) cyclohexene oxide with stirring during 50 min., keeping the reaction temperature mainly below 10 C. The mixture was cooled to 0 C. and stirred for 40 min. During this time the reaction mixture partially solidified. The mixture was poured over 34.5 g. (0.25 mole) solid potassium carbonate. Ether was added and the two layers were separated. The aqueous layer was washed twice with ether. The ether layers were combined and dried over anhydrous potassium carbonate. The ether was removed and the residue distilled; B.P. 108115 C. (50 mm.). Yield, 42.7 g. (63.3%).
The 2-(p-tert.-butylphenoxy)cyclohexanol was prepared as follows: p-tert.-butylphenol (25 g., 0.165 mole), 7.2 g. (0.18 mole) sodium hydroxide, and 115 ml. ethanol were combined and the mixture heated to reflux. A solution of 20.1 g. (0.15 mole) 2-chlorocyclohexanol in 25 ml. ethanol was added during min. Sodium chloride started to precipitate immediately. The mixture was refluxed for 6 hrs. and then filtered. The sodium chloride obtained was washed with a small amount of ethanol and dried; wt. 8.5 g. (97% of the theoretical). Removal of the solvent and volatile materials from the filtrate yielded 26.7 g. of a crude product containing some p-tert.-butylphenol. Recrystallization from hexane afforded a pure product, melting 9295.5 C. A mixed melting-point of this material with 2-(p-tert.-butylphenoxy)cyclohexanol prepared from cyclohexene oxide in Example 1 showed no depression.
EXAMPLE 5 This example illustrates the effectiveness of the chemicals of the present invention for controlling mites.
Pinto beans in the two-leaf stage and grown in 4" baskets under greenhouse conditions at F. F. were used. Three plants for a total of six leaves were in each basket for each test. The tests on the chemicals and checks were replicated once. Aqueous suspensions of the chemicals were prepared by adding to 0.2 gram of the chemical one drop (0.03 gram) of a commercial surface-active dispersing agent (isooctylphenyl polyethoxy ethanol) and 1 ml. of acetone, washing into 200 ml. of water, agitating to form a dispersion and diluting with water to the desired concentrations of 1000 ppm. and 200 p.p.m.
The plants were sprayed with the dispersions of the chemicals at the various concentration and the check plants were sprayed with aqueous solutions containing surface-active agent and acetone without the chemicals. The sprayings thoroughly wet the upper surface of the leaves. The plants were returned to the greenhouse. The following day (20-24 hours later), rings of an adhesive preparation non-toxic to the organisms under test, such as is used on fly papers and for ringing trees, were placed around the borders of the upper surfaces of the leaves to restrict the mites to the upper leaf surface. Mites were transferred to the thus treated leaves by placing bean leaflets heavily infested with two-spotted adult mites, T elmnyclms Ielarius L. within the border of the adhesive preparation on the leaves of the plan-ts under test. A count of the number of mites transferred was made the same day. The counts ranged from 30 to 300 mites on the six leaves. The plants were kept in the greenhouse for another four days. A final count of the number of living mites remaining on the leaves was then made. The percent control is found by using the formula:
Percent. Control=l00 (1 Q i living mites) Original count.
The control of mites by the chemicals of the present invention at the various concentrations is shown in the following table (the check treatments without the chemicals had about 20% mortality):
v Percent Control at- Chen'ucals 1,000 p.p.m. 200 ppm.
Propargyl 2-(o-toloxy)cyclohexyl sulfite... 100 o-Tolyl 2-(o-toloxy)cyclohexyl sulfite 99 8G Z-Chloroethyl 2-(0-t0l0xy) cyclohexyl sulfite a. 80 Garbethoxymethyl 2-(p-toloxy) cyclohexyl sulfite e. 57 58 Propargyl .Hp-tort.-butylpheu0xy) cyclohexyl sulfite 100 100 o-Tolyl 2-(p-tert.-butylphenoxy) cyclohexyl sulfite 98 93 2-Chloroethyl 2-(p-tert.-butylphen0xy) cyclohexyl sulfite 100 100 Propargyl 2 (p-tert.-butylphenoxy)-4-(or 5-) vinylcyclohexyl sulfite 97 57 o-Tolyl 2-(p-tert.