US20130077811A1 - Methods and apparatus to enhance communication in the operating room - Google Patents

Methods and apparatus to enhance communication in the operating room Download PDF

Info

Publication number
US20130077811A1
US20130077811A1 US13/664,219 US201213664219A US2013077811A1 US 20130077811 A1 US20130077811 A1 US 20130077811A1 US 201213664219 A US201213664219 A US 201213664219A US 2013077811 A1 US2013077811 A1 US 2013077811A1
Authority
US
United States
Prior art keywords
patient
microphone
cushion
audible signals
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/664,219
Inventor
Todd K. Whitehurst
Rafael Carbunaru
Kristen Jaax
James Makous
Courtney Lane
Mark Pierre
Cliff Brainard
Charles Tilden Hagan, IV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Neuromodulation Corp
Original Assignee
Boston Scientific Neuromodulation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Neuromodulation Corp filed Critical Boston Scientific Neuromodulation Corp
Priority to US13/664,219 priority Critical patent/US20130077811A1/en
Publication of US20130077811A1 publication Critical patent/US20130077811A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H80/00ICT specially adapted for facilitating communication between medical practitioners or patients, e.g. for collaborative diagnosis, therapy or health monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/14Throat mountings for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/02Details casings, cabinets or mounting therein for transducers covered by H04R1/02 but not provided for in any of its subgroups
    • H04R2201/023Transducers incorporated in garment, rucksacks or the like