-butylphenoxy)-4- (or 5-)vinylcyrlohexyl sulfite 61 43 Propargyl Q-(p-tert.butylphenaxy) cyclopentyl sufite 100 84 o-Toloxy 2(p-tert.butylphemxw cyclopentyl sulfite 73 30 The chemicals of the present invention may be applied in various manners for the control of insects. They may be applied to loci to be protected against insects as dusts when admixed with or adsorbed on powdered solid carriers, such as the various mineral silicates, e.g. mica, talc, pyrophillite and clays, or as liquids or sprays when in a liquid carrier, as in solution in a suitable solvent, such as acetone, benzene or kerosene, or dispersed in a suitable non-solvent medium, for example, water. In protecting plants (the term including plant parts) which are subject to attack by insects, the chemicals of the present invention are preferably applied as aqueous emulsions containing a surface-active dispersing agent, which may be an anionic, non-ionic or cationic surface-active agent. Such surface-active agents are well known and reference is made to U.S. Patent No. 2,547,724, columns 3 and 4 for detailed examples of the same. The chemicals of the invention may be mixed with such surface-active dispersing agents, with or without an organic solvent as insecticidal concentrates for subsequent addition of water to make aqueous suspensions of the chemicals of the desired concentration. The chemicals of the invention may be admixed with powdered solid carriers, such as mineral silicates, together with a surface-active dispersing agent so that a wettable powder may be obtained, which may be applied directly to loci to be protected against insects, or which may be shaken up with water to form a suspension of the chemical (and powdered solid carrier) in Water for application in that form. The chemicals of the present invention may be applied to loci to be protected against insects by the aerosol method. Solutions for the aerosol treatment may be prepared by dissolving the chemical directly in the aerosol carrier which is liquid under pressure but which is a gas at ordinary temperature (e.g. 20 C.) and atmospheric pressure, or the aerosol solution may be prepared by first dissolving the chemical in a less volatile solvent and then admixing such solution With the highly volatile liquid aerosol carrier. The chemicals may be used admixed with carriers that are active of themselves, for example, other insecticides, fungicides, or bactericides.
Having thus described our invention, what we claim and desire to protect by Letters Patent is:
1. A compound represented by the formula i ROROSOR in which R has not more than 18 carbon atoms and is selected from the group consisting of alkyl, alkenyl, alkynyl having from 3 to carbon atoms, cycloalkyl, alkoxycycloalkyl, chloroalkyl, bromoalkyl, cyanoalkyl, phenyl, naphthyl, phenyl and naphthyl having substituents selected from the group consisting of alkyl, cycloalkyl, chloroalkyl, bromoalkyl, alkoxy, chloro, bromo and nitro,
R has not more than 18 carbon atoms and is selected from the group consisting of alkyl, alkenyl, alkynyl having from 3 to 10 carbon atoms, cycloalkyl, alkoxycycloalkyl, chloroalkyl, bromoalkyl, cyanoalkyl, alkoxyalkyl, carbalkoxyalkyl, phenyl, naphthyl, phenyl and naphthyl having substituents selected from the group consisting of alkyl, cycloalkyl, chloroalkyl, bromoalkyl alkoxy and chloro, bromo, and R has not more than 12 carbon atoms and is a divalent cycloaliphatic radical having from 4 to 8 ring carbons in which the two valences are on two different carbon atoms selected from the group consisting of cycloalkylene, alkyl substituted cycloalkylene and alkenyl substituted cycloalkylene.
2. A compound represented by the formula ROR-O OR in which R is an alkylphenyl group having no more than 18 carbon atoms, R" is an alkynyl group having from 3 to 10 carbon atoms, o-tolyl group, or ,B-chloroethyl group, and R is a. cyclohexyl or cyclopentyl group.
3. The compound of claim 2 wherein said alkylphenyl group is p-t-butylphenyl group.
4. The compound of claim 2 wherein said alkynyl group is a propargyl group.
5. Propargyl 2 (p tert. butylphenoxy)cyclohexyl sulfite.
6. 2-chloroethyl 2 (p tert. butylphenoxy)cyclohexyl sulfite.
7. Propargyl 2-(o-toloxy)cyclohexyl sulfite.
8. o-Tolyl 2-(p-tert.-butylphenoxy)cyclohexyl sulfite.
9. 2-chloroethyl 2-(o-toloxy)cyclohexyl sulfite.
References Cited by the Examiner UNITED STATES PATENTS 2,820,808 1/1958 Harris et al. 260456 2,845,448 7/1958 Taylor 260456 2,901,338 8/1959 Richter 260456 XR 3,010,871 11/1961 Gilbert 16730 3,054,719 9/1962 Uhlenbroek et al. 16730 CHARLES B. PARKER, Primary Examiner.
JULIAN S. LEVI'IT, Examiner.
GEORGE A. MENTIS, FLOYD D. HIGEL,
Assistant Examiners.