Definitions

  • the present invention relates methods and apparatus to facilitate communication between a patient and medical personnel in an operating room.
  • a lead electrode is inserted into the back of a patient's head to stimulate the occipital nerves.
  • the patient, lying face down, is then required to give verbal feedback regarding the location of the paresthesia experienced from the stimulation.
  • the lead can then be adjusted to stimulate different areas on or around the nerves until the patient reports successful stimulation.
  • a cushion-mounted patient communication system comprising a cushion with an opening for receiving the patient's face, a microphone in the cushion for receiving audible signals from the patient, and at least one speaker in the cushion for delivering audible signals from an operator, e.g., medical personnel, to the patient.
  • the system further includes a communication port for receiving the patient's audible signals from the microphone and delivering the operator's audible signals to the speaker.
  • the microphone include a bone-conductive microphone or a throat microphone.
  • the system further includes a display device that is integrated with the cushion and viewable by the patient. The display device is configured for displaying selected areas of the patient's body.
  • a method for a patient to communicate during a medical procedure includes positioning the patient's face in an opening surrounded by a cushion, wherein the cushion supports the patient's head. Audible signals are delivered from the patient into a microphone embedded in the cushion and then to a communication port. Audible signals are also delivered to the patient from the communication port through at least one speaker that is at least partially embedded in the cushion.
  • the method includes displaying selected parts of the patient's body at a display device integrated with the cushion, and may further include receiving commands from the communication port to display the selected parts of the patient's body at the display device.
  • FIG. 1 is a plan view of one embodiment of a cushion-mounted patient communication system arranged in accordance with the present invention
  • FIG. 2 is a perspective view of an alternative embodiment of a cushion used in the communication system of FIG. 1 ;
  • FIG. 3 is a front view of an alternative embodiment of a microphone used in the communication system of FIG. 1 ;
  • FIG. 4 is a front view of another alternative embodiment of a microphone used in the communication system of FIG. 1 ;
  • FIG. 5 is a plan view of a method of using the communication system of FIG. 1 with a patient.
  • the communication system 10 includes a cushion 12 with an opening 14 for receiving the patient's head.
  • the cushion 12 may be integrated with, or somewhere be associated, with an operating table (not shown) on which the patient lies down.
  • the cushion 12 also features a microphone 16 for receiving audible signals from the patient and one or more speakers 18 for delivering audible signals to the patient.
  • a communication port 20 is configured to receive the patient's audible signals from the microphone 16 and to deliver audible signals from medical personnel or a device used in the procedure to the speakers 18 for the patient to hear.
  • the cushion 12 is configured to receive the patient's head, and in particular the patient's face, while promoting patient comfort.
  • the patient may lie face-down during a medical procedure with minimal discomfort, while still being able to communicate with medical personnel.
  • the cushion 12 is attached to a chair or bed on which the patient is positioned.
  • the cushion 12 may also be configured for placement wherever the patient or the medical personnel choose for suitable operation.
  • the cushion 12 is square and the opening 14 is elliptical.
  • the cushion 12 and the opening 14 may be configured in any shape suited to the patient and/or the medical procedure.
  • the cushion 12 may embody ring, horseshoe, or rectangular shapes, and the opening 14 may embody rectangular, circular, or tear-drop shapes.
  • the cushion 12 includes two separate portions 22 joined by connecting elements 24 at opposite ends, with the opening 14 between the cushion portions 22 .
  • the width of the opening 14 is adjusted by sliding the cushion portions 22 along the connecting elements 24 .
  • the connecting elements 24 may also include locking elements (not shown) to lock the cushion portions 22 in position.
  • the cushion 12 is preferably filled with foam or other compressible material(s) and may further include a soft fabric cover added comfort and/or for wicking moisture from the patient's skin.
  • Both the fabric of the cushion 12 and the cushion filling can be designed to meet particular specifications for a patient or medical procedure.
  • the fabric may be composed of an allergen-free material or a breathable mesh, and the filling may be a firm foam or a soft foam, as suited to the patient.
  • the microphone 16 is partially or completely embedded in the cushion 12 for receiving audible signals from the patient, for example voice communications, to be delivered to the communication port 20 .
  • the microphone 16 is embedded in the cushion 12 , such that a surface of the microphone 16 is flush with an external surface of the cushion 12 , and is positioned to be adjacent the patient's mouth for receiving voice communications from the patient. In this manner, the microphone 16 does not interfere with the patient's face or the patient's comfort, while still being sufficiently close to the patient to receive audible signals from the patient.
  • the microphone 16 can also be configured in any suitable manner that allows the microphone 16 to receive audible signals from the patient. For example, the microphone 16 may slightly protrude from the cushion 12 near the patient's mouth.
  • the microphone 16 is a bone-conductive microphone 16 that receives sound transmitted by the patient's bone(s) through the skin. Bone-conductive microphones are typically less sensitive to background noise and useful for receiving spoken signals.
  • the bone-conductive microphone 16 is positioned in the cushion 12 to be adjacent the patient's forehead, as illustrated, or jaw, chin, or other bony structure, in order to pick up audible signals from the bony structure.
  • the microphone 16 is a throat microphone 16 for receiving tracheal sounds or other sounds directly from the patient's voicebox. The throat microphone 16 is optimally positioned in the cushion 12 to be in contact with the patient's neck for optimum reception of tracheal sounds.
  • the speakers 18 are positioned in the cushion 12 to deliver audible signals from the communication port 20 for the patient to hear and may be partially or fully embedded in the cushion 12 .
  • the speakers 18 are embedded in the cushion 12 , such that surfaces of the speakers 18 are substantially flush with an external surface of the cushion 12 . In this manner, the speakers 18 are less likely to interfere with the patient's comfort, while still being sufficiently close for the patient to hear audible signals delivered through the speakers 18 .
  • the speakers 18 may include two or more speakers 18 positioned on opposing sides of the cushion 12 , for example, adjacent the patient's ears when the patient's face is received in the opening 14 . Music, noise, alarms, audio cues, etc. may be delivered to the patient via the speakers 18 to test for response, sooth the patient, wake the patient, keep the patient alert, or indicate to the patient a response is needed.
  • the communication port 20 receives the audible signals from the patient through the microphone 16 and delivers audible signals to the patient through the speakers 18 .
  • the communication port 20 may consist of any communication unit suited to the procedure, such as a computer (e.g., a laptop system), a radio unit, or a wireless communication center.
  • the communication port 20 may also utilize any communication technology suited for delivering and receiving audible signals, such as cables, or wireless technology such as Bluetooth®, Wi-Fi (e.g., 802.11x wireless LAN), RF telemetry, infrared, AM/FM, and/or pager bandwidth systems.
  • a communication port (not shown), e.g., a radio unit, may be provided in or adjacent to the cushion 12 (e.g., on the operating room table) for transmitting signals between the communication port 20 and the microphone 16 and speakers 18 .
  • the communication port may be coupled to the microphone 16 and speakers 18 via signal cables.
  • the communication port 20 is in communication with one or more speaker elements 26 that allows medical personnel to receive the audible signals from the patient. For example, if the patient speaks into the microphone 16 to describe sensations experienced during the medical procedure, the patient's voice communication is delivered from the microphone 16 to the communication port 20 , and in turn to the speaker element(s) 26 , to be received by medical personnel.
  • speaker elements include standing speakers, Bluetooth® devices, headphones, and/or one or more speakers built into the communication port 20 .
  • the communication port 20 may communicate with the speaker element(s) 26 through cables, radio signals, WiFi, Bluetooth® technology, or other suitable technologies.
  • the speaker elements 26 may be directed towards the operating table or other target area. The directionality of the speaker elements 26 may be fixed or adjustable.
  • the communication port 20 is also in communication with one or more microphone elements 28 , such that medical personnel may speak into the microphone element to communicate with the patient through the communication port 20 and speakers 18 .
  • medical personnel may speak into the microphone element(s) 26 to ask how the patient is feeling or to convey other inquiries and/or instructions during a medical procedure. This communication from medical personnel is then delivered to the communication port 20 and in turn to the speakers 18 to be received by the patient.
  • microphone elements include hand-held microphones, headsets worn by medical personnel, Bluetooth® devices, and one or more microphones built into the communication port 20 .
  • the communication port 20 may communicate with the microphone element(s) 28 through suitable technologies, such as those discussed above regarding the speaker element(s) 26 .
  • the communication system 10 is a half-duplex system that allows bi-directional communication between the patient and medical personnel through the communication port 20 , wherein only one person is heard at one time. For example, while a doctor is delivering a message to the patient through the communication port 20 and the speakers 18 , audible signals from the patient will not interrupt the communication through the speakers 18 from the doctor. This helps to ensure that the patient receives important communications from medical personnel during a medical procedure. Similarly, while a patient is speaking into the microphone 16 , audible signals from medical personnel will not interrupt the communication through the microphone 16 from the patient. This helps to ensure that medical personnel receive important communications from the patient during a medical procedure. In yet another embodiment, the communication system 10 is a full-duplex system that allows simultaneous communication in both directions between the patient and medical personnel, such that communications from one of the patient or medical personnel do not interrupt the other and may be heard at the same time.
  • Priorities may also be assigned to microphones and speakers in the communication system 10 .
  • the microphone element 28 may be assigned priority over the microphone 18 in the cushion 12 , such that audible signals from the patient will not be heard when the microphone element 28 is in use, or vice-versa.
  • the microphone 18 or microphone element 28 with priority may have audible signals delivered at a higher volume.
  • the speaker elements 26 and microphone elements 28 can be intrinsic or mounted on a computer (e.g., laptop). Alternatively, or additionally, speaker elements and microphone elements can be provided to each member of the medical team via headsets.
  • the communication port 20 may also be in communication with one or more display devices (not shown) for use by the medical team.
  • the communication port 20 may also include or be in communication with an automated device 30 that automatically provides audible signals, such as beeps or other cues, to be received by the communication port 20 and delivered to the patient.
  • the automated device 30 is a therapeutic system, such as a drug delivery or electro-therapy system.
  • the communication port 20 receives operational indicators from the therapeutic system 30 , e.g., stopping, starting, increasing, and/or decreasing therapeutic treatment.
  • the communication port 20 delivers audible signals to the speakers 18 corresponding with the operational indicators. For example, upon receiving an operational indicator from the therapeutic system 30 that a particular therapy is about to begin, the communication port 20 delivers a series of beeps or other audible signal to the speakers 18 .
  • the communication port 20 may be programmed to recognize operational indicators from the automated device 30 for sending pre-selected audible signals to the speakers 18 corresponding to such indicators.
  • the channel between the patient communication port and the medical team communication port 20 may be encoded to prevent static and/or interference from other frequencies, or, to allow private interactions between medical team members and/or between a specific medical team member and the patient.
  • Multiple channels and/or a multiplexer may also be used to allow multiple medical team members to switch between communication with the patient and with other team members. For example, the physician may wish to only speak with one other team member (e.g., the anesthesiologist).
  • the communication system 10 includes a display device 32 for the patient to view during a medical procedure that displays selected areas of the patient's body.
  • the display device 32 is hung underneath the operating room table, and specifically, underneath the opening 14 , so that it may be easily viewed by the patient.
  • the display device 32 may be secured by magnets, screws, adhesive, or other means attached to string cables, or wires, such that the display device hangs under the operating table.
  • the display device 32 may be programmed to show selected areas of the patient's body (e.g., area(s) of the patient's body that may feel paresthesia and/or pain (e.g., the head))
  • the areas may be divided into sections that may be numbered, colored, or labeled by other means.
  • the display device 32 may allow the patient to dictate where they feel sensations, such as paresthesia and/or pain.
  • a speech recognition program may recognize, display, and record interactions between the patient and the medical team. For example, the program may recognize the label of a section the patient responds to and the display device 32 may either display the label (e.g., a number) or highlight that section on the display device 32 (and/or the display device used by the medical team).
  • the display device 32 may allow both the patient and medical team to interact effectively and specifically in reference to where the patient feels paresthesia and/or pain.
  • the display device 32 may take the form of virtual reality or video glasses that may allow the patient to see where the physician is palpating and may show the same labeled areas discussed above.
  • the display device 32 may receive signals from the automated device 30 .
  • the display device 22 automatically generates a display showing a section of the patient's body based on communication from the automated device 30 (e.g., the therapeutic system) that treatment is about to begin in that section.
  • the display device 32 may also display selected areas of the patient's body based on direct input from medical personnel and/or the patient, for example, by voice commands delivered through the communication port 20 or directly to the display device 32 , or from a computer unit included in the display device 32 .
  • the display device 32 is preferably positioned for easy viewing by the patient and can be separate from the cushion 12 , or integrated with the cushion 12 , as illustrated in FIG. 1 .
  • the patient may view areas being treated during the medical procedure while providing and receiving audible signals through the microphone 16 and the speakers 18 , respectively, to facilitate the procedure.
  • the display device 32 may optionally be in communication with one or more sensation generators (not shown) that deliver sensations to the patient suited to the medical procedure.
  • a series or matrix of sensation generators may be placed on the surface of the patient's skin, which may produce pressure (e.g., stimulated touch), vibration, or stimulation sensations (e.g., using Transcutaneous Electrical Neural Stimulation (TENS) electrodes).
  • the sensation generators may be attached to the patient individually or they may be all attached to a device (e.g., a skull cap), which is then placed on the patient.
  • the sensation generators may be turned on individually or in groups.
  • the sensation generators may be activated remotely, via manual input (e.g., buttons or switches), or using special gloves with embedded sensors (e.g., strain gauges, piezoelectrics, etc.) where moving a specific finger turns on a specific sensation generator or group of sensation generators.
  • manual input e.g., buttons or switches
  • special gloves with embedded sensors e.g., strain gauges, piezoelectrics, etc.
  • the sensation generators may serve as reference points for the patient by simulating when the physician touches an area of the body with a finger, and the display device 32 (and/or a display device for use by the medical team) may show the location of these sensation generators for reference.
  • the patient may indicate which labeled sections correlate to paresthesia sensations. For example, if a sensation generator delivers a sensation to a portion of the patient's leg, the patient may view on the display device 32 an image of the patient's leg with a visual cue (e.g., a dot or other marker) indicating that sensation is presently being generated to that portion of the patient's leg. The physician may then ask “Do you feel paresthesia here?”.
  • a visual cue e.g., a dot or other marker
  • the patient may then communicate through the microphone 16 whether the patient feels any sensation in the leg from the sensation generator, or how the sensation feels. This may be helpful during paresthesia from neurostimulation or during muscle stimulation and/or other types of physical therapy.
  • the markers for the sensation generators may remain for reference after the sensation generators have been removed from the patient.
  • sensation generator may use an RF beacon, which in reality, does not produce sensation, but may be placed on the patient and used in the same way as the generators described above.
  • a sterile pen as part of the sensation generator, carries an RF marker that is used in conjunction with these beacons.
  • the physician may move the pen in contact with the area covered by the beacon “matrix” and an location determination algorithm may calculate the location of the pen on the area of the body. This location may then be shown on the display device 32 (and/or the display device(s) used by the medical team. Therefore, the patient can both feel where the physician is touching them with the pen and visualize where the pen is on the display device 32 .
  • the communication port 20 includes a recorder 34 for recording audible signals delivered through the communication port 20 .
  • the audible signals recorded on the recorder 21 may be maintained for the patient's records, reviewed for diagnostic or research purposes, or other uses.
  • a patient is prepared for a medical procedure, as required by the procedure.
  • the patient is positioned for the procedure by placing his/her face in the opening 14 in the cushion 12 , and in particular, by placing the patient's face in the opening 14 .
  • the patient's mouth is positioned near the microphone 16 to enhance the clarity of the patient's audible signals delivered to the communication port 20 .
  • the patient's ears are also positioned near the speakers 18 to enhance the clarity with which the patient hears audible signals delivered by the communication port 20 , such as audible signals from medical personnel and/or the automated device 30 . Because the microphone 16 and speakers 18 are at least partially embedded in the cushion 12 , the microphone 16 and speakers 18 impart minimal, if any, discomfort to the patient.
  • the medical personnel After the patient is positioned in the cushion 12 , the medical personnel begin performing the medical procedure.
  • the patient submits audible signals to the microphone 16 to communicate with medical personnel as desired or as directed by the medical personnel.
  • the microphone 18 receives voice communications from the patient that are delivered to medical personnel via the speaker element 26 and the communication port 20 .
  • the speaker element 26 is illustrated as a headset combining both the speaker element 26 and the microphone element 28 .
  • the medical personnel then use the patient's audible signals to determine the patient's status, the effectiveness of the procedure, the comfort level of the patient, or other information that can be used to optimize the medical procedure.
  • the microphone 18 is positioned near a bony structure of the patient and receives audible signals from the bony structure that are delivered via the communication port 20 to medical personnel as described above.
  • the microphone 18 is positioned adjacent the patient's neck and receives audible signals from the patient's voicebox that are delivered via the communication port 20 to medical personnel as described above.
  • the patient also hears instructions or other information regarding the procedure delivered by the communication port 20 through the speakers 18 .
  • the medical personnel speak through the microphone element 28 , and these audible signals are delivered to the patient via the speakers 18 and the communication port 20 .
  • the patient can be informed of the status of the procedure, receive an inquiry from the medical personnel to which the patient can respond, or be apprised of other information that enhances the patient's ease during the procedure or helps in optimizing the procedure as it is performed by medical personnel.
  • the patient may also receive audible signals from the automated device 30 that are delivered via the communication port 20 .
  • the automated device 30 sends an operational indicator to the communication port 20 that a type of therapy is about to be administered.
  • the communication port 20 recognizes the indicator and sends a corresponding audible signal, such as a series of beeps, to the speakers 18 to prepare the patient for the therapy.
  • the patient views the display device 32 during the medical procedure to be aware of the status of the medical procedure and/or to provide input regarding the procedure.
  • the patient may receive an audible signal through the speakers 18 that the patient's lower back is about to receive an anesthesia.
  • the patient may then view the lower back on the display device 32 as the lower back is touched by medical personnel and speak into the microphone 16 to indicate whether the patient is experiencing any sensation in the areas touched.
  • the display device 32 communicates with sensation generators
  • the patient views parts of the body receiving sensation on the display device 32 , and then communicates through the microphone 16 to indicate what sensations the patient is experiencing.