Claims (1)

1. A COMPOUND REPRESENTED BY THE FORMULA
US296107A 1963-07-18 1963-07-18 Cycloaliphatic sulfite esters Expired - Lifetime US3272854A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US296107A US3272854A (en) 1963-07-18 1963-07-18 Cycloaliphatic sulfite esters
GB16101/64A GB1012496A (en) 1963-07-18 1964-04-17 Sulfite esters
DE1964U0010732 DE1567205B2 (en) 1963-07-18 1964-05-11 SULFURY ACID ESTERS AND ITS USE AS INSECTICIDES AND ACARICIDES
FR975767A FR1404674A (en) 1963-07-18 1964-05-25 Organic esters of sulfurous acid
BE648821D BE648821A (en) 1963-07-18 1964-06-04
LU46280D LU46280A1 (en) 1963-07-18 1964-06-09
CH787264A CH430314A (en) 1963-07-18 1964-06-17 Insecticidal composition
NL6406854A NL124312C (en) 1963-07-18 1964-06-17
SE7965/64A SE319168B (en) 1963-07-18 1964-06-30
BR160747/64A BR6460747D0 (en) 1963-07-18 1964-07-09 NEW ORGANIC ESTERS OF SULFUROUS ACID
ES302149A ES302149A1 (en) 1963-07-18 1964-07-16 Procedure for obtaining organic esters of sulfur acid (Machine-translation by Google Translate, not legally binding)
US536621A US3463859A (en) 1963-07-18 1966-03-23 Method of protecting plants with sulfurous acid organic esters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US296107A US3272854A (en) 1963-07-18 1963-07-18 Cycloaliphatic sulfite esters

Publications (1)

Publication Number Publication Date
US3272854A true US3272854A (en) 1966-09-13

Family

ID=23140639

Family Applications (1)

Application Number Title Priority Date Filing Date
US296107A Expired - Lifetime US3272854A (en) 1963-07-18 1963-07-18 Cycloaliphatic sulfite esters

Country Status (10)