Abstract

A communication system is provided for a patient featuring a cushion with an opening for receiving the face of the patient. The cushion includes a microphone for receiving audible signals from the patient and one or more speakers for delivering audible signals to the patient. The microphone and speaker(s) are integrated with the cushion to avoid interfering with the comfort of the patient. In one embodiment, the audible signals are delivered to and from the patient via a communication port. In another embodiment, the system includes a display device, so the patient may view parts of the patient's body on the device and then communicate with system operators through the microphone and speaker(s).

Description

    RELATED APPLICATION DATA
  • This application is a continuation of U.S. patent application Ser. No. 12/506,938, filed Jul. 21, 2009, now U.S. patent Ser. No. ______. The foregoing application is hereby incorporated by reference in the present application in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates methods and apparatus to facilitate communication between a patient and medical personnel in an operating room.
  • BACKGROUND OF THE INVENTION
  • During numerous medical procedures, verbal feedback from the patient is often critical to the success of the operation. The patient's own nervous feedback system is often preferred over even the most complex monitoring technology. For example, in a procedure involving the treatment of migraine headaches, a lead electrode is inserted into the back of a patient's head to stimulate the occipital nerves. The patient, lying face down, is then required to give verbal feedback regarding the location of the paresthesia experienced from the stimulation. The lead can then be adjusted to stimulate different areas on or around the nerves until the patient reports successful stimulation. However, there is significant difficulty in comprehending the patient's speech while in this state.
  • Regarding communication in the operating room, the application of wireless technology has long been a topic of contention within the medical and communications fields, due to concerns about electromagnetic interference with medical equipment. For example, there has been particular concern among medical professionals about the electromagnetic signal from cell phones interfering with vital medical equipment such as heart pacemakers. Notably, however, a 2006 study of 8,296 tests runs involving variable cell phone broadcasters and pacemakers found that no interference occurred beyond 8.7 inches of the cell phones' position relative to the pacemakers, even with the oldest phone models running at their highest power. The study also reported 6 inches as the outside boundary of interference “for the overwhelming majority of pacemakers which exhibited interaction,” with modern CDMA and PCS 1900 standard phones exhibiting only 2.8% and 0.6% interference rates, respectively, even within that distance. (Reference: Electromagnetic compatibility study of the in-vitro interaction of wireless phones with cardiac pacemakers, Schlegel, R. E., Grant, F. H., Raman, S., Reynolds, D., “Biomedical Instrumentation and Technology,” 32(6):645-55, 1998 Nov.-Dec.) Continuing advances in electromagnetic shielding standards as well as in low-power high-frequency wireless technology should eliminate interference incidents entirely in the near future.
  • With the perceived risk posed to vital medical equipment by wireless communication being thus diminished, there are opportunities to utilize wireless technology to benefit operating procedures. Thus, there is a need to provide a versatile system for wireless verbal communication between the patient and surgical staff for minimizing communication issues during stimulation device implant procedures and allowing patients to accurately guide their physicians, thus maximizing the benefits of electronic stimulation.
  • SUMMARY OF THE INVENTION
  • In accordance with one aspect of the present invention, a cushion-mounted patient communication system is provided. The system comprises a cushion with an opening for receiving the patient's face, a microphone in the cushion for receiving audible signals from the patient, and at least one speaker in the cushion for delivering audible signals from an operator, e.g., medical personnel, to the patient. In one embodiment, the system further includes a communication port for receiving the patient's audible signals from the microphone and delivering the operator's audible signals to the speaker. Different embodiments of the microphone include a bone-conductive microphone or a throat microphone. In another embodiment, the system further includes a display device that is integrated with the cushion and viewable by the patient. The display device is configured for displaying selected areas of the patient's body.
  • In accordance with a second aspect of the present invention, a method for a patient to communicate during a medical procedure is provided. The method includes positioning the patient's face in an opening surrounded by a cushion, wherein the cushion supports the patient's head. Audible signals are delivered from the patient into a microphone embedded in the cushion and then to a communication port. Audible signals are also delivered to the patient from the communication port through at least one speaker that is at least partially embedded in the cushion. In another embodiment, the method includes displaying selected parts of the patient's body at a display device integrated with the cushion, and may further include receiving commands from the communication port to display the selected parts of the patient's body at the display device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings illustrate the design and utility of preferred embodiments of the present invention, in which similar elements are referred to by common reference numerals. In order to better appreciate how the above-recited and other advantages and objects of the present inventions are obtained, a more particular description of the present inventions briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the accompanying drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
  • FIG. 1 is a plan view of one embodiment of a cushion-mounted patient communication system arranged in accordance with the present invention;
  • FIG. 2 is a perspective view of an alternative embodiment of a cushion used in the communication system of FIG. 1;
  • FIG. 3 is a front view of an alternative embodiment of a microphone used in the communication system of FIG. 1;
  • FIG. 4 is a front view of another alternative embodiment of a microphone used in the communication system of FIG. 1; and
  • FIG. 5 is a plan view of a method of using the communication system of FIG. 1 with a patient.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Turning first to FIG. 1, an exemplary communication system 10 constructed in accordance with one embodiment of the present inventions for facilitating communication during a medical procedure between a patient and medical or other personnel (e.g., physician, anesthesiologist, field clinical engineer (FCE), sales representative, nurse, radiologist, and supporting staff) is shown. Generally, the communication system 10 includes a cushion 12 with an opening 14 for receiving the patient's head. The cushion 12 may be integrated with, or somewhere be associated, with an operating table (not shown) on which the patient lies down. The cushion 12 also features a microphone 16 for receiving audible signals from the patient and one or more speakers 18 for delivering audible signals to the patient. A communication port 20 is configured to receive the patient's audible signals from the microphone 16 and to deliver audible signals from medical personnel or a device used in the procedure to the speakers 18 for the patient to hear.
  • The cushion 12 is configured to receive the patient's head, and in particular the patient's face, while promoting patient comfort. Thus, the patient may lie face-down during a medical procedure with minimal discomfort, while still being able to communicate with medical personnel. Preferably, the cushion 12 is attached to a chair or bed on which the patient is positioned. However, the cushion 12 may also be configured for placement wherever the patient or the medical personnel choose for suitable operation.
  • In the illustrated embodiment, the cushion 12 is square and the opening 14 is elliptical. However, the cushion 12 and the opening 14 may be configured in any shape suited to the patient and/or the medical procedure. For example, the cushion 12 may embody ring, horseshoe, or rectangular shapes, and the opening 14 may embody rectangular, circular, or tear-drop shapes. In another example, shown in FIG. 2, the cushion 12 includes two separate portions 22 joined by connecting elements 24 at opposite ends, with the opening 14 between the cushion portions 22. The width of the opening 14 is adjusted by sliding the cushion portions 22 along the connecting elements 24. The connecting elements 24 may also include locking elements (not shown) to lock the cushion portions 22 in position.
  • The cushion 12 is preferably filled with foam or other compressible material(s) and may further include a soft fabric cover added comfort and/or for wicking moisture from the patient's skin. Both the fabric of the cushion 12 and the cushion filling can be designed to meet particular specifications for a patient or medical procedure. For example, the fabric may be composed of an allergen-free material or a breathable mesh, and the filling may be a firm foam or a soft foam, as suited to the patient.
  • Referring back to FIG. 1, the microphone 16 is partially or completely embedded in the cushion 12 for receiving audible signals from the patient, for example voice communications, to be delivered to the communication port 20. In the illustrated embodiment, the microphone 16 is embedded in the cushion 12, such that a surface of the microphone 16 is flush with an external surface of the cushion 12, and is positioned to be adjacent the patient's mouth for receiving voice communications from the patient. In this manner, the microphone 16 does not interfere with the patient's face or the patient's comfort, while still being sufficiently close to the patient to receive audible signals from the patient. However, the microphone 16 can also be configured in any suitable manner that allows the microphone 16 to receive audible signals from the patient. For example, the microphone 16 may slightly protrude from the cushion 12 near the patient's mouth.