Country Link
US (1) US3272854A (en)
BE (1) BE648821A (en)
BR (1) BR6460747D0 (en)
CH (1) CH430314A (en)
DE (1) DE1567205B2 (en)
ES (1) ES302149A1 (en)
GB (1) GB1012496A (en)
LU (1) LU46280A1 (en)
NL (1) NL124312C (en)
SE (1) SE319168B (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916005A (en) * 1973-11-08 1975-10-28 Uniroyal Inc Alkynyl phenylphenol divalent aliphatic sulfites
US4003940A (en) * 1973-11-08 1977-01-18 Uniroyal Inc. Alkynyl phenylphenol divalent aliphatic sulfites
US4104401A (en) * 1975-07-23 1978-08-01 Uniroyal, Inc. Control of insects and acarids with alkynyl phenylphenol divalent aliphatic sulfites
US4175137A (en) * 1977-07-20 1979-11-20 Ciba-Geigy Corporation Etherified cycloalkanols
US4282388A (en) * 1977-12-01 1981-08-04 Bayer Aktiengesellschaft Cyclic 1,2-diol benzyl ether compounds
US4370493A (en) * 1979-09-21 1983-01-25 The United States Of America As Represented By The Secretary Of Energy Synthesis of alpha-amino acids
US4371705A (en) * 1979-09-21 1983-02-01 The United States Of America As Represented By The United States Department Of Energy Synthesis of alpha-amino acids
US4375555A (en) * 1979-09-21 1983-03-01 The United States Of America As Represented By The United States Department Of Energy Synthesis of alpha-amino acids
EP0154481A2 (en) * 1984-02-24 1985-09-11 UNIROYAL CHEMICAL COMPANY, Inc. Process for making substituted phenoxycycloalkanols
US4754076A (en) * 1984-02-24 1988-06-28 Uniroyal Chemical Company, Inc. Process for making phenoxycycloalkanols
CN1066311C (en) * 1998-04-02 2001-05-30 北京市诚实诚信商贸有限公司 Method for preparing acaricide Kemante
US6576661B1 (en) 1999-11-09 2003-06-10 Bayer Aktiengesellschaft Active ingredient combination having insecticidal and acaricidal characteristics
US20040023959A1 (en) * 2000-11-10 2004-02-05 Reiner Fischer Active agent combinations with insecticidal and acaricidal properties
US6706758B2 (en) 2000-03-21 2004-03-16 Bayer Aktiengesellschaft Combinations of active ingredients with insecticidal and acaricidal properties
EP1982594A1 (en) 2003-11-14 2008-10-22 Bayer CropScience AG Active agent combinations with insecticidal and acaricidal properties
DE102007045922A1 (en) 2007-09-26 2009-04-02 Bayer Cropscience Ag Drug combinations with insecticidal and acaricidal properties
EP2127522A1 (en) 2008-05-29 2009-12-02 Bayer CropScience AG Active-agent combinations with insecticidal and acaricidal properties
US20100125797A1 (en) * 2008-11-17 2010-05-20 Lior Lavi Client integration of information from a supplemental server into a portal
US20100216738A1 (en) * 2007-06-29 2010-08-26 Bayer Cropscience Ag Acaricidal Active Substance Combinations
US20100311677A1 (en) * 2007-09-21 2010-12-09 Bayer Cropscience Ag Active Ingredient Combinations Having Insecticidal and Acaricidal Properties
US20110124588A1 (en) * 2008-05-07 2011-05-26 Bayer Cropscience Ag Synergistic active ingredient combinations
WO2011089071A2 (en) 2010-01-22 2011-07-28 Bayer Cropscience Ag Acaricide and/or insecticide active substance combinations
EP2382865A1 (en) 2010-04-28 2011-11-02 Bayer CropScience AG Synergistic active agent compounds
CN104744222A (en) * 2013-12-31 2015-07-01 岳阳昌德化工实业有限公司 Method for preparing 2-alkoxy cyclohexanol
CN105557760A (en) * 2015-12-29 2016-05-11 南京华洲药业有限公司 Synergistic insecticidal composition containing propargite and tetranactin, and application thereof
CN114315671A (en) * 2020-09-28 2022-04-12 山东康乔生物科技有限公司 Organic sulfur compound and preparation method and application thereof
CN115806512A (en) * 2021-09-15 2023-03-17 张建勋 Fluorine-containing acaricide and preparation method thereof
WO2023040736A1 (en) * 2021-09-18 2023-03-23 青岛康乔植物科学有限公司 Substituted sulfite compound, and preparation method therefor and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820808A (en) * 1954-05-07 1958-01-21 Us Rubber Co Organic esters of sulfurous acid
US2845448A (en) * 1954-10-26 1958-07-29 R G Taylor Company Inc Aromatic sulfonic acid esters of mandelic acid for inhibition of enzymes
US2901338A (en) * 1957-03-20 1959-08-25 Velsicol Chemical Corp Halogenated organic compounds
US3010871A (en) * 1959-10-22 1961-11-28 Allied Chem Method of destroying mites employing the p-bromophenyl ester of benzenesulfonic acid
US3054719A (en) * 1957-04-25 1962-09-18 Philips Corp Acaricidal poly-halo diphenylsulfide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820808A (en) * 1954-05-07 1958-01-21 Us Rubber Co Organic esters of sulfurous acid
US2845448A (en) * 1954-10-26 1958-07-29 R G Taylor Company Inc Aromatic sulfonic acid esters of mandelic acid for inhibition of enzymes
US2901338A (en) * 1957-03-20 1959-08-25 Velsicol Chemical Corp Halogenated organic compounds
US3054719A (en) * 1957-04-25 1962-09-18 Philips Corp Acaricidal poly-halo diphenylsulfide
US3010871A (en) * 1959-10-22 1961-11-28 Allied Chem Method of destroying mites employing the p-bromophenyl ester of benzenesulfonic acid