  • In an another embodiment, shown in FIG. 3, the microphone 16 is a bone-conductive microphone 16 that receives sound transmitted by the patient's bone(s) through the skin. Bone-conductive microphones are typically less sensitive to background noise and useful for receiving spoken signals. The bone-conductive microphone 16 is positioned in the cushion 12 to be adjacent the patient's forehead, as illustrated, or jaw, chin, or other bony structure, in order to pick up audible signals from the bony structure. In yet another embodiment, shown in FIG. 4, the microphone 16 is a throat microphone 16 for receiving tracheal sounds or other sounds directly from the patient's voicebox. The throat microphone 16 is optimally positioned in the cushion 12 to be in contact with the patient's neck for optimum reception of tracheal sounds.
  • Referring back to FIG. 1, the speakers 18 are positioned in the cushion 12 to deliver audible signals from the communication port 20 for the patient to hear and may be partially or fully embedded in the cushion 12. In the illustrated embodiment, the speakers 18 are embedded in the cushion 12, such that surfaces of the speakers 18 are substantially flush with an external surface of the cushion 12. In this manner, the speakers 18 are less likely to interfere with the patient's comfort, while still being sufficiently close for the patient to hear audible signals delivered through the speakers 18. The speakers 18 may include two or more speakers 18 positioned on opposing sides of the cushion 12, for example, adjacent the patient's ears when the patient's face is received in the opening 14. Music, noise, alarms, audio cues, etc. may be delivered to the patient via the speakers 18 to test for response, sooth the patient, wake the patient, keep the patient alert, or indicate to the patient a response is needed.
  • As discussed above, the communication port 20 receives the audible signals from the patient through the microphone 16 and delivers audible signals to the patient through the speakers 18. To this end, the communication port 20 may consist of any communication unit suited to the procedure, such as a computer (e.g., a laptop system), a radio unit, or a wireless communication center. Likewise, the communication port 20 may also utilize any communication technology suited for delivering and receiving audible signals, such as cables, or wireless technology such as Bluetooth®, Wi-Fi (e.g., 802.11x wireless LAN), RF telemetry, infrared, AM/FM, and/or pager bandwidth systems. A communication port (not shown), e.g., a radio unit, may be provided in or adjacent to the cushion 12 (e.g., on the operating room table) for transmitting signals between the communication port 20 and the microphone 16 and speakers 18. The communication port may be coupled to the microphone 16 and speakers 18 via signal cables.
  • The communication port 20 is in communication with one or more speaker elements 26 that allows medical personnel to receive the audible signals from the patient. For example, if the patient speaks into the microphone 16 to describe sensations experienced during the medical procedure, the patient's voice communication is delivered from the microphone 16 to the communication port 20, and in turn to the speaker element(s) 26, to be received by medical personnel. Examples of speaker elements include standing speakers, Bluetooth® devices, headphones, and/or one or more speakers built into the communication port 20. The communication port 20 may communicate with the speaker element(s) 26 through cables, radio signals, WiFi, Bluetooth® technology, or other suitable technologies. The speaker elements 26 may be directed towards the operating table or other target area. The directionality of the speaker elements 26 may be fixed or adjustable.
  • The communication port 20 is also in communication with one or more microphone elements 28, such that medical personnel may speak into the microphone element to communicate with the patient through the communication port 20 and speakers 18. For example, medical personnel may speak into the microphone element(s) 26 to ask how the patient is feeling or to convey other inquiries and/or instructions during a medical procedure. This communication from medical personnel is then delivered to the communication port 20 and in turn to the speakers 18 to be received by the patient. Examples of microphone elements include hand-held microphones, headsets worn by medical personnel, Bluetooth® devices, and one or more microphones built into the communication port 20. The communication port 20 may communicate with the microphone element(s) 28 through suitable technologies, such as those discussed above regarding the speaker element(s) 26.
  • In one embodiment, the communication system 10 is a half-duplex system that allows bi-directional communication between the patient and medical personnel through the communication port 20, wherein only one person is heard at one time. For example, while a doctor is delivering a message to the patient through the communication port 20 and the speakers 18, audible signals from the patient will not interrupt the communication through the speakers 18 from the doctor. This helps to ensure that the patient receives important communications from medical personnel during a medical procedure. Similarly, while a patient is speaking into the microphone 16, audible signals from medical personnel will not interrupt the communication through the microphone 16 from the patient. This helps to ensure that medical personnel receive important communications from the patient during a medical procedure. In yet another embodiment, the communication system 10 is a full-duplex system that allows simultaneous communication in both directions between the patient and medical personnel, such that communications from one of the patient or medical personnel do not interrupt the other and may be heard at the same time.
  • Priorities may also be assigned to microphones and speakers in the communication system 10. For example, the microphone element 28 may be assigned priority over the microphone 18 in the cushion 12, such that audible signals from the patient will not be heard when the microphone element 28 is in use, or vice-versa. As another example, the microphone 18 or microphone element 28 with priority may have audible signals delivered at a higher volume. For example, if two microphone elements 28 are used by medical personnel, one of the two microphone elements 28 may be assigned priority, such that if both microphone elements 28 are being spoken into at the same time, the patient will hear signals more loudly from the microphone element 28 with priority. The speaker elements 26 and microphone elements 28 can be intrinsic or mounted on a computer (e.g., laptop). Alternatively, or additionally, speaker elements and microphone elements can be provided to each member of the medical team via headsets. The communication port 20 may also be in communication with one or more display devices (not shown) for use by the medical team.
  • The communication port 20 may also include or be in communication with an automated device 30 that automatically provides audible signals, such as beeps or other cues, to be received by the communication port 20 and delivered to the patient. In one embodiment, the automated device 30 is a therapeutic system, such as a drug delivery or electro-therapy system. The communication port 20 receives operational indicators from the therapeutic system 30, e.g., stopping, starting, increasing, and/or decreasing therapeutic treatment. In turn, the communication port 20 delivers audible signals to the speakers 18 corresponding with the operational indicators. For example, upon receiving an operational indicator from the therapeutic system 30 that a particular therapy is about to begin, the communication port 20 delivers a series of beeps or other audible signal to the speakers 18. This may benefit the patient by keeping the patient informed about the status of a medical procedure, thus helping the patient to be aware of ongoing procedures and also to be more at ease with the procedures. Additionally, this may also prompt the patient to respond with audible signals through the microphone 16 to medical personnel. For example, upon hearing a beep through the speakers 18 that a therapeutic process has begun, the patient may respond about any sensations experienced from the therapeutic process, or whether the patient is experiencing any pain. To this end, the communication port 20 may be programmed to recognize operational indicators from the automated device 30 for sending pre-selected audible signals to the speakers 18 corresponding to such indicators.
  • The channel between the patient communication port and the medical team communication port 20 may be encoded to prevent static and/or interference from other frequencies, or, to allow private interactions between medical team members and/or between a specific medical team member and the patient. Multiple channels and/or a multiplexer may also be used to allow multiple medical team members to switch between communication with the patient and with other team members. For example, the physician may wish to only speak with one other team member (e.g., the anesthesiologist).
  • The communication system 10 includes a display device 32 for the patient to view during a medical procedure that displays selected areas of the patient's body. In the illustrated embodiment, the display device 32 is hung underneath the operating room table, and specifically, underneath the opening 14, so that it may be easily viewed by the patient. The display device 32 may be secured by magnets, screws, adhesive, or other means attached to string cables, or wires, such that the display device hangs under the operating table. The display device 32 may be programmed to show selected areas of the patient's body (e.g., area(s) of the patient's body that may feel paresthesia and/or pain (e.g., the head)) The areas may be divided into sections that may be numbered, colored, or labeled by other means. The display device 32 may allow the patient to dictate where they feel sensations, such as paresthesia and/or pain. In an optional embodiment, a speech recognition program may recognize, display, and record interactions between the patient and the medical team. For example, the program may recognize the label of a section the patient responds to and the display device 32 may either display the label (e.g., a number) or highlight that section on the display device 32 (and/or the display device used by the medical team).
  • The display device 32 may allow both the patient and medical team to interact effectively and specifically in reference to where the patient feels paresthesia and/or pain. Optionally, the display device 32 may take the form of virtual reality or video glasses that may allow the patient to see where the physician is palpating and may show the same labeled areas discussed above. The display device 32 may receive signals from the automated device 30. As one example, the display device 22 automatically generates a display showing a section of the patient's body based on communication from the automated device 30 (e.g., the therapeutic system) that treatment is about to begin in that section. The display device 32 may also display selected areas of the patient's body based on direct input from medical personnel and/or the patient, for example, by voice commands delivered through the communication port 20 or directly to the display device 32, or from a computer unit included in the display device 32.
  • The display device 32 is preferably positioned for easy viewing by the patient and can be separate from the cushion 12, or integrated with the cushion 12, as illustrated in FIG. 1. Thus, the patient may view areas being treated during the medical procedure while providing and receiving audible signals through the microphone 16 and the speakers 18, respectively, to facilitate the procedure.
  • The display device 32 may optionally be in communication with one or more sensation generators (not shown) that deliver sensations to the patient suited to the medical procedure. For example, a series or matrix of sensation generators may be placed on the surface of the patient's skin, which may produce pressure (e.g., stimulated touch), vibration, or stimulation sensations (e.g., using Transcutaneous Electrical Neural Stimulation (TENS) electrodes). The sensation generators may be attached to the patient individually or they may be all attached to a device (e.g., a skull cap), which is then placed on the patient. The sensation generators may be turned on individually or in groups. The sensation generators may be activated remotely, via manual input (e.g., buttons or switches), or using special gloves with embedded sensors (e.g., strain gauges, piezoelectrics, etc.) where moving a specific finger turns on a specific sensation generator or group of sensation generators.
  • The sensation generators may serve as reference points for the patient by simulating when the physician touches an area of the body with a finger, and the display device 32 (and/or a display device for use by the medical team) may show the location of these sensation generators for reference. Upon activation of specific sensation generators, the patient may indicate which labeled sections correlate to paresthesia sensations. For example, if a sensation generator delivers a sensation to a portion of the patient's leg, the patient may view on the display device 32 an image of the patient's leg with a visual cue (e.g., a dot or other marker) indicating that sensation is presently being generated to that portion of the patient's leg. The physician may then ask “Do you feel paresthesia here?”. The patient may then communicate through the microphone 16 whether the patient feels any sensation in the leg from the sensation generator, or how the sensation feels. This may be helpful during paresthesia from neurostimulation or during muscle stimulation and/or other types of physical therapy. The markers for the sensation generators may remain for reference after the sensation generators have been removed from the patient.
  • Another specific type of sensation generator may use an RF beacon, which in reality, does not produce sensation, but may be placed on the patient and used in the same way as the generators described above. A sterile pen, as part of the sensation generator, carries an RF marker that is used in conjunction with these beacons. The physician may move the pen in contact with the area covered by the beacon “matrix” and an location determination algorithm may calculate the location of the pen on the area of the body. This location may then be shown on the display device 32 (and/or the display device(s) used by the medical team. Therefore, the patient can both feel where the physician is touching them with the pen and visualize where the pen is on the display device 32.
  • The communication port 20 includes a recorder 34 for recording audible signals delivered through the communication port 20. The audible signals recorded on the recorder 21 may be maintained for the patient's records, reviewed for diagnostic or research purposes, or other uses.
  • Having described the components of the communication system 10, a method of using the communication system 10 will now be described. First, a patient is prepared for a medical procedure, as required by the procedure. Next, referring to FIG. 5, the patient is positioned for the procedure by placing his/her face in the opening 14 in the cushion 12, and in particular, by placing the patient's face in the opening 14. In this manner, the patient's mouth is positioned near the microphone 16 to enhance the clarity of the patient's audible signals delivered to the communication port 20. The patient's ears are also positioned near the speakers 18 to enhance the clarity with which the patient hears audible signals delivered by the communication port 20, such as audible signals from medical personnel and/or the automated device 30. Because the microphone 16 and speakers 18 are at least partially embedded in the cushion 12, the microphone 16 and speakers 18 impart minimal, if any, discomfort to the patient.
  • After the patient is positioned in the cushion 12, the medical personnel begin performing the medical procedure. During the medical procedure, the patient submits audible signals to the microphone 16 to communicate with medical personnel as desired or as directed by the medical personnel. For example, in the embodiment in which the microphone 18 is positioned near the patient's mouth, the microphone 18 receives voice communications from the patient that are delivered to medical personnel via the speaker element 26 and the communication port 20. In FIG. 5, the speaker element 26 is illustrated as a headset combining both the speaker element 26 and the microphone element 28. The medical personnel then use the patient's audible signals to determine the patient's status, the effectiveness of the procedure, the comfort level of the patient, or other information that can be used to optimize the medical procedure.
  • Alternatively, in the embodiment in which the microphone is a bone-conductive microphone 18, the microphone 18 is positioned near a bony structure of the patient and receives audible signals from the bony structure that are delivered via the communication port 20 to medical personnel as described above. In the embodiment in which the microphone 18 is a tracheal microphone 18, the microphone 18 is positioned adjacent the patient's neck and receives audible signals from the patient's voicebox that are delivered via the communication port 20 to medical personnel as described above.
  • The patient also hears instructions or other information regarding the procedure delivered by the communication port 20 through the speakers 18. As an example, during the procedure, the medical personnel speak through the microphone element 28, and these audible signals are delivered to the patient via the speakers 18 and the communication port 20. In this manner, the patient can be informed of the status of the procedure, receive an inquiry from the medical personnel to which the patient can respond, or be apprised of other information that enhances the patient's ease during the procedure or helps in optimizing the procedure as it is performed by medical personnel.
  • The patient may also receive audible signals from the automated device 30 that are delivered via the communication port 20. As an example, during the procedure, the automated device 30 sends an operational indicator to the communication port 20 that a type of therapy is about to be administered. In turn, the communication port 20 recognizes the indicator and sends a corresponding audible signal, such as a series of beeps, to the speakers 18 to prepare the patient for the therapy.
  • In the embodiment including the display device 32, the patient views the display device 32 during the medical procedure to be aware of the status of the medical procedure and/or to provide input regarding the procedure. For example, the patient may receive an audible signal through the speakers 18 that the patient's lower back is about to receive an anesthesia. The patient may then view the lower back on the display device 32 as the lower back is touched by medical personnel and speak into the microphone 16 to indicate whether the patient is experiencing any sensation in the areas touched. As another example, in the embodiment in which the display device 32 communicates with sensation generators, the patient views parts of the body receiving sensation on the display device 32, and then communicates through the microphone 16 to indicate what sensations the patient is experiencing.
  • Although particular embodiments of the present inventions have been shown and described, it will be understood that it is not intended to limit the present inventions to the preferred embodiments, and it will be obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present inventions. Thus, the present inventions are intended to cover alternatives, modifications, and equivalents, which may be included within the spirit and scope of the present inventions as defined by the claims.