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916005A (en) * 1973-11-08 1975-10-28 Uniroyal Inc Alkynyl phenylphenol divalent aliphatic sulfites
US4003940A (en) * 1973-11-08 1977-01-18 Uniroyal Inc. Alkynyl phenylphenol divalent aliphatic sulfites
US4104401A (en) * 1975-07-23 1978-08-01 Uniroyal, Inc. Control of insects and acarids with alkynyl phenylphenol divalent aliphatic sulfites
US4175137A (en) * 1977-07-20 1979-11-20 Ciba-Geigy Corporation Etherified cycloalkanols
US4282388A (en) * 1977-12-01 1981-08-04 Bayer Aktiengesellschaft Cyclic 1,2-diol benzyl ether compounds
US4370493A (en) * 1979-09-21 1983-01-25 The United States Of America As Represented By The Secretary Of Energy Synthesis of alpha-amino acids
US4371705A (en) * 1979-09-21 1983-02-01 The United States Of America As Represented By The United States Department Of Energy Synthesis of alpha-amino acids
US4375555A (en) * 1979-09-21 1983-03-01 The United States Of America As Represented By The United States Department Of Energy Synthesis of alpha-amino acids
EP0154481A2 (en) * 1984-02-24 1985-09-11 UNIROYAL CHEMICAL COMPANY, Inc. Process for making substituted phenoxycycloalkanols
EP0154481A3 (en) * 1984-02-24 1986-09-17 Uniroyal, Inc. Process for making substituted phenoxycycloalkanols
US4754076A (en) * 1984-02-24 1988-06-28 Uniroyal Chemical Company, Inc. Process for making phenoxycycloalkanols
CN1066311C (en) * 1998-04-02 2001-05-30 北京市诚实诚信商贸有限公司 Method for preparing acaricide Kemante
US6576661B1 (en) 1999-11-09 2003-06-10 Bayer Aktiengesellschaft Active ingredient combination having insecticidal and acaricidal characteristics
US6818670B2 (en) 1999-11-09 2004-11-16 Bayer Aktiengesellschaft Active ingredient combination having insecticidal and acaricidal characteristics
US7205289B2 (en) 2000-03-21 2007-04-17 Bayer Aktiengesellschaft Combinations of active ingredients with insecticidal and acaricidal properties
US6706758B2 (en) 2000-03-21 2004-03-16 Bayer Aktiengesellschaft Combinations of active ingredients with insecticidal and acaricidal properties
US7585887B2 (en) 2000-11-10 2009-09-08 Bayer Cropscience Ag Active agent combinations with insecticidal and acaricidal properties
US20040023959A1 (en) * 2000-11-10 2004-02-05 Reiner Fischer Active agent combinations with insecticidal and acaricidal properties
US8044085B2 (en) 2000-11-10 2011-10-25 Bayer Cropscience Ag Active agent combinations with insecticidal and acaricidal properties
US8962672B2 (en) 2000-11-10 2015-02-24 Bayer Cropscience Ag Active agent combinations with insecticidal and acaricidal properties
EP1982594A1 (en) 2003-11-14 2008-10-22 Bayer CropScience AG Active agent combinations with insecticidal and acaricidal properties
US20100216738A1 (en) * 2007-06-29 2010-08-26 Bayer Cropscience Ag Acaricidal Active Substance Combinations
US8486995B2 (en) 2007-06-29 2013-07-16 Bayer Corporation Acaricidal active substance combinations
US20100311677A1 (en) * 2007-09-21 2010-12-09 Bayer Cropscience Ag Active Ingredient Combinations Having Insecticidal and Acaricidal Properties
DE102007045922A1 (en) 2007-09-26 2009-04-02 Bayer Cropscience Ag Drug combinations with insecticidal and acaricidal properties
US20100197737A1 (en) * 2007-09-26 2010-08-05 Bayer Cropscience Ag Active agent combinations having insecticidal and acaricidal properties
US20110124588A1 (en) * 2008-05-07 2011-05-26 Bayer Cropscience Ag Synergistic active ingredient combinations
EP2127522A1 (en) 2008-05-29 2009-12-02 Bayer CropScience AG Active-agent combinations with insecticidal and acaricidal properties
US20100125797A1 (en) * 2008-11-17 2010-05-20 Lior Lavi Client integration of information from a supplemental server into a portal
US20110229582A1 (en) * 2010-01-22 2011-09-22 Bayer Cropscience Ag Acaricidal and/or insecticidal active ingredient combinations
WO2011089071A2 (en) 2010-01-22 2011-07-28 Bayer Cropscience Ag Acaricide and/or insecticide active substance combinations
US8722072B2 (en) 2010-01-22 2014-05-13 Bayer Intellectual Property Gmbh Acaricidal and/or insecticidal active ingredient combinations
EP2382865A1 (en) 2010-04-28 2011-11-02 Bayer CropScience AG Synergistic active agent compounds
WO2011134964A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Synergistic active substance combinations
CN104744222A (en) * 2013-12-31 2015-07-01 岳阳昌德化工实业有限公司 Method for preparing 2-alkoxy cyclohexanol
CN105557760A (en) * 2015-12-29 2016-05-11 南京华洲药业有限公司 Synergistic insecticidal composition containing propargite and tetranactin, and application thereof
CN105557760B (en) * 2015-12-29 2018-07-17 南京华洲药业有限公司 A kind of Synergistic insecticidal compositions and its application containing propargite and tetranactin
CN114315671A (en) * 2020-09-28 2022-04-12 山东康乔生物科技有限公司 Organic sulfur compound and preparation method and application thereof
CN114315671B (en) * 2020-09-28 2022-11-22 山东康乔生物科技有限公司 Organic sulfur compound and preparation method and application thereof
CN115806512A (en) * 2021-09-15 2023-03-17 张建勋 Fluorine-containing acaricide and preparation method thereof
WO2023040736A1 (en) * 2021-09-18 2023-03-23 青岛康乔植物科学有限公司 Substituted sulfite compound, and preparation method therefor and use thereof