Claims (18)

1. A cushion-mounted patient communication system, comprising:
a cushion having an opening for receiving the patient's face;
a microphone at mounted to the cushion for receiving audible signals from the patient when the patient's face is received within the opening;
a programmable display device integrated with the cushion and viewable by the patient when the patient's face is received within the opening, wherein the programmable display device is configured for displaying selected areas of the patient's body other than the head and face; and
at least one speaker mounted to the cushion for delivering audible signals from an operator to the patient when the patient's face is received within the opening.
2. The communication system of claim 1, further comprising an external communication port for receiving the patient's audible signals from the microphone and for delivering the operator's audible signals to the speaker.
3. The communication system of claim 2, wherein the communication port is configured for receiving the patient's audible signals from the microphone and for delivering the operator's audible signals to the speaker via wireless communication.
4. The communication system of claim 1, wherein the microphone is a bone-conductive microphone.
5. The communication system of claim 1, wherein the microphone is a throat microphone.
6. The communication system of claim 1, wherein the microphone is configured for being positioned adjacent a mouth of the patient when the patient's face is received within the opening.
7. The communication system of claim 1, wherein the at least one speaker comprises a plurality of speakers positioned on opposing sides of the cushion, the speakers configured for being positioned adjacent to the ears of the patient when the patient's face is received within the opening.
8. The communication system of claim 1, wherein the at least one speaker is substantially flush with an external surface of the cushion.
9. The communication system of claim 1, wherein the microphone is substantially flush with an external surface of the cushion.
10. The communication system of claim 1, wherein the communication system is a half-duplex system for allowing bi-directional audible communication between two or more persons, wherein only one person is heard at one time.
11. The communication system of claim 1, wherein the cushion comprises two separate portions joined by connecting elements at substantially opposite ends of the separate portions, and the width of the opening is adjustable by sliding at least one of the two separate portions along the connecting elements.
12. The communication system of claim 1, wherein the cushion has a shape selected from a ring, horseshoe, and rectangle.
13. A method for a patient to communicate during a medical procedure, comprising:
positioning the patient's face in an opening surrounded by a cushion, wherein the cushion supports the patient's head;
delivering first audible signals from the patient into a microphone mounted to the cushion, wherein the first audible signals are delivered to a communication port;
delivering second audible signals to the patient from the communication port through at least one speaker mounted to the cushion;
displaying selected parts of the patient's body other than the head and face at a programmable display device integrated with the cushion, wherein the programmable display device is viewable by the patient when the patient's face is positioned within the opening; and performing the medical procedure on the patient while the patient's face is positioned in the opening.
14. The method of claim 13, further comprising receiving commands from the communication port to display the selected parts of the patient's body at the display device.
15. The method of claim 13, further comprising recording the first and second audible signals at the communication port.
16. The method of claim 13, wherein the first audible signals are delivered to the microphone via a bone of the patient.
17. The method of claim 13, wherein the first audible signals are delivered to the microphone via the trachea of the patient.
18. The method of claim 13, further comprising wirelessly communicating the first and second audible signals between the microphone and at least one speaker and the communication port.
US13/664,219 2009-07-21 2012-10-30 Methods and apparatus to enhance communication in the operating room Abandoned US20130077811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/664,219 US20130077811A1 (en) 2009-07-21 2012-10-30 Methods and apparatus to enhance communication in the operating room

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/506,938 US8320600B2 (en) 2009-07-21 2009-07-21 Method and apparatus to enhance communication in the operating room
US13/664,219 US20130077811A1 (en) 2009-07-21 2012-10-30 Methods and apparatus to enhance communication in the operating room

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/506,938 Continuation US8320600B2 (en) 2009-07-21 2009-07-21 Method and apparatus to enhance communication in the operating room

Publications (1)

Publication Number Publication Date
US20130077811A1 true US20130077811A1 (en) 2013-03-28

Family

ID=43497355

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/506,938 Expired - Fee Related US8320600B2 (en) 2009-07-21 2009-07-21 Method and apparatus to enhance communication in the operating room
US13/664,219 Abandoned US20130077811A1 (en) 2009-07-21 2012-10-30 Methods and apparatus to enhance communication in the operating room

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/506,938 Expired - Fee Related US8320600B2 (en) 2009-07-21 2009-07-21 Method and apparatus to enhance communication in the operating room

Country Status (1)

Country Link
US (2) US8320600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057295A1 (en) * 2021-03-11 2022-09-14 Koninklijke Philips N.V. Method for establishing a communication path between a subject and a medical system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240065914A1 (en) * 2020-12-28 2024-02-29 The Regents Of The University Of California Display Systems and Methods for a Surface Lying Person

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687230A (en) * 1993-09-03 1997-11-11 Ab Volvo Device for mobile telephones
US5838223A (en) * 1993-07-12 1998-11-17 Hill-Rom, Inc. Patient/nurse call system
US5848988A (en) * 1996-07-26 1998-12-15 Alaris Medical Systems, Inc. Infusion device with audible data output
US5997091A (en) * 1997-12-06 1999-12-07 Volkswagen Ag Headrest arrangement for a motor vehicle seat
US6082367A (en) * 1998-04-29 2000-07-04 Medtronic, Inc. Audible sound communication from an implantable medical device
US6356645B1 (en) * 1997-11-22 2002-03-12 Pvt Prazisions-Verbindungstechnik Und Steuerungsbau Gmbh Electroacoustic transducer for a headrest loudspeaker
US20020072785A1 (en) * 1999-12-14 2002-06-13 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6406426B1 (en) * 1999-11-03 2002-06-18 Criticare Systems Medical monitoring and alert system for use with therapeutic devices
US6466673B1 (en) * 1998-05-11 2002-10-15 Mci Communications Corporation Intracranial noise suppression apparatus
US20020166557A1 (en) * 2001-05-09 2002-11-14 David Cooper Mask with a built-in microphone
US20030062040A1 (en) * 2001-09-28 2003-04-03 Lurie Keith G. Face mask ventilation/perfusion systems and method
US6814709B2 (en) * 2000-06-16 2004-11-09 Brookstone Purchasing, Inc. Massaging bed rest cushion with light
US6842924B1 (en) * 2003-05-23 2005-01-18 Omni Therm, Inc. Surgical head rest
US20050137573A1 (en) * 2003-12-19 2005-06-23 Animas Corporation System, method, and communication hub for controlling external infusion device
US7016708B1 (en) * 2001-08-15 2006-03-21 Nokia Corporation Hands-free device for vehicle headrest and method of use
US20060132594A1 (en) * 2003-03-14 2006-06-22 Tgr Intellectual Properties, Llc Audio communication system for patient and healthcare provider
US20070277319A1 (en) * 2006-06-01 2007-12-06 Anthony Calvert Pillow adapted for music system engagement and use in the prone or supine head position
US20070289065A1 (en) * 2005-02-25 2007-12-20 France Bed Co., Ltd. Snore recording pillow
US7347492B2 (en) * 2002-07-10 2008-03-25 Dire Mark L Chair-side multimedia communication system
US20080132383A1 (en) * 2004-12-07 2008-06-05 Tylerton International Inc. Device And Method For Training, Rehabilitation And/Or Support
US7574759B2 (en) * 2006-08-23 2009-08-18 Kimberly Forness Wilson Face cradle insert device
US20100212087A1 (en) * 2007-07-31 2010-08-26 Roger Leib Integrated patient room
US20110004070A1 (en) * 2007-12-04 2011-01-06 Annett Wendorf Device for coordinating patient care in hospitals, nursing homes, doctors offices or the like and method for operating such a device
US20110025915A1 (en) * 2008-02-06 2011-02-03 Aharon Daban Audio and Video Embedded Bedding
US8384755B2 (en) * 2009-08-26 2013-02-26 Intouch Technologies, Inc. Portable remote presence robot
US8690829B2 (en) * 2002-06-17 2014-04-08 Iradimed Corporation Non-magnetic medical infusion device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT341009B (en) * 1972-06-22 1978-01-10 Int Standard Electric Corp HOR SPRECH SET
US4981139A (en) 1983-08-11 1991-01-01 Pfohl Robert L Vital signs monitoring and communication system
US4752064A (en) * 1987-03-23 1988-06-21 Gene Voss Therapeutic head support
GB2271247B (en) * 1992-10-05 1997-02-19 Motorola Israel Ltd A radio telephone for a vehicle
US6023801A (en) * 1998-02-26 2000-02-15 Lamm; Kenneth Therapeutic headrest
DE19809563A1 (en) 1998-03-05 1999-09-09 Siemens Ag Medical work station for treating patient
US7138902B2 (en) 1998-10-23 2006-11-21 Royal Thoughts, Llc Personal medical device communication system and method
US6564105B2 (en) * 2000-01-21 2003-05-13 Medtronic Minimed, Inc. Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
DE20217825U1 (en) * 2002-11-18 2003-01-16 Maquet Gmbh & Co Kg Headrest for patient storage area
US7677734B2 (en) * 2004-04-09 2010-03-16 Arthur Wallace Audiovisual distraction in patients undergoing surgery with regional anesthesia
JP2006197267A (en) * 2005-01-13 2006-07-27 Toshiba Corp Pillow with built-in bone conduction speaker
US7231256B2 (en) 2005-03-11 2007-06-12 Medtronic, Inc. Neurostimulation site screening
US20060286960A1 (en) * 2005-06-17 2006-12-21 Rolf Goehler Wireless patient pendant system and method
US8648900B2 (en) * 2007-10-04 2014-02-11 Dupaco, Inc. Video observation of a patient's face during a medical procedure while the patient is in a prone position
US8325934B2 (en) * 2007-12-07 2012-12-04 Board Of Trustees Of Northern Illinois University Electronic pillow for abating snoring/environmental noises, hands-free communications, and non-invasive monitoring and recording
US20100257674A1 (en) * 2009-04-13 2010-10-14 Douglas Beall Method for positioning a human subject for radiological imaging, surgery or minimally invasive procedures using an inflatable contoured pillow