Also Published As

Publication number Publication date
ES302149A1 (en) 1964-09-16
DE1567205A1 (en) 1972-11-23
BE648821A (en) 1964-10-01
NL124312C (en) 1968-05-15
CH430314A (en) 1967-02-15
NL6406854A (en) 1965-01-19
DE1567205B2 (en) 1977-04-07
GB1012496A (en) 1965-12-08
SE319168B (en) 1970-01-12
LU46280A1 (en) 1964-12-09
BR6460747D0 (en) 1973-08-07

Similar Documents

Publication Publication Date Title
US3272854A (en) Cycloaliphatic sulfite esters
US3839511A (en) O-ethyl-s-n-propyl-o-(substituted phenyl)-phosphorothiolates
US2933383A (en) Method of combating weeds using nu-substituted carbamates of 2, 4, 5-trichloro, 6-nitro phenol
US2759010A (en) Alkylmercaptoalkyl-o, o-dialkyldithiophosphate
US3463859A (en) Method of protecting plants with sulfurous acid organic esters
US2529494A (en) Chloroalkyl aryloxyalkyl sulfites as new chemicals and insecticides
US2485095A (en) Insecticides
US2802727A (en) Aryloxyalkyl carbalkoxyalkyl sulfite diesters
US3131215A (en) 2-halo-and 2, 4-dihalo-alkylphenyl carbamates
US3179682A (en) Mixed sulfite esters of aryl glycol ethers and alkynols
US3311534A (en) Method for protecting plants against insects and mites with mixed sulfite esters
US2984559A (en) Controlling vegetation with haloalkyl thionocarbamates
US3318676A (en) Controlling vegetation with haloalkyl thiolcarbamates
US3862327A (en) Substituted phenylethyl sulfites useful for controlling mites
US2286169A (en) Aromatic substituted methyl esters of hydrazoic acid as insecticides
US3308018A (en) Carbamate fungicides and nematocides
US3775458A (en) Substituted phenylethyl sulfites
US3224863A (en) Vegetation control with unsaturated hydrocarbon esters of n,n-disubstituted thionocarbamic acids
CA1061799A (en) N-(2,2-dicyanovinyl)-n-benzyl-trifluoromethylanilines
US3179686A (en) Mixed sulfite esters of alkynyl alcohols and glycol ethers
US3114673A (en) Novel 2, 5-dimethyl-6-(dialkylaminoalkyl) phenyl methylcarbamates and compositions and method for controlling insects
US2993775A (en) Method of controlling vegetation
US3218346A (en) Haloalkyl tetrahalophenyl carbonates
US3224862A (en) Controlling vegetation with phenylthionocarbamates
US3179685A (en) Mixed sulfite esters of phenols and glycols