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838223A (en) * 1993-07-12 1998-11-17 Hill-Rom, Inc. Patient/nurse call system
US5687230A (en) * 1993-09-03 1997-11-11 Ab Volvo Device for mobile telephones
US5848988A (en) * 1996-07-26 1998-12-15 Alaris Medical Systems, Inc. Infusion device with audible data output
US6356645B1 (en) * 1997-11-22 2002-03-12 Pvt Prazisions-Verbindungstechnik Und Steuerungsbau Gmbh Electroacoustic transducer for a headrest loudspeaker
US5997091A (en) * 1997-12-06 1999-12-07 Volkswagen Ag Headrest arrangement for a motor vehicle seat
US6082367A (en) * 1998-04-29 2000-07-04 Medtronic, Inc. Audible sound communication from an implantable medical device
US6466673B1 (en) * 1998-05-11 2002-10-15 Mci Communications Corporation Intracranial noise suppression apparatus
US6406426B1 (en) * 1999-11-03 2002-06-18 Criticare Systems Medical monitoring and alert system for use with therapeutic devices
US20020072785A1 (en) * 1999-12-14 2002-06-13 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6814709B2 (en) * 2000-06-16 2004-11-09 Brookstone Purchasing, Inc. Massaging bed rest cushion with light
US20020166557A1 (en) * 2001-05-09 2002-11-14 David Cooper Mask with a built-in microphone
US7016708B1 (en) * 2001-08-15 2006-03-21 Nokia Corporation Hands-free device for vehicle headrest and method of use
US20030062040A1 (en) * 2001-09-28 2003-04-03 Lurie Keith G. Face mask ventilation/perfusion systems and method
US8690829B2 (en) * 2002-06-17 2014-04-08 Iradimed Corporation Non-magnetic medical infusion device
US7347492B2 (en) * 2002-07-10 2008-03-25 Dire Mark L Chair-side multimedia communication system
US20060132594A1 (en) * 2003-03-14 2006-06-22 Tgr Intellectual Properties, Llc Audio communication system for patient and healthcare provider
US6842924B1 (en) * 2003-05-23 2005-01-18 Omni Therm, Inc. Surgical head rest
US20050137573A1 (en) * 2003-12-19 2005-06-23 Animas Corporation System, method, and communication hub for controlling external infusion device
US20080132383A1 (en) * 2004-12-07 2008-06-05 Tylerton International Inc. Device And Method For Training, Rehabilitation And/Or Support
US20070289065A1 (en) * 2005-02-25 2007-12-20 France Bed Co., Ltd. Snore recording pillow
US20070277319A1 (en) * 2006-06-01 2007-12-06 Anthony Calvert Pillow adapted for music system engagement and use in the prone or supine head position
US7574759B2 (en) * 2006-08-23 2009-08-18 Kimberly Forness Wilson Face cradle insert device
US20100212087A1 (en) * 2007-07-31 2010-08-26 Roger Leib Integrated patient room
US20110004070A1 (en) * 2007-12-04 2011-01-06 Annett Wendorf Device for coordinating patient care in hospitals, nursing homes, doctors offices or the like and method for operating such a device
US20110025915A1 (en) * 2008-02-06 2011-02-03 Aharon Daban Audio and Video Embedded Bedding
US8384755B2 (en) * 2009-08-26 2013-02-26 Intouch Technologies, Inc. Portable remote presence robot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shawnee Mission, Midwest hospital leads nation's use of revolutionary robot to increase patient physician communication, 2005 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057295A1 (en) * 2021-03-11 2022-09-14 Koninklijke Philips N.V. Method for establishing a communication path between a subject and a medical system
WO2022189168A1 (en) * 2021-03-11 2022-09-15 Koninklijke Philips N.V. Method for establishing a communication path between a subject and a radiation medical device

Also Published As

Publication number Publication date
US20110019858A1 (en) 2011-01-27
US8320600B2 (en) 2012-11-27

Similar Documents

Publication Publication Date Title
US20210106836A1 (en) System and method of monitoring for and reporting on patient-made stimulation therapy programming changes
US11364380B2 (en) Nerve stimulation system, subsystem, headset, and earpiece
US10039928B2 (en) Ear stimulation with neural feedback sensing
US20170027812A1 (en) Nerve stimulation system and related controller
US20160279021A1 (en) Vibratory ear stimulation system and method
US10542904B2 (en) Systems and methods for at home neural recording
CN202096603U (en) Multifunctional depressive anxiety therapeutic apparatus
US11854682B2 (en) System and method for implementing physical stimulation service
KR20170132277A (en) Ear stimulation methods and systems
US20080281238A1 (en) Oscillation representing system for effectively applying hypersonic sound
US10512783B2 (en) User interface method and system for ear stimulation
US10589105B2 (en) Method and system for controlling ear stimulation
US10398902B2 (en) Neural stimulation method and system with audio output
JP2008161641A (en) Fully automatic life-saving system for notifying clinical condition
CN114423490A (en) Systems and methods for delivering therapy using ear-shaped stimulation devices
US8320600B2 (en) Method and apparatus to enhance communication in the operating room
JP4009660B2 (en) Positron emission tomography device and vibration display device used therefor
CN107085818A (en) A kind of medical system of implantable medical devices
JP2007147604A (en) Positron emission tomographic imaging system, and vibration exhibition device used therefor
US20130231577A1 (en) Multifunctional auscultation sensor pad
JP2007190408A (en) Vibration presentation apparatus
CN108511062A (en) A kind of pain caused by cancer self-assessment information management system and method
KR102546063B1 (en) Stimulation providing apparatus
US20240009476A1 (en) Transcranial Magnetic Stimulation (TMS) Apparatus
Huen et al. Use of auditory evoked potentials with electrical stimulation at the round window niche pre-operatively on a brain-injured patient: A case study

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION