US20070198081A1 - Poly(butylmethacrylate) and rapamycin coated stent - Google Patents

Poly(butylmethacrylate) and rapamycin coated stent Download PDF

Info

Publication number
US20070198081A1
US20070198081A1 US11/634,686 US63468606A US2007198081A1 US 20070198081 A1 US20070198081 A1 US 20070198081A1 US 63468606 A US63468606 A US 63468606A US 2007198081 A1 US2007198081 A1 US 2007198081A1
Authority
US
United States
Prior art keywords
drug
barrier
layer
polymer
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/634,686
Inventor
Daniel Castro
Stephen Pacetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/676,049 external-priority patent/US6716444B1/en
Application filed by Individual filed Critical Individual
Priority to US11/634,686 priority Critical patent/US20070198081A1/en
Publication of US20070198081A1 publication Critical patent/US20070198081A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/0097Coating or prosthesis-covering structure made of pharmaceutical products, e.g. antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers

Definitions

  • the present invention relates to implantable medical devices that release a drug.
  • Percutaneous transluminal coronary angioplasty is a procedure for treating heart disease.
  • a catheter assembly having a balloon portion is introduced into the cardiovascular system of a patient via the brachial or femoral artery.
  • the catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion.
  • the balloon is inflated to a predetermined size to radially compress against the atherosclerotic plaque of the lesion to model the arterial lumen.
  • the balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.
  • drugs are commonly administered to the treatment site.
  • anticoagulants are commonly used to prevent thrombosis of the coronary lumen.
  • Antiplatelets are administered to reduce the incidence of major adverse cardiac events.
  • Cytostatic agents are presently used in clinical trials to reduce post-angioplasty proliferation of the vascular tissue.
  • a common technique for local delivery of drugs involves coating a stent or graft with a polymeric material which, in turn, is impregnated with a drug or a combination of drugs. Once the stent or graft is implanted within a cardiovascular system lumen, the drug(s) is released from the polymer for the treatment of the local tissues.
  • U.S. Pat. No. 5,605,696 to Eury et al., U.S. Pat. No. 5,464,650 to Berg, et al., and U.S. Pat. No. 5,700,286 to Tartaglia, et al. provide examples illustrating the use of a polymeric coating for the local delivery of a drug or substance.
  • Stents are scaffoldings, usually cylindrical or tubular in shape, which are inserted into an anatomical passageway and operate to physically hold open and, if desired, to expand the wall of a passageway. Stents are capable of being crimped onto balloon catheters for insertion through small cavities, positioned in a desired location, and then expanded to a larger diameter. Stents can be either balloon expandable or self-expanding.
  • Grafts are typically placed in a blood vessel to either replace a diseased segment that has been removed, or to form a bypass conduit through a damaged segment of the vessel wall as is the case with an aneurysm, for example.
  • the graft has a tubular portion which spans the site of the damaged tissue and through which the blood flows.
  • the graft has sections at both ends of the tube that are used to secure the graft to the inside of a vessel wall.
  • the graft also has an outer surface, portions of which are in contact with an inner surface of the blood vessel wall, and an inner surface in contact with the blood flowing through the vessel.
  • FIG. 1 shows an implantable medical device 10 , which may be a stent or graft.
  • Device 10 includes a substrate 12 that may be formed of stainless steel, nickel titanium alloy, or another biocompatible metal.
  • Substrate 12 is covered (usually conformally) by a first layer 14 .
  • First layer 14 includes polymer containing a drug 16 .
  • Equation 1 assumes that: (1) all resistance to drug release is determined by the diffusivity of drug 16 in polymer 14 ; (2) the concentration of drug 16 is uniform throughout; (3) drug 16 does not go into the metallic surface 12 ; and (4) drug 16 is rapidly removed from the surface of polymer 14 as soon as drug 16 is released from polymer 14 .
  • the diffusivity of drug 16 in polymer 14 , D P is determined by certain properties of drug 16 (e.g., molecular weight, size) and physical properties of the polymer 14 through which drug 16 is diffusing (e.g., pore size, crystallinity, glass transition temperature, polarity or hydrophobicity).
  • properties of drug 16 e.g., molecular weight, size
  • physical properties of the polymer 14 through which drug 16 is diffusing e.g., pore size, crystallinity, glass transition temperature, polarity or hydrophobicity.
  • FIG. 2 illustrates the predicted drug release rate curve for a polymer matrix carrying a drug, such as first layer 14 , illustrated in FIG. 1 .
  • Curve 8 is an exponentially decreasing curve.
  • a problem associated with the use of a polymeric coating as a matrix for carrying the drug is that the rate at which the drug is released is highly variable, typically exhibiting a very high rate of release after the medical device is implanted in the patient, followed by a significantly lower rate of release. This may be undesirable in many applications, since the initial concentrations may be too high (causing undesirable side effects or even cell death), the later concentrations may be too low to have any therapeutic effect, and the overall residence time of the drug in the target area may be too short to provide the desired therapeutic effect.
  • a residence time of thirty minutes may be all that is required to achieve a permanent effect, while others may take up to two weeks.
  • nitrous oxide (NO) is used as the antiproliferative drug
  • a residence time of four to eight weeks is desirable, but even longer durations up to twelve weeks may be beneficial, depending on the patient.
  • a long residence time (e.g., several weeks) is desirable, because the anti-inflammatory drug should be delivered until some amount of healing has occurred.
  • Anti-thrombogenic drugs also may require a long residence time, for example, up to five months, since that much time may be required for a stent to become endothelialized.
  • the present invention allows for a controlled rate of release of a drug or drugs from a polymer carried on an implantable medical device.
  • the controlled rate of release allows localized drug delivery for extended periods, e.g., weeks to months, depending upon the application. This is especially useful in providing therapy to reduce or prevent cell proliferation, inflammation, or thrombosis in a localized area.
  • an implantable medical device in accordance with the present invention includes a substrate, which may be, for example, a metal or polymeric stent or graft, among other possibilities. At least a portion of the substrate is coated with a first layer that includes one or more drugs in a polymer carrier. A barrier coating overlies the first layer. The barrier (which may be considered a coating) reduces the rate of release of the drug from the polymer once the medical device has been placed into the patient's body, thereby allowing an extended period of localized drug delivery once the medical device is in situ.
  • the barrier is necessarily biocompatible (i.e., its presence does not elicit an adverse response from the body), and typically has a thickness ranging from about 50 angstroms to about 20,000 angstroms. It is contemplated that the barrier contains mostly inorganic material. However, some organic compounds (e.g., polyacrylonitrile, polyvinylidene chloride, nylon 6-6, perfluoropolymers, polyethylene terephthalate, polyethylene 2,6-napthalene dicarboxylate, and polycarbonate) may be incorporated in the barrier.
  • organic compounds e.g., polyacrylonitrile, polyvinylidene chloride, nylon 6-6, perfluoropolymers, polyethylene terephthalate, polyethylene 2,6-napthalene dicarboxylate, and polycarbonate
  • Suitable inorganic materials for use within the barrier include, but are not limited to, inorganic elements, such as pure metals including aluminum, chromium, gold, hafnium, iridium, niobium, palladium, platinum, tantalum, titanium, tungsten, zirconium, and alloys of these metals, and inorganic compounds, such as inorganic silicides, oxides, nitrides, and carbides.
  • inorganic elements such as pure metals including aluminum, chromium, gold, hafnium, iridium, niobium, palladium, platinum, tantalum, titanium, tungsten, zirconium, and alloys of these metals
  • inorganic compounds such as inorganic silicides, oxides, nitrides, and carbides.
  • the solubility of the drug in the material of the barrier is significantly less than the solubility of the drug in the polymer carrier.
  • the diffusivity of the drug in the material of the barrier
  • the barrier may or may not be biodegradable (i.e., capable of being broken down into harmless compounds by the action of the body). While it is contemplated that non-biodegradable barrier may be preferable, some biodegradable materials may be used as barriers. For example, calcium phosphates such as hydroxyapatite, carbonated hydroxyapatite, tricalcium phosphate, beta-tricalcium phosphate, octacalcium phosphate, amorphous calcium phosphate, and calcium orthophosphate may be used. Certain calcium salts such as calcium phosphate (plaster of pans) may also be used. The biodegradability of the barrier may act as an additional mechanism for controlling drug release from the underlying first layer.
  • the one or more drugs contained within the polymer may include, but are not limited to, antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, fibrinolytic, thrombin inhibitor, antimitotic, antiallergic, and antiproliferative substances.
  • the barrier is a homogeneous layer.
  • a homogeneous layer of barrier may be produced by several methods, depending on the type of materials selected from the barrier. For example, nitride barriers, such as titanium nitride and chromium nitride, may be deposited by cathodic arc physical vapor deposition. Oxide barriers, such as silicon dioxide and aluminum oxide, can be produced by reactive sputtering. Metallic barriers, such as aluminum, gold, tungsten, platinum, or alloys of metals, may be produced by sputtering, thermal evaporation, or electron beam evaporation, as well as electroless deposition.
  • the barrier is formed by a number of discrete deposits on the surface of the polymer coating.
  • the release rate of the drug from the polymer coating may be manipulated by controlling the fraction of the surface area covered by the barrier.
  • Such a barrier may be obtained, for example, by cathodic arc sputtering, reactive sputtering, thermal evaporation, and electron beam (e-beam) evaporation of materials such as aluminum, chromium, gold, iridium, niobium, platinum, tantalum, titanium, and tungsten.
  • the barrier is intermixed with the first layer at and near the outer surface of the first layer, rather than being a discrete layer atop the first layer.
  • This embodiment may be produced by several techniques, including for example, ion implantation, plasma ion implantation, alkoxide hydrolysis, and electroless deposition.
  • Ion implantation and plasma ion implantation may produce, for example, titanium and palladium barrier coatings.
  • Alkoxide hydrolysis may produce barrier coatings of titanium oxide, zirconium oxide, and aluminum oxide from titanium alkoxides, zirconium alkoxides and aluminum alkoxides, respectively.
  • Electroless deposition may produce, for example, palladium and gold barrier coatings.
  • FIG. 1 is a partial cross-sectional view of a conventional implantable medical device having a polymer coating that carries a drug.
  • FIG. 2 illustrates a theoretical drug release rate curve for the implantable medical device of FIG. 1 .
  • FIG. 3 is a partial cross-sectional view of a barrier on the surface of a polymer-coated implantable medical device in accordance with one embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view of a barrier on the surface of a polymer-coated implantable medical device in accordance with a second embodiment of the present invention.
  • FIG. 5 is a graph depicting the release of dexamethasone acetate from a silicone polymer and the predicted release of dexamethasone acetate when a barrier is applied to the silicone polymer.
  • FIG. 6 is a partial cross-sectional view of various types of barriers on or near the surface of an implantable medical device in accordance with a third embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view of implantable medical device 11 , which may be a stent or graft, among other possibilities.
  • Medical device 11 includes a substrate 12 .
  • a first layer 24 is present on the outer surface of substrate 12 .
  • First layer 24 includes a polymer and one or more drugs 16 carried within the polymer.
  • First layer 24 can have a thickness ranging from about 2,000 angstroms to about 200,000 angstroms, or more particularly from about 10,000 angstroms to about 100,000 angstroms.
  • Barrier 28 is present as a homogenous layer on the top surface of first layer 24 .
  • Barrier 28 is biocompatible, and typically has a thickness ranging from about 50 angstroms to about 20,000 angstroms, e.g., from about 100 angstroms to about 5,000 angstroms.
  • barrier 28 is an inorganic material.
  • Barrier 28 acts to reduce the rate of delivery of drug 16 to internal target tissue area 50 by at least one of two mechanisms.
  • the solubility of drug 16 in barrier 28 is substantially less (i.e., at least two to three orders of magnitude less) than the solubility of drug 16 in first layer 24 .
  • the diffusivity of drug 16 in barrier 28 is significantly lower than the diffusivity of drug 16 in first layer 24 . Accordingly, drug 16 will diffuse more slowly through barrier 28 than through first layer 24 .
  • barrier 28 being mostly an inorganic material, is composed of much smaller molecules than those found within the polymer in first layer 24 . The barrier molecules are aligned more tightly and in a more orderly fashion than the polymer molecules, thereby leaving less void space through which drug 16 can travel.
  • Some barriers will be very impermeable, except for microfractures through the barrier coating. While these microfractures may link the top and bottom of the barrier coating, the paths of the microfractures linking the top and bottom of the barrier coating are tortuous, and thus the path that drug 16 must take to exit medical device 11 is much longer than the thickness of barrier 28 . Moreover, since the drug is restricted to diffusing only through the microfractures, the area available for diffusion is greatly reduced as well.
  • D 1 diffusivity of drug 16 in barrier 28 ;
  • Suitable inorganic materials for barrier 28 include, but are not limited to, silicides, oxides, nitrides, and carbides.
  • Suitable silicides may include suicides of vanadium, zirconium, tungsten, titanium, niobium, and tantalum.
  • Suitable oxides may include oxides of aluminum, barium, calcium, hafnium, niobium, silicon, tantalum, titanium, tungsten, and zirconium.
  • Suitable nitrides may include nitrides of chromium, silicon, titanium, and zirconium.
  • Suitable carbides may include carbides of silicon and titanium.
  • suitable materials may include molybdenum disulfide, amorphous diamond, diamond-like carbon, pyrolytic carbon, ultra-low temperature isotropic (ULTI) carbon, amorphous carbon, strontium titanate, and barium titanate.
  • ULTI ultra-low temperature isotropic
  • amorphous carbon amorphous carbon
  • strontium titanate and barium titanate.
  • pure metals such as aluminum, chromium, gold, hafnium, iridium, niobium, palladium, platinum, tantalum, titanium, tungsten, zirconium, and alloys of these metals.
  • barrier 28 on first layer 24 may be deposited by sputtering or chemical vapor deposition (CVD).
  • silicide compounds such as vanadium disilicide, zirconium disilicide, tungsten disilicide, titanium disilicide, niobium disilicide, tantalum disilicide, vanadium silicide, titanium trisilicide, and tantalum trisilicide may be deposited by sputtering or chemical vapor deposition (CVD).
  • Oxide barrier coatings such as tantalum oxide, titanium dioxide, zirconium oxide, niobium oxide, tungsten oxide, aluminum oxide, and silicon dioxide can be produced by reactive sputtering.
  • the power source used in this method may be AC or DC, and utilizes the pureelement as a target with a sputter gas of argon and low levels of oxygen.
  • Nitride barrier coatings such as titanium nitride, titanium carbonitride, chromium nitride, titanium aluminum nitride, and zirconium nitride can be deposited on first layer 24 at relatively low temperatures (i.e., less than 60° C.) by cathodic arc vacuum deposition. Such a method may be chosen where first layer 24 and drug 16 are temperature-sensitive.
  • Films of pure metals may be produced by physical vapor deposition (PVD) methods such as sputtering, thermal evaporation, or electron beam evaporation. Alloys of these metals can be deposited by sputtering if, for example, an alloy sputtering target is used or multiple metal targets are simultaneously sputtered. Alloys may also be deposited utilizing thermal evaporation or electron beam evaporation if several evaporation sources are used simultaneously.
  • PVD physical vapor deposition
  • Suitable polymer materials for first layer 24 can include, but are not limited to, polyurethanes, polyesterurethanes, silicone, fluoropolymers, ethylene vinyl acetate, polyethylene, polypropylene, polycarbonates, trimethylenecarbonate, polyphosphazene, polyhydroxybutyrate, polyhydroxyvalerate, polydioxanone, polyiminocarbonates, polyorthoesters, ethylene vinyl alcohol copolymer, L-polylactide, D,L-polylactide, polyglycolide, polycaprolactone, copolymers of lactide and glycolide, polymethylmethlacrylate, poly(n-butyl)methacrylate, polyacrylates, polymethacrylates, elastomers, and mixtures thereof.
  • elastomers include, but are not limited to, a thermoplastic elastomer material available under the trade name “C-FLEX” from Concept Polymer Technologies of Largo, Fla., polyetheramide thermoplastic elastomer, fluoroelastomers, fluorosilicone elastomer, sytrene-butadiene rubber, butadiene-styrene rubber, polyisoprene, neoprene (polychloroprene), ethylene-propylene elastomer, chloro-sulfonated polyethylene elastomer, butyl rubber, polysulfide elastomer, polyacrylate elastomer, nitrile, rubber, polyester, styrene, ethylene, propylene, butadiene and isoprene, polyester thermoplastic elastomer, and mixtures thereof.
  • C-FLEX thermoplastic elastomer material available under the trade name “C-FLEX
  • the choice of the polymer in first layer 24 typically depends on the selection of the particular drug 16 .
  • the factors to be considered in selecting an appropriate polymer include the molecular structure of both the polymer and the drug, the crystallinity or amorphousness of the polymer, the molecular weight of the drug (which is indicative of its size on a molecular level), and the solubility of the drug in the polymer.
  • Examples of drug/polymer pairings include dexamethasone in silicone or polyurethanes or fluoroelastomer; taxol in ethylene vinyl acetate or L-polylactide or polycaprolactone or polyurethanes; rapamycin in polymethylmethacrylate or poly(n-butyl)methacrylate; tranilast in polyurethanes or ethylene vinyl acetate; and fluorouracil in polyurethanes.
  • Examples of drug 16 include antineoplastic, antimitotic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antiproliferative, antibiotic, antioxidant, and antiallergic substances as well as combinations thereof.
  • Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g., TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g., Taxotere® from Aventis S.
  • methotrexate e.g., Adriamycin® from Pharmacia & Upjohn, Peapack, N.J.
  • mitomycin e.g., Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.
  • antiinflammatory substances include estradiol.
  • antiplatelets examples include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as AngiomaxTM (Biogen, Inc., Cambridge, Mass.).
  • antiallergic substances include permirolast potassium and tranilast.
  • cytostatic or antiproliferative agents examples include actinomycin D as well as derivatives and analogs thereof (manufactured by Sigma-Aldrich, Milwaukee, Wis.; or COSMEGEN® available from Merck & Co., Inc., Whitehouse Station, N.J.), angiopeptin, mitomycin, angiotensin converting enzyme inhibitors such as captopril (e.g., Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g., Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.), calcium channel blockers (such as nifedipine), colchicine, fibrolast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMB-CoA reductase, a cholesterol cyto
  • drugs or agents that may be used include, for example, alpha-interferon, genetically engineered epithelial cells, and dexamethasone. While the preventative and treatment properties of the foregoing drugs or agents are well-known to those of ordinary skill in the art, the substances or agents are provided by way of example and are not meant to be limiting. Other drugs that may be carried in a polymer coating are equally applicable for use with the present invention.
  • the release rate of the drug typically will be controlled in part by the material selected for the barrier.
  • the barrier material may be an inorganic compound, which is typically polar or ionic in nature.
  • the selected drug 16 is likewise polar or ionic in nature (e.g., cisplatin, fluoracil), then the solubility of drug 16 in barrier 28 will be higher, resulting in a higher diffusivity, and thus a faster rate of delivery of drug 16 through barrier 28 to internal target tissue area 50 .
  • the selected drug 16 is nonpolar, (e.g., TAXOL®, dexamethasone)
  • the solubility of drug 16 in barrier 28 will be lower, resulting in a lower diffusivity, and thus a lower rate of delivery of drug 16 through barrier 28 to internal target tissue area 50 .
  • titanium dioxide is a polar inorganic compound, but it has such a high degree of crystallinity, and an affinity for itself that other polar compounds (e.g., the drug to be delivered) do not necessarily dissolve into titanium dioxide very well.
  • FIG. 4 illustrates another embodiment of the present invention, wherein barrier 28 is composed of a number of discrete deposits above first layer 24 .
  • barrier 28 is composed of a number of discrete deposits above first layer 24 .
  • the first few atoms or molecules of barrier 28 deposited on first layer 24 form small “nucleation sites,” 30 on the surface 29 of first layer 24 .
  • Barrier 28 may be made discontinuous by arresting the deposition process at the nucleation stage, as illustrated in FIG. 4 . However, if the deposition is allowed to continue, nucleation sites 30 expand in surface area and eventually coalesce into a continuous film, as barrier 28 is illustrated in FIG. 3 .
  • nucleation sites 30 reduce the surface area available for drug 16 to diffuse from first layer 24 toward the internal tissue target area 50 , because the vast majority of drug 16 will preferentially diffuse between nucleation sites 30 at spaces 32 . While drug 16 may diffuse through nucleation sites 30 , it will do so at a much slower rate. Drug 16 situated beneath nucleation site 30 will not proceed directly to tissue 50 through nucleation site 30 , but will instead be directed by the diffusion gradient formed toward a space 32 . Nucleation sites 30 thus may also increase the length and tortuosity of the average diffusion path taken by molecules of drug 16 , again resulting in a slower rate of diffusion of drug 16 from first layer 24 .
  • Equation 3 assumes that there is no diffusion through nucleation sites 30 . Again, this equation is provided as an explanatory aid, and does not in any way limit the invention.
  • the rate of drug delivery (and thus, the effective treatment time) may be manipulated by controlling the number of nucleation sites 30 that are permitted to form on surface 29 of first layer 24 .
  • the number of nucleation sites may be controlled by controlling various deposition process parameters, such as deposition rate, substrate temperature, energy of the deposited atoms, substrate surface cleanliness and defects, angle of the incident atom flux, and substrate surface roughness.
  • the embodiment illustrated in FIG. 4 may be achieved by performing deposition processes that deposit layers of material by way of nucleation, such as cathodic arc sputtering, reactive sputtering, thermal evaporation and electron beam (e-beam) evaporation of materials such as gold, palladium, and aluminum.
  • nucleation such as cathodic arc sputtering, reactive sputtering, thermal evaporation and electron beam (e-beam) evaporation of materials such as gold, palladium, and aluminum.
  • the embodiment illustrated in FIG. 4 may also be achieved by depositing a continuous film, and then creating holes in that film.
  • metal films can be deposited with differing amounts of grain structure.
  • An etching chemical e.g., typically mixtures of mineral acids
  • a continuous film could be deposited, and holes made in that continuous film by, for example, ion milling, a laser, or electron beam machining.
  • Another method for achieving this embodiment would be deposition of a continuous film, followed by mechanically stressing the film, so that the continuous film fractures at preselected locations.
  • FIG. 6 illustrates another embodiment of the invention, wherein first layer 24 , and the barrier coating are not two discrete layers Instead, the interface between first layer 24 and barrier 40 is irregular, because barrier 40 is blended with first layer 24 to form an intermixed zone 42 at and near the top surface of first layer 24 .
  • Intermixing of the barrier 40 with first layer 24 may result when barrier 40 is deposited using one of several methods, whereby the deposited inorganic materials actually penetrate into first layer 24 , rather than merely adhering to the surface of first layer 24 . These methods include, for example, ion implantation, plasma ion implantation, alkoxide hydrolysis, and electroless deposition.
  • Intermixed zone 42 may include isolated bodies 43 of barrier material formed within first layer 24 and/or fingers 45 of barrier coating material extending into first layer 24 .
  • the rate of drug delivery from first layer 24 to internal target tissue area 50 may be reduced in large part by at least two mechanisms in this embodiment. First, if drug 16 diffuses through the barrier material in intermixed zone 42 , then drug 16 may have to follow a more tortuous diffusion path than drug 16 would otherwise follow, decreasing the diffusion rate. Second, if the barrier material in intermixed zone 42 acts as a complete barrier to diffusion, then the area normal to the direction of diffusion is significantly reduced, thus reducing the diffusion rate, in a manner similar to the nucleation sites in the embodiment illustrated in FIG. 4 .
  • the thickness of the barrier used may be varied, with a corresponding change in the drug release rate. Generally, the thicker the barrier, the greater the reduction in the drug release rate. However, there is a practical limit on the thickness of the barrier to be applied to first layer 24 . If the barrier becomes too thick, then, when subjected to stress from mechanical flexing or changes in temperature, internal stresses will build up within the barrier. When these internal stresses exceed the adhesion between the barrier and the underlying film, the barrier may fracture throughout. Small pieces of the barrier may then be lifted off from first layer 24 . The pieces could enter the lumen of a blood vessel, and act as an embolus, with potentially very harmful effects on the patient.
  • nitric oxide molecules signal the surrounding smooth muscle cells.
  • nitric oxide molecules also prevent the smooth muscle cells from migrating and/or proliferating, which, it is postulated, would reduce the incidence of restenosis following PTCA.
  • nitric oxide would ideally be released over a period of weeks (e.g., four to eight weeks, generally, and in some cases, up to twelve weeks, depending on the patient).
  • a homogeneous film of non-stoichiometric silicon dioxide (known as Si0 x is deposited as barrier coating 28 on first layer 24 .
  • First layer 24 contains drug 16 , which in this case is nitric oxide or a molecule which releases nitric oxide.
  • the oxygen transmission rate was reduced by one order of magnitude to approximately 100 cm 3 /m 2 -atm-day.
  • the oxygen transmission rate was further reduced by another order of magnitude, to approximately 10 cm 3 /m 2 -atm-day. A less dramatic reduction in oxygen transmission was observed with further increases in SiO, coating thickness.
  • oxygen (O 2 ) and nitric oxide (NO) are similar to each other in size and molecular weight
  • an implanted medical device e.g., a stent or graft
  • SiO x layer provided atop a polymeric coating containing nitric oxide
  • the release rate of nitric oxide from the polymeric carrier could be reduced by a factor of 10 by depositing a SiO x coating that is 30 nanometers thick on the polymeric carrier, and reduced by a factor of 100 by depositing a SiO x coating 60 nanometers thick on the polymeric carrier.
  • the implantable medical device having such a polymer coating and barrier coating would be useful in providing localized drug delivery for an extended period to a patient after PTCA.
  • Line A of FIG. 5 illustrates the release of dexamethasone acetate (C 22 H 29 F 05 ), a synthetic steroid used as an anti-inflammatory agent, from collars made from a silicone polymer over a period of 25 days when the polymeric collars were immersed in saline solution at a temperature of 37° C.
  • Each polymeric collar was loaded with approximately 0.25 mg of dexamethasone acetate.
  • a total of twenty polymeric collars were tested, and the averaged results are shown. After 25 days, a total of 0.018 mg of dexamethesone had been released, on average, from each polymeric collar.
  • the release rate would be reduced by 50%, with the result that the drug release curve would be predicted to appear as shown by line B of FIG. 5 . That is, after 25 days, an average of 0.009 mg of dexamethasone would be released.
  • the reduction in the drug release rate by 50% essentially means that the drug would be locally delivered to the body for a period of time twice as long, significantly extending the time of drug release.
  • the process parameters could be controlled so that nucleation sites 30 cover 75% of surface 29 of first layer 24 (which FIG. 4 approximates). This would result in a drug delivery rate that is approximately 25% lower than that associated with the homogeneous film embodiment illustrated in FIG. 3 .
  • One method by which the embodiment illustrated in FIG. 6 may be produced is alkoxide hydrolysis. If an implantable medical device having a first layer 24 is exposed to a humid environment and then immersed in a metal alkoxide solution, within seconds, metal oxide will be formed at or near the top surface of first layer 24 by reaction of the alkoxide with the water in the polymer coating. As long as the polymer contains some moisture (e.g., at least 1% by weight), the reaction can go forward.
  • suitable metal alkoxides include titanium ethoxide and titanium propoxide.
  • a solution of titanium ethoxide is created in dry ethanol at concentrations from about 0.1% to 10%.
  • a polymer coated stent is exposed to an environment with controlled relative humidity between 20% and 100% for between 0.5 and 60 minutes.
  • the stent is then immersed in the alkoxide solution for between 1 and 60 seconds, and then removed.
  • the excess alkoxide solution is rinsed off using ethanol or water.
  • the stent is then dried in a suitable environment (temperature from 20° to 70° C. for 1 to 60 minutes).
  • Electroless plating uses a chemical reduction reaction to deposit metal on a substrate without the passage of an electric current.
  • Nonconductive substrates such as polymers
  • the polymer may be catalytically activated by, for example, immersing it in a colloidal solution containing palladium. This colloidal solution provides nucleation sites of palladium (in this instance) on the polymer prior to electroless deposition of the metal. Certain polymers require an etching step before activation.
  • Biocompatible inorganic barriers that may be deposited by electroless deposition include palladium (Pd) and gold (Au).
  • Reducing agents for palladium include hypophosphite, amineborane, and hydrazine.
  • Reducing agents for gold include borohydride, amineborane, and hydrazine. The principal reactions that are believed to occur during electroless palladium plating,
  • hypophosphite as a reducing agent in one commercial application, are shown below.
  • hypophosphite ion is thought of as being catalytically oxidized (dehydrogenated) on the surface to be plated to release hydride ions (H—) which are then available for reduction of palladium ions at the surface.
  • H— hydride ions
  • the products of the reactions are thus the palladium-phosphorus deposit, phosphite ions, hydrogen ions, and hydrogen gas.
  • the phosphorus may be codeposited with palladium to the extent of 1 to 15 percent by weight by a mechanism shown in reaction (3) above.
  • an implantable medical device having a polymer coating with a finely etched surface is immersed in an aqueous solution of 5 g/L SnC 12 and 5 mL/L HCL for a period of about 5 minutes at 35° C.
  • the implantable medical device is then immersed in a plating solution at a temperature of 50° C., the plating solution including 2 g/L of palladium chloride, 160 mL/L of ammonium hydroxide (27%), 26 g/L of ammonium chloride, and 10 g/L of sodium hypopphosphite.
  • an implantable medical device having a polymer coating with a finely etched surface is immersed in an aqueous solution of 5 g/L SnCl 2 and 5 mL/L HCL for a period of about 5 minutes at 35° C.
  • the implantable medical device is then immersed in a plating solution at a temperature of 75° C., the plating solution including 5.8 g/L of potassium gold cyanide, 13.0 g/L of potassium cyanide, and 21.6 g/L of potassium borohydride.
  • Codeposition of phosphorus and boron may occur in the electroless plating process givenabove.
  • a proprietary reducing reagent is used that yields an electroless deposit of pure palladium that is free of phosphorus or boron.
  • the process is known as the PallatectTM process, and is available from Atotech USA, Inc. of Somerset, N.J. This process reportedly involves the steps of acid cleaning, microetching, activation, and electroless deposition of palladium.

Abstract

A drug eluting stent is disclosed. The stent includes a stent base; a basecoat formulation comprising Sirolimus in a polymer coating, wherein the polymer coating contains ethylene-co-vinyl acetate and poly-n-butyl methacrylate; and a topcoat disposed on the basecoat formulation.

Description

    CROSS REFERENCE
  • This application is a continuation of U.S. patent application Ser. No. 11/132,048 filed on May 17, 2005, which is a divisional application of U.S. patent application Ser. No. 10/678,346 filed Oct. 3, 2003 (U.S. Pat. No. 6,953,560), which is a continuation application of U.S. patent application Ser. No. 09/676,049 filed Sep. 28, 2000 (U.S. Pat. No. 6,716,444). This divisional application claims the priority benefit of U.S. patent application Ser. Nos. 11/132,048, 10/678,346 and 09/676,049, and this divisional application hereby incorporates by reference the complete contents of these applications.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to implantable medical devices that release a drug.
  • 2. Description of the Background
  • Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially compress against the atherosclerotic plaque of the lesion to model the arterial lumen. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.
  • In treating the damaged vasculature tissue, and to deter thrombosis and restenosis, drugs are commonly administered to the treatment site. For example, anticoagulants are commonly used to prevent thrombosis of the coronary lumen. Antiplatelets are administered to reduce the incidence of major adverse cardiac events. Cytostatic agents are presently used in clinical trials to reduce post-angioplasty proliferation of the vascular tissue.
  • Systemic administration of such drugs in sufficient amounts to supply an efficacious concentration to the local treatment site often produces adverse or toxic side effects for the patient. Accordingly, local delivery is a preferred method of treatment since smaller amounts of medication are administered in comparison to systemic dosages, but the medication is concentrated at a specific treatment site. Local delivery thus produces fewer side effects and achieves more effective results.
  • A common technique for local delivery of drugs involves coating a stent or graft with a polymeric material which, in turn, is impregnated with a drug or a combination of drugs. Once the stent or graft is implanted within a cardiovascular system lumen, the drug(s) is released from the polymer for the treatment of the local tissues. U.S. Pat. No. 5,605,696 to Eury et al., U.S. Pat. No. 5,464,650 to Berg, et al., and U.S. Pat. No. 5,700,286 to Tartaglia, et al. provide examples illustrating the use of a polymeric coating for the local delivery of a drug or substance.
  • Stents are scaffoldings, usually cylindrical or tubular in shape, which are inserted into an anatomical passageway and operate to physically hold open and, if desired, to expand the wall of a passageway. Stents are capable of being crimped onto balloon catheters for insertion through small cavities, positioned in a desired location, and then expanded to a larger diameter. Stents can be either balloon expandable or self-expanding.
  • Grafts are typically placed in a blood vessel to either replace a diseased segment that has been removed, or to form a bypass conduit through a damaged segment of the vessel wall as is the case with an aneurysm, for example. The graft has a tubular portion which spans the site of the damaged tissue and through which the blood flows. The graft has sections at both ends of the tube that are used to secure the graft to the inside of a vessel wall. The graft also has an outer surface, portions of which are in contact with an inner surface of the blood vessel wall, and an inner surface in contact with the blood flowing through the vessel.
  • FIG. 1 shows an implantable medical device 10, which may be a stent or graft. Device 10 includes a substrate 12 that may be formed of stainless steel, nickel titanium alloy, or another biocompatible metal. Substrate 12 is covered (usually conformally) by a first layer 14. First layer 14 includes polymer containing a drug 16.
  • An equation describing the drug release rate per unit area of device 10 is as follows: Φ ( t ) = D p n = 0 - b n exp ( - π 2 D p t ( 2 n + 1 ) 2 4 T 2 ) ( - π 2 T ( 2 n + 1 ) n ) ( Equation 1 )
  • where Φ(t)=release rate of drug as a function of time,
      • Dp=diffusivity of drug 16 in polymer film 14,
      • π=3.14159,
      • T=thickness of polymer film 14,
  • and bn b n = 2 T O T C O cos { π x ( 2 n + 1 ) 2 T } x
    where Co is the concentration of drug in the polymer at time zero.
  • Equation 1 assumes that: (1) all resistance to drug release is determined by the diffusivity of drug 16 in polymer 14; (2) the concentration of drug 16 is uniform throughout; (3) drug 16 does not go into the metallic surface 12; and (4) drug 16 is rapidly removed from the surface of polymer 14 as soon as drug 16 is released from polymer 14.
  • The diffusivity of drug 16 in polymer 14, DP, in turn is determined by certain properties of drug 16 (e.g., molecular weight, size) and physical properties of the polymer 14 through which drug 16 is diffusing (e.g., pore size, crystallinity, glass transition temperature, polarity or hydrophobicity).
  • FIG. 2 illustrates the predicted drug release rate curve for a polymer matrix carrying a drug, such as first layer 14, illustrated in FIG. 1. Curve 8 is an exponentially decreasing curve.
  • A problem associated with the use of a polymeric coating as a matrix for carrying the drug is that the rate at which the drug is released is highly variable, typically exhibiting a very high rate of release after the medical device is implanted in the patient, followed by a significantly lower rate of release. This may be undesirable in many applications, since the initial concentrations may be too high (causing undesirable side effects or even cell death), the later concentrations may be too low to have any therapeutic effect, and the overall residence time of the drug in the target area may be too short to provide the desired therapeutic effect.
  • For example, for certain antiproliferative drugs, a residence time of thirty minutes may be all that is required to achieve a permanent effect, while others may take up to two weeks. Where nitrous oxide (NO) is used as the antiproliferative drug, a residence time of four to eight weeks is desirable, but even longer durations up to twelve weeks may be beneficial, depending on the patient.
  • With respect to anti-inflammatory drugs, a long residence time (e.g., several weeks) is desirable, because the anti-inflammatory drug should be delivered until some amount of healing has occurred. Anti-thrombogenic drugs also may require a long residence time, for example, up to five months, since that much time may be required for a stent to become endothelialized.
  • Thus, there is a need for a mechanism for controlling the release rate of drugs from implantable medical devices to increase the efficacy of local drug delivery in treating patients.
  • SUMMARY OF THE INVENTION
  • The present invention allows for a controlled rate of release of a drug or drugs from a polymer carried on an implantable medical device. The controlled rate of release allows localized drug delivery for extended periods, e.g., weeks to months, depending upon the application. This is especially useful in providing therapy to reduce or prevent cell proliferation, inflammation, or thrombosis in a localized area.
  • One embodiment of an implantable medical device in accordance with the present invention includes a substrate, which may be, for example, a metal or polymeric stent or graft, among other possibilities. At least a portion of the substrate is coated with a first layer that includes one or more drugs in a polymer carrier. A barrier coating overlies the first layer. The barrier (which may be considered a coating) reduces the rate of release of the drug from the polymer once the medical device has been placed into the patient's body, thereby allowing an extended period of localized drug delivery once the medical device is in situ.
  • The barrier is necessarily biocompatible (i.e., its presence does not elicit an adverse response from the body), and typically has a thickness ranging from about 50 angstroms to about 20,000 angstroms. It is contemplated that the barrier contains mostly inorganic material. However, some organic compounds (e.g., polyacrylonitrile, polyvinylidene chloride, nylon 6-6, perfluoropolymers, polyethylene terephthalate, polyethylene 2,6-napthalene dicarboxylate, and polycarbonate) may be incorporated in the barrier. Suitable inorganic materials for use within the barrier include, but are not limited to, inorganic elements, such as pure metals including aluminum, chromium, gold, hafnium, iridium, niobium, palladium, platinum, tantalum, titanium, tungsten, zirconium, and alloys of these metals, and inorganic compounds, such as inorganic silicides, oxides, nitrides, and carbides. Generally, the solubility of the drug in the material of the barrier is significantly less than the solubility of the drug in the polymer carrier. Also, generally, the diffusivity of the drug in the material of the barrier is significantly lower than the diffusivity of the drug in the polymer carrier.
  • The barrier may or may not be biodegradable (i.e., capable of being broken down into harmless compounds by the action of the body). While it is contemplated that non-biodegradable barrier may be preferable, some biodegradable materials may be used as barriers. For example, calcium phosphates such as hydroxyapatite, carbonated hydroxyapatite, tricalcium phosphate, beta-tricalcium phosphate, octacalcium phosphate, amorphous calcium phosphate, and calcium orthophosphate may be used. Certain calcium salts such as calcium phosphate (plaster of pans) may also be used. The biodegradability of the barrier may act as an additional mechanism for controlling drug release from the underlying first layer.
  • The one or more drugs contained within the polymer may include, but are not limited to, antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, fibrinolytic, thrombin inhibitor, antimitotic, antiallergic, and antiproliferative substances.
  • In accordance with one embodiment of the present invention, the barrier is a homogeneous layer. A homogeneous layer of barrier may be produced by several methods, depending on the type of materials selected from the barrier. For example, nitride barriers, such as titanium nitride and chromium nitride, may be deposited by cathodic arc physical vapor deposition. Oxide barriers, such as silicon dioxide and aluminum oxide, can be produced by reactive sputtering. Metallic barriers, such as aluminum, gold, tungsten, platinum, or alloys of metals, may be produced by sputtering, thermal evaporation, or electron beam evaporation, as well as electroless deposition.
  • In accordance with another embodiment of the present invention, the barrier is formed by a number of discrete deposits on the surface of the polymer coating. The release rate of the drug from the polymer coating may be manipulated by controlling the fraction of the surface area covered by the barrier. Such a barrier may be obtained, for example, by cathodic arc sputtering, reactive sputtering, thermal evaporation, and electron beam (e-beam) evaporation of materials such as aluminum, chromium, gold, iridium, niobium, platinum, tantalum, titanium, and tungsten.
  • In accordance with another embodiment of the present invention, the barrier is intermixed with the first layer at and near the outer surface of the first layer, rather than being a discrete layer atop the first layer. This embodiment may be produced by several techniques, including for example, ion implantation, plasma ion implantation, alkoxide hydrolysis, and electroless deposition. Ion implantation and plasma ion implantation may produce, for example, titanium and palladium barrier coatings. Alkoxide hydrolysis may produce barrier coatings of titanium oxide, zirconium oxide, and aluminum oxide from titanium alkoxides, zirconium alkoxides and aluminum alkoxides, respectively. Electroless deposition may produce, for example, palladium and gold barrier coatings.
  • These and other embodiments and aspects of the present invention may be better understood in view of the drawings and the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial cross-sectional view of a conventional implantable medical device having a polymer coating that carries a drug.
  • FIG. 2 illustrates a theoretical drug release rate curve for the implantable medical device of FIG. 1.
  • FIG. 3 is a partial cross-sectional view of a barrier on the surface of a polymer-coated implantable medical device in accordance with one embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view of a barrier on the surface of a polymer-coated implantable medical device in accordance with a second embodiment of the present invention.
  • FIG. 5 is a graph depicting the release of dexamethasone acetate from a silicone polymer and the predicted release of dexamethasone acetate when a barrier is applied to the silicone polymer.
  • FIG. 6 is a partial cross-sectional view of various types of barriers on or near the surface of an implantable medical device in accordance with a third embodiment of the present invention.
  • DETAILED DESCRIPTION
  • FIG. 3 is a partial cross-sectional view of implantable medical device 11, which may be a stent or graft, among other possibilities. Medical device 11 includes a substrate 12. A first layer 24 is present on the outer surface of substrate 12. First layer 24 includes a polymer and one or more drugs 16 carried within the polymer. First layer 24 can have a thickness ranging from about 2,000 angstroms to about 200,000 angstroms, or more particularly from about 10,000 angstroms to about 100,000 angstroms. Barrier 28 is present as a homogenous layer on the top surface of first layer 24. Barrier 28 is biocompatible, and typically has a thickness ranging from about 50 angstroms to about 20,000 angstroms, e.g., from about 100 angstroms to about 5,000 angstroms. In this embodiment, barrier 28 is an inorganic material.
  • Barrier 28 acts to reduce the rate of delivery of drug 16 to internal target tissue area 50 by at least one of two mechanisms. First, the solubility of drug 16 in barrier 28 is substantially less (i.e., at least two to three orders of magnitude less) than the solubility of drug 16 in first layer 24. Likewise, the diffusivity of drug 16 in barrier 28 is significantly lower than the diffusivity of drug 16 in first layer 24. Accordingly, drug 16 will diffuse more slowly through barrier 28 than through first layer 24. Secondly, barrier 28, being mostly an inorganic material, is composed of much smaller molecules than those found within the polymer in first layer 24. The barrier molecules are aligned more tightly and in a more orderly fashion than the polymer molecules, thereby leaving less void space through which drug 16 can travel.
  • Some barriers, especially defect-free metallic films and SiOX films, will be very impermeable, except for microfractures through the barrier coating. While these microfractures may link the top and bottom of the barrier coating, the paths of the microfractures linking the top and bottom of the barrier coating are tortuous, and thus the path that drug 16 must take to exit medical device 11 is much longer than the thickness of barrier 28. Moreover, since the drug is restricted to diffusing only through the microfractures, the area available for diffusion is greatly reduced as well.
  • A simple model for the embodiment illustrated in FIG. 3 holds that the rate of release of drug 16 from barrier 28 per unit area may be expressed by the following equation: Release rate = D 1 k T 1 C p o exp { - D 1 kt T p T 1 } ( Equation 2 )
  • where D1=diffusivity of drug 16 in barrier 28;
      • k=partition coefficient for drug 16 between first layer 24 and barrier 28;
      • T1=thickness of barrier 28;
      • Cpo=initial concentration of drug 16 in barrier 28; and
      • Tp=thickness of first layer 24.
  • This equation assumes that all of the resistance to drug release is in the barrier 28. This is a reasonable assumption since, typically, D1 is at least two to three orders of magnitude lower than the diffusivity of drug 16 in first layer 24. As can be seen from Equation 2, variables D1, k, and T1, are the most significant variables affecting drug release. Of course, the present invention does not depend on this equation or the assumptions discussed above.
  • Suitable inorganic materials for barrier 28 include, but are not limited to, silicides, oxides, nitrides, and carbides. Suitable silicides may include suicides of vanadium, zirconium, tungsten, titanium, niobium, and tantalum. Suitable oxides may include oxides of aluminum, barium, calcium, hafnium, niobium, silicon, tantalum, titanium, tungsten, and zirconium. Suitable nitrides may include nitrides of chromium, silicon, titanium, and zirconium. Suitable carbides may include carbides of silicon and titanium. Other suitable materials may include molybdenum disulfide, amorphous diamond, diamond-like carbon, pyrolytic carbon, ultra-low temperature isotropic (ULTI) carbon, amorphous carbon, strontium titanate, and barium titanate. Also suitable for use are pure metals, such as aluminum, chromium, gold, hafnium, iridium, niobium, palladium, platinum, tantalum, titanium, tungsten, zirconium, and alloys of these metals.
  • Several methods may be used to deposit barrier 28 on first layer 24, depending on the application. For example, silicide compounds, such as vanadium disilicide, zirconium disilicide, tungsten disilicide, titanium disilicide, niobium disilicide, tantalum disilicide, vanadium silicide, titanium trisilicide, and tantalum trisilicide may be deposited by sputtering or chemical vapor deposition (CVD).
  • Oxide barrier coatings, such as tantalum oxide, titanium dioxide, zirconium oxide, niobium oxide, tungsten oxide, aluminum oxide, and silicon dioxide can be produced by reactive sputtering. The power source used in this method may be AC or DC, and utilizes the pureelement as a target with a sputter gas of argon and low levels of oxygen.
  • Nitride barrier coatings, such as titanium nitride, titanium carbonitride, chromium nitride, titanium aluminum nitride, and zirconium nitride can be deposited on first layer 24 at relatively low temperatures (i.e., less than 60° C.) by cathodic arc vacuum deposition. Such a method may be chosen where first layer 24 and drug 16 are temperature-sensitive.
  • Films of pure metals (e.g., aluminum, gold, tungsten, platinum) may be produced by physical vapor deposition (PVD) methods such as sputtering, thermal evaporation, or electron beam evaporation. Alloys of these metals can be deposited by sputtering if, for example, an alloy sputtering target is used or multiple metal targets are simultaneously sputtered. Alloys may also be deposited utilizing thermal evaporation or electron beam evaporation if several evaporation sources are used simultaneously.
  • Suitable polymer materials for first layer 24 can include, but are not limited to, polyurethanes, polyesterurethanes, silicone, fluoropolymers, ethylene vinyl acetate, polyethylene, polypropylene, polycarbonates, trimethylenecarbonate, polyphosphazene, polyhydroxybutyrate, polyhydroxyvalerate, polydioxanone, polyiminocarbonates, polyorthoesters, ethylene vinyl alcohol copolymer, L-polylactide, D,L-polylactide, polyglycolide, polycaprolactone, copolymers of lactide and glycolide, polymethylmethlacrylate, poly(n-butyl)methacrylate, polyacrylates, polymethacrylates, elastomers, and mixtures thereof.
  • Representative elastomers include, but are not limited to, a thermoplastic elastomer material available under the trade name “C-FLEX” from Concept Polymer Technologies of Largo, Fla., polyetheramide thermoplastic elastomer, fluoroelastomers, fluorosilicone elastomer, sytrene-butadiene rubber, butadiene-styrene rubber, polyisoprene, neoprene (polychloroprene), ethylene-propylene elastomer, chloro-sulfonated polyethylene elastomer, butyl rubber, polysulfide elastomer, polyacrylate elastomer, nitrile, rubber, polyester, styrene, ethylene, propylene, butadiene and isoprene, polyester thermoplastic elastomer, and mixtures thereof.
  • The choice of the polymer in first layer 24 typically depends on the selection of the particular drug 16. For a drug 16 that is to be dissolved in the polymer, the factors to be considered in selecting an appropriate polymer include the molecular structure of both the polymer and the drug, the crystallinity or amorphousness of the polymer, the molecular weight of the drug (which is indicative of its size on a molecular level), and the solubility of the drug in the polymer. Examples of drug/polymer pairings include dexamethasone in silicone or polyurethanes or fluoroelastomer; taxol in ethylene vinyl acetate or L-polylactide or polycaprolactone or polyurethanes; rapamycin in polymethylmethacrylate or poly(n-butyl)methacrylate; tranilast in polyurethanes or ethylene vinyl acetate; and fluorouracil in polyurethanes.
  • Examples of drug 16 include antineoplastic, antimitotic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antiproliferative, antibiotic, antioxidant, and antiallergic substances as well as combinations thereof. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g., TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g., Taxotere® from Aventis S. A., Frankfurt, Germany), methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g., Adriamycin® from Pharmacia & Upjohn, Peapack, N.J.), and mitomycin (e.g., Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiinflammatory substances include estradiol. Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax™ (Biogen, Inc., Cambridge, Mass.). Examples of such antiallergic substances include permirolast potassium and tranilast. Examples of such cytostatic or antiproliferative agents include actinomycin D as well as derivatives and analogs thereof (manufactured by Sigma-Aldrich, Milwaukee, Wis.; or COSMEGEN® available from Merck & Co., Inc., Whitehouse Station, N.J.), angiopeptin, mitomycin, angiotensin converting enzyme inhibitors such as captopril (e.g., Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g., Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.), calcium channel blockers (such as nifedipine), colchicine, fibrolast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMB-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide.
  • Other drugs or agents that may be used include, for example, alpha-interferon, genetically engineered epithelial cells, and dexamethasone. While the preventative and treatment properties of the foregoing drugs or agents are well-known to those of ordinary skill in the art, the substances or agents are provided by way of example and are not meant to be limiting. Other drugs that may be carried in a polymer coating are equally applicable for use with the present invention.
  • According to the present invention, the release rate of the drug typically will be controlled in part by the material selected for the barrier. For instance, the barrier material may be an inorganic compound, which is typically polar or ionic in nature. Generally, if the selected drug 16 is likewise polar or ionic in nature (e.g., cisplatin, fluoracil), then the solubility of drug 16 in barrier 28 will be higher, resulting in a higher diffusivity, and thus a faster rate of delivery of drug 16 through barrier 28 to internal target tissue area 50. Conversely, if the selected drug 16 is nonpolar, (e.g., TAXOL®, dexamethasone), then the solubility of drug 16 in barrier 28 will be lower, resulting in a lower diffusivity, and thus a lower rate of delivery of drug 16 through barrier 28 to internal target tissue area 50. However, this is not always the case. Titanium dioxide is a polar inorganic compound, but it has such a high degree of crystallinity, and an affinity for itself that other polar compounds (e.g., the drug to be delivered) do not necessarily dissolve into titanium dioxide very well.
  • FIG. 4 illustrates another embodiment of the present invention, wherein barrier 28 is composed of a number of discrete deposits above first layer 24. When using certain deposition methods, the first few atoms or molecules of barrier 28 deposited on first layer 24 form small “nucleation sites,” 30 on the surface 29 of first layer 24. Barrier 28 may be made discontinuous by arresting the deposition process at the nucleation stage, as illustrated in FIG. 4. However, if the deposition is allowed to continue, nucleation sites 30 expand in surface area and eventually coalesce into a continuous film, as barrier 28 is illustrated in FIG. 3.
  • In the embodiment illustrated in FIG. 4, the rate of drug delivery from first layer 24 to internal tissue target area 50 is reduced primarily by the presence of nucleation sites 30. Nucleation sites 30 reduce the surface area available for drug 16 to diffuse from first layer 24 toward the internal tissue target area 50, because the vast majority of drug 16 will preferentially diffuse between nucleation sites 30 at spaces 32. While drug 16 may diffuse through nucleation sites 30, it will do so at a much slower rate. Drug 16 situated beneath nucleation site 30 will not proceed directly to tissue 50 through nucleation site 30, but will instead be directed by the diffusion gradient formed toward a space 32. Nucleation sites 30 thus may also increase the length and tortuosity of the average diffusion path taken by molecules of drug 16, again resulting in a slower rate of diffusion of drug 16 from first layer 24.
  • The release rate associated with the embodiment of FIG. 4 may be generally described by the following equation:
    Release Rate=(1−A)Φ(t)  (Equation 3)
  • where A=fraction of surface area covered by nucleation sites; and
  • Φ(t) is as defined in Equation 1.
  • Equation 3 assumes that there is no diffusion through nucleation sites 30. Again, this equation is provided as an explanatory aid, and does not in any way limit the invention.
  • Advantageously, in this embodiment, the rate of drug delivery (and thus, the effective treatment time) may be manipulated by controlling the number of nucleation sites 30 that are permitted to form on surface 29 of first layer 24. The number of nucleation sites may be controlled by controlling various deposition process parameters, such as deposition rate, substrate temperature, energy of the deposited atoms, substrate surface cleanliness and defects, angle of the incident atom flux, and substrate surface roughness.
  • The embodiment illustrated in FIG. 4 may be achieved by performing deposition processes that deposit layers of material by way of nucleation, such as cathodic arc sputtering, reactive sputtering, thermal evaporation and electron beam (e-beam) evaporation of materials such as gold, palladium, and aluminum.
  • The embodiment illustrated in FIG. 4 may also be achieved by depositing a continuous film, and then creating holes in that film. For example, metal films can be deposited with differing amounts of grain structure. An etching chemical (e.g., typically mixtures of mineral acids) may be used to preferentially etch between grains and remove some of the metal film. Alternately, a continuous film could be deposited, and holes made in that continuous film by, for example, ion milling, a laser, or electron beam machining. Another method for achieving this embodiment would be deposition of a continuous film, followed by mechanically stressing the film, so that the continuous film fractures at preselected locations.
  • FIG. 6 illustrates another embodiment of the invention, wherein first layer 24, and the barrier coating are not two discrete layers Instead, the interface between first layer 24 and barrier 40 is irregular, because barrier 40 is blended with first layer 24 to form an intermixed zone 42 at and near the top surface of first layer 24. Intermixing of the barrier 40 with first layer 24 may result when barrier 40 is deposited using one of several methods, whereby the deposited inorganic materials actually penetrate into first layer 24, rather than merely adhering to the surface of first layer 24. These methods include, for example, ion implantation, plasma ion implantation, alkoxide hydrolysis, and electroless deposition. Intermixed zone 42 may include isolated bodies 43 of barrier material formed within first layer 24 and/or fingers 45 of barrier coating material extending into first layer 24.
  • The rate of drug delivery from first layer 24 to internal target tissue area 50 may be reduced in large part by at least two mechanisms in this embodiment. First, if drug 16 diffuses through the barrier material in intermixed zone 42, then drug 16 may have to follow a more tortuous diffusion path than drug 16 would otherwise follow, decreasing the diffusion rate. Second, if the barrier material in intermixed zone 42 acts as a complete barrier to diffusion, then the area normal to the direction of diffusion is significantly reduced, thus reducing the diffusion rate, in a manner similar to the nucleation sites in the embodiment illustrated in FIG. 4.
  • Meaningful quantitative or semiquantitative descriptions of drug release rates from the embodiment illustrated in FIG. 6 are difficult to provide, since the geometry of the intermixed zone 42 is highly variable. However, it can be stated that, regardless of the geometry of the intermixed zone, the rate of release of drug 16 from first layer 24 will be significantly reduced.
  • One of ordinary skill in the art will appreciate that, for all of the embodiments described herein, the thickness of the barrier used may be varied, with a corresponding change in the drug release rate. Generally, the thicker the barrier, the greater the reduction in the drug release rate. However, there is a practical limit on the thickness of the barrier to be applied to first layer 24. If the barrier becomes too thick, then, when subjected to stress from mechanical flexing or changes in temperature, internal stresses will build up within the barrier. When these internal stresses exceed the adhesion between the barrier and the underlying film, the barrier may fracture throughout. Small pieces of the barrier may then be lifted off from first layer 24. The pieces could enter the lumen of a blood vessel, and act as an embolus, with potentially very harmful effects on the patient.
  • EXAMPLE 1 Use of SiO, Film as a Barrier Coating to Reduce the Rate of Release of Nitric Oxide from a Polymer Coated Medical Device
  • Healthy endothelial cells located along the intima (the innermost layer of cells lining the blood vessels) produce a nearly constant supply of nitric oxide. Nitric oxide molecules signal the surrounding smooth muscle cells. We currently believe nitric oxide molecules also prevent the smooth muscle cells from migrating and/or proliferating, which, it is postulated, would reduce the incidence of restenosis following PTCA. To be effective in local delivery, nitric oxide would ideally be released over a period of weeks (e.g., four to eight weeks, generally, and in some cases, up to twelve weeks, depending on the patient). In accordance with one embodiment of the invention, a homogeneous film of non-stoichiometric silicon dioxide (known as Si0x is deposited as barrier coating 28 on first layer 24. First layer 24 contains drug 16, which in this case is nitric oxide or a molecule which releases nitric oxide.
  • Experimental data collected by others has shown that a polycarbonate film having an average molecular weight in the range of 20,000 to 40,000 g/mole has an oxygen (02) transmission rate of 1000 cm3/m2-atm-day. See, Erlat, et al., “Morphology and Gas Barrier Properties of Thin SiOx Coatings on Polycarbonate: Correlations with Plasma-enhanced Chemical Vapor Deposition Conditions,” J. Mater. Res., Vol. 15, No. 3, March 2000. By depositing a SiOx coating having a thickness of approximately 30 nanometers (nm) on the polycarbonate, using plasma-enhanced chemical vapor deposition, the oxygen transmission rate was reduced by one order of magnitude to approximately 100 cm3/m2-atm-day. By increasing the thickness of the SiOx coating deposited to 60 nanometers, the oxygen transmission rate was further reduced by another order of magnitude, to approximately 10 cm3/m2-atm-day. A less dramatic reduction in oxygen transmission was observed with further increases in SiO, coating thickness.
  • Since oxygen (O2) and nitric oxide (NO) are similar to each other in size and molecular weight, we anticipate that an implanted medical device (e.g., a stent or graft) having a SiOx layer provided atop a polymeric coating containing nitric oxide would cause a similar reduction in the rate at which nitric oxide is released from the polymeric material into a target tissue area. That is, the release rate of nitric oxide from the polymeric carrier could be reduced by a factor of 10 by depositing a SiOx coating that is 30 nanometers thick on the polymeric carrier, and reduced by a factor of 100 by depositing a SiOx coating 60 nanometers thick on the polymeric carrier. As a result, for a given mass of nitric oxide loaded into the polymer carrier, the period of time over which nitric oxide is released could be extended by factors of 10 and 100, respectively. Accordingly, the implantable medical device having such a polymer coating and barrier coating would be useful in providing localized drug delivery for an extended period to a patient after PTCA.
  • EXAMPLE 2 Use of Discontinuous Barrier Coating to Reduce the Rate Of Release of Dexamethasone from a Silicone Polymer
  • Line A of FIG. 5 illustrates the release of dexamethasone acetate (C22H29F05), a synthetic steroid used as an anti-inflammatory agent, from collars made from a silicone polymer over a period of 25 days when the polymeric collars were immersed in saline solution at a temperature of 37° C. Each polymeric collar was loaded with approximately 0.25 mg of dexamethasone acetate. A total of twenty polymeric collars were tested, and the averaged results are shown. After 25 days, a total of 0.018 mg of dexamethesone had been released, on average, from each polymeric collar.
  • Assuming nucleation sites 30 of a barrier material were deposited on the silicone polymer in a manner similar to that illustrated in FIG. 4, so as to cover 50% of the available surface area, then the release rate would be reduced by 50%, with the result that the drug release curve would be predicted to appear as shown by line B of FIG. 5. That is, after 25 days, an average of 0.009 mg of dexamethasone would be released. Advantageously, the reduction in the drug release rate by 50% essentially means that the drug would be locally delivered to the body for a period of time twice as long, significantly extending the time of drug release.
  • Similarly, the process parameters could be controlled so that nucleation sites 30 cover 75% of surface 29 of first layer 24 (which FIG. 4 approximates). This would result in a drug delivery rate that is approximately 25% lower than that associated with the homogeneous film embodiment illustrated in FIG. 3.
  • EXAMPLE 3 Method for Producing a Titanium Oxide Barrier Coating on a Polymer-Coated Medical Device by Alkoxide Hydrolysis
  • One method by which the embodiment illustrated in FIG. 6 may be produced is alkoxide hydrolysis. If an implantable medical device having a first layer 24 is exposed to a humid environment and then immersed in a metal alkoxide solution, within seconds, metal oxide will be formed at or near the top surface of first layer 24 by reaction of the alkoxide with the water in the polymer coating. As long as the polymer contains some moisture (e.g., at least 1% by weight), the reaction can go forward. Examples of suitable metal alkoxides include titanium ethoxide and titanium propoxide.
  • A solution of titanium ethoxide is created in dry ethanol at concentrations from about 0.1% to 10%. A polymer coated stent is exposed to an environment with controlled relative humidity between 20% and 100% for between 0.5 and 60 minutes. The stent is then immersed in the alkoxide solution for between 1 and 60 seconds, and then removed. The excess alkoxide solution is rinsed off using ethanol or water. The stent is then dried in a suitable environment (temperature from 20° to 70° C. for 1 to 60 minutes).
  • EXAMPLE 4 Methods for Producing Barrier Coatings on a Polymer by Electroless Plating
  • Another method by which the embodiments illustrated in FIGS. 3 and 6 may be produced is reductive deposition in solution, or electroless plating of a material onto a polymer coated surface of an implantable medical device. Electroless plating uses a chemical reduction reaction to deposit metal on a substrate without the passage of an electric current.
  • Nonconductive substrates, such as polymers, are readily plated by this method if the polymer is first catalytically activated. The polymer may be catalytically activated by, for example, immersing it in a colloidal solution containing palladium. This colloidal solution provides nucleation sites of palladium (in this instance) on the polymer prior to electroless deposition of the metal. Certain polymers require an etching step before activation.
  • Biocompatible inorganic barriers that may be deposited by electroless deposition include palladium (Pd) and gold (Au). Reducing agents for palladium include hypophosphite, amineborane, and hydrazine. Reducing agents for gold include borohydride, amineborane, and hydrazine. The principal reactions that are believed to occur during electroless palladium plating,
  • using hypophosphite as a reducing agent in one commercial application, are shown below.
    2H2 PO2+2H2O→2HPO3 −2+4H++2H  (1)
    Pd+++2H→Pd0+H2  (2)
    2H2PO2 +2H→2P+4OH+H2  (3)
  • “Training Course in Electroplating and Surface Finishing,” ©1998 by American Electroplaters and Surface Finishers Society, Inc., AESF, 12644 Research Parkway, Orlando, Fla. 32826-3298.
  • According to the authors, the hypophosphite ion is thought of as being catalytically oxidized (dehydrogenated) on the surface to be plated to release hydride ions (H—) which are then available for reduction of palladium ions at the surface. The products of the reactions are thus the palladium-phosphorus deposit, phosphite ions, hydrogen ions, and hydrogen gas.
  • The phosphorus may be codeposited with palladium to the extent of 1 to 15 percent by weight by a mechanism shown in reaction (3) above.
  • For example, to provide a palladium barrier coating, an implantable medical device having a polymer coating with a finely etched surface is immersed in an aqueous solution of 5 g/L SnC12 and 5 mL/L HCL for a period of about 5 minutes at 35° C. The implantable medical device is then immersed in a plating solution at a temperature of 50° C., the plating solution including 2 g/L of palladium chloride, 160 mL/L of ammonium hydroxide (27%), 26 g/L of ammonium chloride, and 10 g/L of sodium hypopphosphite.
  • To provide a gold barrier coating, an implantable medical device having a polymer coating with a finely etched surface is immersed in an aqueous solution of 5 g/L SnCl2 and 5 mL/L HCL for a period of about 5 minutes at 35° C. The implantable medical device is then immersed in a plating solution at a temperature of 75° C., the plating solution including 5.8 g/L of potassium gold cyanide, 13.0 g/L of potassium cyanide, and 21.6 g/L of potassium borohydride.
  • Codeposition of phosphorus and boron may occur in the electroless plating process givenabove. In another process which is commercially available, a proprietary reducing reagent is used that yields an electroless deposit of pure palladium that is free of phosphorus or boron. The process is known as the Pallatect™ process, and is available from Atotech USA, Inc. of Somerset, N.J. This process reportedly involves the steps of acid cleaning, microetching, activation, and electroless deposition of palladium.
  • While particular embodiments of the present invention have been shown and described, various changes and modifications can be made without departing from this invention in its broader aspects. For instance, while we have discussed the invention in conjunction with stents and grafts, artisans will appreciate that the invention may be used with any implantable medical device that can be used in conjunction with a drug-loaded polymer for localized drug delivery. For example, such barrier coatings may be applied to drug-loaded polymer coatings on catheters, cerebrospinal fluid shunts, drug delivery pacemaker leads, defibrillation electrodes, artificial hips and bones, breast implants, and other implanted devices. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims (3)

1.-21. (canceled)
22. A Sirolimus-eluting coronary stent comprising:
a stent base;
a basecoat formulation comprising Sirolimus in a polymer coating,
wherein the polymer coating contains ethylene-co-vinyl acetate and poly-n-butyl methacrylate; and
a topcoat disposed on the basecoat formulation.
23. A stent comprising:
a substrate;
a Sirolimus layer comprising Sirolimus and poly-n-butyl methacrylate, the Sirolimus layer supported by the substrate;
and a barrier layer over at least a portion of the Sirolimus layer.
US11/634,686 2000-09-28 2006-12-05 Poly(butylmethacrylate) and rapamycin coated stent Abandoned US20070198081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/634,686 US20070198081A1 (en) 2000-09-28 2006-12-05 Poly(butylmethacrylate) and rapamycin coated stent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/676,049 US6716444B1 (en) 2000-09-28 2000-09-28 Barriers for polymer-coated implantable medical devices and methods for making the same
US10/678,346 US6953560B1 (en) 2000-09-28 2003-10-03 Barriers for polymer-coated implantable medical devices and methods for making the same
US11/132,048 US7691401B2 (en) 2000-09-28 2005-05-17 Poly(butylmethacrylate) and rapamycin coated stent
US11/634,686 US20070198081A1 (en) 2000-09-28 2006-12-05 Poly(butylmethacrylate) and rapamycin coated stent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/132,048 Continuation US7691401B2 (en) 2000-09-28 2005-05-17 Poly(butylmethacrylate) and rapamycin coated stent

Publications (1)

Publication Number Publication Date
US20070198081A1 true US20070198081A1 (en) 2007-08-23

Family

ID=35057261

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/678,346 Expired - Fee Related US6953560B1 (en) 2000-09-28 2003-10-03 Barriers for polymer-coated implantable medical devices and methods for making the same
US11/132,048 Expired - Fee Related US7691401B2 (en) 2000-09-28 2005-05-17 Poly(butylmethacrylate) and rapamycin coated stent
US11/634,686 Abandoned US20070198081A1 (en) 2000-09-28 2006-12-05 Poly(butylmethacrylate) and rapamycin coated stent

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/678,346 Expired - Fee Related US6953560B1 (en) 2000-09-28 2003-10-03 Barriers for polymer-coated implantable medical devices and methods for making the same
US11/132,048 Expired - Fee Related US7691401B2 (en) 2000-09-28 2005-05-17 Poly(butylmethacrylate) and rapamycin coated stent

Country Status (1)

Country Link
US (3) US6953560B1 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050113907A1 (en) * 2002-06-28 2005-05-26 Fischell David R. Method and apparatus for treating vulnerable coronary plaques using drug-eluting stents
US20080306584A1 (en) * 2007-06-05 2008-12-11 Pamela Kramer-Brown Implantable medical devices for local and regional treatment
US20090053392A1 (en) * 2007-06-05 2009-02-26 Abbott Cardiovascular Systems Inc. Implantable medical devices for local and regional treatment
US20090240324A1 (en) * 2008-03-19 2009-09-24 Boston Scientific Scimed, Inc. Drug Eluting Stent and Method of Making the Same
US20090264975A1 (en) * 2008-04-22 2009-10-22 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US20090311304A1 (en) * 2008-06-12 2009-12-17 Alexander Borck Drug-loaded implant
US20100136212A1 (en) * 2004-03-30 2010-06-03 Yoshinori Abe Method for fabricating material
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US20110257732A1 (en) * 2010-04-16 2011-10-20 Micell Technologies, Inc. Stents having controlled elution
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8066763B2 (en) 1998-04-11 2011-11-29 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US8353949B2 (en) 2006-09-14 2013-01-15 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8574615B2 (en) 2006-03-24 2013-11-05 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8758429B2 (en) 2005-07-15 2014-06-24 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US8795762B2 (en) 2010-03-26 2014-08-05 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8834913B2 (en) 2008-12-26 2014-09-16 Battelle Memorial Institute Medical implants and methods of making medical implants
US8852625B2 (en) 2006-04-26 2014-10-07 Micell Technologies, Inc. Coatings containing multiple drugs
US8900292B2 (en) 2007-08-03 2014-12-02 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8900651B2 (en) 2007-05-25 2014-12-02 Micell Technologies, Inc. Polymer films for medical device coating
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US9433516B2 (en) 2007-04-17 2016-09-06 Micell Technologies, Inc. Stents having controlled elution
US9486431B2 (en) 2008-07-17 2016-11-08 Micell Technologies, Inc. Drug delivery medical device
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
US9539593B2 (en) 2006-10-23 2017-01-10 Micell Technologies, Inc. Holder for electrically charging a substrate during coating
US9636309B2 (en) 2010-09-09 2017-05-02 Micell Technologies, Inc. Macrolide dosage forms
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US9981072B2 (en) 2009-04-01 2018-05-29 Micell Technologies, Inc. Coated stents
US10117972B2 (en) 2011-07-15 2018-11-06 Micell Technologies, Inc. Drug delivery medical device
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
US10232092B2 (en) 2010-04-22 2019-03-19 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
US10272606B2 (en) 2013-05-15 2019-04-30 Micell Technologies, Inc. Bioabsorbable biomedical implants
US10464100B2 (en) 2011-05-31 2019-11-05 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
US10835396B2 (en) 2005-07-15 2020-11-17 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
US11039943B2 (en) 2013-03-12 2021-06-22 Micell Technologies, Inc. Bioabsorbable biomedical implants
US11369498B2 (en) 2010-02-02 2022-06-28 MT Acquisition Holdings LLC Stent and stent delivery system with improved deliverability
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
US11904118B2 (en) 2010-07-16 2024-02-20 Micell Medtech Inc. Drug delivery medical device

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736687B2 (en) * 2006-01-31 2010-06-15 Advance Bio Prosthetic Surfaces, Ltd. Methods of making medical devices
US6953560B1 (en) * 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
AU2002345328A1 (en) 2001-06-27 2003-03-03 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US6865810B2 (en) * 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
WO2004078065A2 (en) 2003-03-03 2004-09-16 Sinus Rhythm Technologies, Inc. Electrical conduction block implant device
EP1610823B1 (en) 2003-03-28 2011-09-28 Innovational Holdings, LLC Implantable medical device with continuous agent concentration gradient
SE526861C2 (en) 2003-11-17 2005-11-15 Syntach Ag Tissue lesion creation device and a set of devices for the treatment of cardiac arrhythmia disorders
US9114198B2 (en) * 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8137397B2 (en) * 2004-02-26 2012-03-20 Boston Scientific Scimed, Inc. Medical devices
US8147561B2 (en) * 2004-02-26 2012-04-03 Endosphere, Inc. Methods and devices to curb appetite and/or reduce food intake
US8585771B2 (en) 2004-02-26 2013-11-19 Endosphere, Inc. Methods and devices to curb appetite and/or to reduce food intake
US7931693B2 (en) * 2004-02-26 2011-04-26 Endosphere, Inc. Method and apparatus for reducing obesity
US9398967B2 (en) 2004-03-02 2016-07-26 Syntach Ag Electrical conduction block implant device
US7901447B2 (en) 2004-12-29 2011-03-08 Boston Scientific Scimed, Inc. Medical devices including a metallic film and at least one filament
US8992592B2 (en) 2004-12-29 2015-03-31 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8998973B2 (en) 2004-03-02 2015-04-07 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8632580B2 (en) 2004-12-29 2014-01-21 Boston Scientific Scimed, Inc. Flexible medical devices including metallic films
US8591568B2 (en) 2004-03-02 2013-11-26 Boston Scientific Scimed, Inc. Medical devices including metallic films and methods for making same
ES2432556T3 (en) 2004-08-04 2013-12-04 Evonik Corporation Methods for manufacturing supply devices and their devices
WO2006042246A2 (en) * 2004-10-08 2006-04-20 Syntach Ag Two-stage scar generation for treating atrial fibrillation
US20060177610A1 (en) * 2005-02-09 2006-08-10 Arrow International Limited Sealing of Plastic Containers
US7854760B2 (en) * 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
CA2625264C (en) 2005-10-13 2015-12-15 Synthes (U.S.A.) Drug-impregnated sleeve for a medical implant
US20090263605A1 (en) * 2005-11-16 2009-10-22 Satoshi Hoshi Surface-hydrophilic structure
JP5094081B2 (en) * 2005-11-17 2012-12-12 富士フイルム株式会社 Hydrophilic member and method for producing the same
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US20070173925A1 (en) * 2006-01-25 2007-07-26 Cornova, Inc. Flexible expandable stent
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US20070191931A1 (en) * 2006-02-16 2007-08-16 Jan Weber Bioerodible endoprostheses and methods of making the same
US9526814B2 (en) * 2006-02-16 2016-12-27 Boston Scientific Scimed, Inc. Medical balloons and methods of making the same
US7910152B2 (en) 2006-02-28 2011-03-22 Advanced Cardiovascular Systems, Inc. Poly(ester amide)-based drug delivery systems with controlled release rate and morphology
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US9060835B2 (en) 2006-05-26 2015-06-23 Endosphere, Inc. Conformationally-stabilized intraluminal device for medical applications
KR100796985B1 (en) * 2006-06-30 2008-01-22 연세대학교 산학협력단 Multi-Functional Nanoparticles Partially-Deposited with Gold Film
EP2054537A2 (en) 2006-08-02 2009-05-06 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US20080215132A1 (en) * 2006-08-28 2008-09-04 Cornova, Inc. Implantable devices having textured surfaces and methods of forming the same
WO2008034007A2 (en) * 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices
US20080071353A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Scimed, Inc. Endoprosthesis containing magnetic induction particles
JP2010503494A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Biodegradable endoprosthesis and method for producing the same
CA2663220A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
WO2008034031A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprostheses and methods of making the same
WO2008034048A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprosthesis with biostable inorganic layers
EP2068962B1 (en) 2006-09-18 2013-01-30 Boston Scientific Limited Endoprostheses
US8012591B2 (en) * 2006-09-21 2011-09-06 Fujifilm Corporation Hydrophilic composition and hydrophilic member
ES2506144T3 (en) 2006-12-28 2014-10-13 Boston Scientific Limited Bioerodible endoprosthesis and their manufacturing procedure
JP2008238711A (en) * 2007-03-28 2008-10-09 Fujifilm Corp Hydrophilic member, and undercoating composition
US20080243241A1 (en) * 2007-03-28 2008-10-02 Zhao Jonathon Z Short term sustained drug-delivery system for implantable medical devices and method of making the same
US20090029179A1 (en) * 2007-05-14 2009-01-29 Fujifilm Corporation Two-liquid composition, hydrophilic composition and hydrophilic member
US20110137227A1 (en) * 2007-07-16 2011-06-09 Mckinley James T Methods and devices for delivering or delaying lipids within a duodenum
KR20100085179A (en) * 2007-09-04 2010-07-28 가부시키가이샤 니혼 스텐토 테크놀로지 Stent for controlled drug release
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
EP2036517A1 (en) * 2007-09-17 2009-03-18 WALDEMAR LINK GmbH & Co. KG Endoprosthesis component
US8845751B2 (en) * 2007-09-21 2014-09-30 Waldemar Link Gmbh & Co. Kg Endoprosthesis component
US8118857B2 (en) * 2007-11-29 2012-02-21 Boston Scientific Corporation Medical articles that stimulate endothelial cell migration
EP2222281B1 (en) 2007-12-20 2018-12-05 Evonik Corporation Process for preparing microparticles having a low residual solvent volume
US20110054633A1 (en) * 2008-01-18 2011-03-03 Nanosurface Technologies, Llc Nanofilm Protective and Release Matrices
US20090186068A1 (en) * 2008-01-18 2009-07-23 Chameleon Scientific Corporation Atomic plasma deposited coatings for drug release
JP2009227809A (en) * 2008-03-21 2009-10-08 Fujifilm Corp Hydrophilic composition and hydrophilic treating member
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
EP2199423B1 (en) * 2008-12-16 2013-04-17 Sulzer Metco AG Thermally injected surface layer and orthopaedic implant
WO2010101072A1 (en) 2009-03-02 2010-09-10 株式会社日本ステントテクノロジー Drug releasing stent
WO2010101901A2 (en) 2009-03-02 2010-09-10 Boston Scientific Scimed, Inc. Self-buffering medical implants
DE102009001895A1 (en) * 2009-03-26 2010-09-30 Biotronik Vi Patent Ag Medical implant for drug release with porous surface
WO2010149762A2 (en) * 2009-06-25 2010-12-29 Imec Biocompatible packaging
US20110098797A1 (en) * 2009-10-23 2011-04-28 Cleek Robert L Drug eluting composite
AU2016201035B2 (en) * 2009-11-09 2017-09-14 W. L. Gore & Associates, Inc. Drug eluting composite
US9504771B2 (en) 2009-11-09 2016-11-29 W. L. Gore & Associates, Inc. Drug eluting composite
US9320890B2 (en) * 2009-11-09 2016-04-26 W. L. Gore & Associates, Inc. Drug eluting composite
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US9517250B2 (en) 2010-04-28 2016-12-13 The J. David Gladstone Institutes Methods for generating cardiomyocytes
WO2012033637A1 (en) * 2010-09-07 2012-03-15 Boston Scientific Scimed, Inc. Bioerodible magnesium alloy containing endoprostheses
FR2984169B1 (en) * 2011-12-16 2014-02-28 Commissariat Energie Atomique COMPOSITION FOR RELEASE OF ACTIVE SUBSTANCES
TWI590843B (en) 2011-12-28 2017-07-11 信迪思有限公司 Films and methods of manufacture
CN105555328B (en) 2013-06-21 2019-01-11 德普伊新特斯产品公司 film and manufacturing method
JP2017501756A (en) 2013-10-29 2017-01-19 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Bioerodible magnesium alloy microstructure for internal prostheses
US9763911B2 (en) * 2013-12-12 2017-09-19 Mayo Foundation For Medical Education And Research Prostacyclin compositions for regulation of fracture repair and bone formation
WO2016145368A1 (en) 2015-03-11 2016-09-15 Boston Scientific Scimed, Inc. Bioerodible magnesium alloy microstructures for endoprostheses

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072303A (en) * 1932-10-18 1937-03-02 Chemische Forschungs Gmbh Artificial threads, bands, tubes, and the like for surgical and other purposes
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5092841A (en) * 1990-05-17 1992-03-03 Wayne State University Method for treating an arterial wall injured during angioplasty
US5100992A (en) * 1989-05-04 1992-03-31 Biomedical Polymers International, Ltd. Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
US5292516A (en) * 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5298260A (en) * 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5380299A (en) * 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5485496A (en) * 1994-09-22 1996-01-16 Cornell Research Foundation, Inc. Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
US5605696A (en) * 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US5607467A (en) * 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
US5610241A (en) * 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5711958A (en) * 1996-07-11 1998-01-27 Life Medical Sciences, Inc. Methods for reducing or eliminating post-surgical adhesion formation
US5716981A (en) * 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5721131A (en) * 1987-03-06 1998-02-24 United States Of America As Represented By The Secretary Of The Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
US5723219A (en) * 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5728152A (en) * 1995-06-07 1998-03-17 St. Jude Medical, Inc. Bioresorbable heart valve support
US5855599A (en) * 1997-09-02 1999-01-05 Sitek, Inc. Silicon micro machined occlusion implant
US5855563A (en) * 1992-11-02 1999-01-05 Localmed, Inc. Method and apparatus for sequentially performing multiple intraluminal procedures
US5857998A (en) * 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5858990A (en) * 1997-03-04 1999-01-12 St. Elizabeth's Medical Center Fas ligand compositions for treatment of proliferative disorders
US5858746A (en) * 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5865814A (en) * 1995-06-07 1999-02-02 Medtronic, Inc. Blood contacting medical device and method
US5869127A (en) * 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5873904A (en) * 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US5877224A (en) * 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5876433A (en) * 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US5879713A (en) * 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US6011125A (en) * 1998-09-25 2000-01-04 General Electric Company Amide modified polyesters
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6013780A (en) * 1996-09-06 2000-01-11 Technion Research & Development Co. Ltd. VEGF145 expression vectors
US6015541A (en) * 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US6017577A (en) * 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
US6022901A (en) * 1998-05-13 2000-02-08 Pharmascience Inc. Administration of resveratrol to prevent or treat restenosis following coronary intervention
US6026316A (en) * 1997-05-15 2000-02-15 Regents Of The University Of Minnesota Method and apparatus for use with MR imaging
US6028164A (en) * 1997-08-18 2000-02-22 Meadox Medicals, Inc. Bioresorbable compositions for implantable prostheses
US6033582A (en) * 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US6034204A (en) * 1997-08-08 2000-03-07 Basf Aktiengesellschaft Condensation products of basic amino acids with copolymerizable compounds and a process for their production
US6042875A (en) * 1997-04-30 2000-03-28 Schneider (Usa) Inc. Drug-releasing coatings for medical devices
US6172167B1 (en) * 1996-06-28 2001-01-09 Universiteit Twente Copoly(ester-amides) and copoly(ester-urethanes)
US6177523B1 (en) * 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
US6178346B1 (en) * 1998-10-23 2001-01-23 David C. Amundson Infrared endoscopic imaging in a liquid with suspended particles: method and apparatus
US6179817B1 (en) * 1995-02-22 2001-01-30 Boston Scientific Corporation Hybrid coating for medical devices
US6180632B1 (en) * 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6183469B1 (en) * 1997-08-27 2001-02-06 Arthrocare Corporation Electrosurgical systems and methods for the removal of pacemaker leads
US6197051B1 (en) * 1997-06-18 2001-03-06 Boston Scientific Corporation Polycarbonate-polyurethane dispersions for thromobo-resistant coatings
US6203551B1 (en) * 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6334867B1 (en) * 1995-09-08 2002-01-01 Anson Medical Ltd Surgical graft/stent system
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US20020005206A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007214A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007215A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007213A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020009604A1 (en) * 1999-12-22 2002-01-24 Zamora Paul O. Plasma-deposited coatings, devices and methods
US6344035B1 (en) * 1998-04-27 2002-02-05 Surmodics, Inc. Bioactive agent release coating
US20020016625A1 (en) * 2000-05-12 2002-02-07 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020032414A1 (en) * 1998-08-20 2002-03-14 Ragheb Anthony O. Coated implantable medical device
US6358556B1 (en) * 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US20030004141A1 (en) * 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US6503954B1 (en) * 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6503556B2 (en) * 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US6503538B1 (en) * 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6506437B1 (en) * 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US20030028243A1 (en) * 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030028244A1 (en) * 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030032767A1 (en) * 2001-02-05 2003-02-13 Yasuhiro Tada High-strength polyester-amide fiber and process for producing the same
US20030036794A1 (en) * 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US6524347B1 (en) * 1997-05-28 2003-02-25 Avantis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US20030040790A1 (en) * 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20030039689A1 (en) * 2001-04-26 2003-02-27 Jianbing Chen Polymer-based, sustained release drug delivery system
US20030040712A1 (en) * 1999-07-13 2003-02-27 Pinaki Ray Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6527863B1 (en) * 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6530951B1 (en) * 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6530950B1 (en) * 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US20030059520A1 (en) * 2001-09-27 2003-03-27 Yung-Ming Chen Apparatus for regulating temperature of a composition and a method of coating implantable devices
US20030060877A1 (en) * 2001-09-25 2003-03-27 Robert Falotico Coated medical devices for the treatment of vascular disease
US6673385B1 (en) * 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US6673154B1 (en) * 2001-06-28 2004-01-06 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
US20040018296A1 (en) * 2000-05-31 2004-01-29 Daniel Castro Method for depositing a coating onto a surface of a prosthesis
US6689099B2 (en) * 1999-07-13 2004-02-10 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US20040029952A1 (en) * 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6695920B1 (en) * 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US20040047978A1 (en) * 2000-08-04 2004-03-11 Hossainy Syed F.A. Composition for coating an implantable prosthesis
US20040047980A1 (en) * 2000-12-28 2004-03-11 Pacetti Stephen D. Method of forming a diffusion barrier layer for implantable devices
US20040052858A1 (en) * 2001-05-09 2004-03-18 Wu Steven Z. Microparticle coated medical device
US20050037052A1 (en) * 2003-08-13 2005-02-17 Medtronic Vascular, Inc. Stent coating with gradient porosity
US20050037134A1 (en) * 2003-08-12 2005-02-17 Chunghwa Picture Tubes, Ltd. Process of manufacturing micronized oxide cathode
US20050038497A1 (en) * 2003-08-11 2005-02-17 Scimed Life Systems, Inc. Deformation medical device without material deformation
US20050043786A1 (en) * 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue

Family Cites Families (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386454A (en) 1940-11-22 1945-10-09 Bell Telephone Labor Inc High molecular weight linear polyester-amides
US3849514A (en) 1967-11-17 1974-11-19 Eastman Kodak Co Block polyester-polyamide copolymers
US3773737A (en) 1971-06-09 1973-11-20 Sutures Inc Hydrolyzable polymers of amino acid and hydroxy acids
US4329383A (en) 1979-07-24 1982-05-11 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
SU790725A1 (en) 1979-07-27 1983-01-23 Ордена Ленина Институт Элементоорганических Соединений Ан Ссср Process for preparing alkylaromatic polyimides
US4226243A (en) 1979-07-27 1980-10-07 Ethicon, Inc. Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
SU872531A1 (en) 1979-08-07 1981-10-15 Институт Физиологии Им.И.С.Бериташвили Ан Гсср Method of producing polyurethans
SU811750A1 (en) 1979-08-07 1983-09-23 Институт Физиологии Им.С.И.Бериташвили Bis-bicarbonates of aliphatic diols as monomers for preparing polyurethanes and process for producing the same
SU876663A1 (en) 1979-11-11 1981-10-30 Институт Физиологии Им. Академика И.С.Бериташвили Ан Гсср Method of producing polyarylates
US4529792A (en) 1979-12-17 1985-07-16 Minnesota Mining And Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
SU1016314A1 (en) 1979-12-17 1983-05-07 Институт Физиологии Им.И.С.Бериташвили Process for producing polyester urethanes
US4343931A (en) 1979-12-17 1982-08-10 Minnesota Mining And Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
SU905228A1 (en) 1980-03-06 1982-02-15 Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср Method for preparing thiourea
JPS6145765A (en) 1984-08-07 1986-03-05 宇部興産株式会社 Blood vessel prosthesis and its production
SU1293518A1 (en) 1985-04-11 1987-02-28 Тбилисский зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий Installation for testing specimen of cross-shaped structure
US4656242A (en) 1985-06-07 1987-04-07 Henkel Corporation Poly(ester-amide) compositions
US4611051A (en) 1985-12-31 1986-09-09 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
JPH0696023B2 (en) 1986-11-10 1994-11-30 宇部日東化成株式会社 Artificial blood vessel and method for producing the same
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US4894231A (en) 1987-07-28 1990-01-16 Biomeasure, Inc. Therapeutic agent delivery system
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
JP2561309B2 (en) 1988-03-28 1996-12-04 テルモ株式会社 Medical material and manufacturing method thereof
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
US5843156A (en) 1988-08-24 1998-12-01 Endoluminal Therapeutics, Inc. Local polymeric gel cellular therapy
US5328471A (en) 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5792550A (en) 1989-10-24 1998-08-11 Flex Products, Inc. Barrier film having high colorless transparency and method
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
WO1991011176A1 (en) 1990-01-30 1991-08-08 Akzo N.V. Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
US5071407A (en) 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5300295A (en) 1990-05-01 1994-04-05 Mediventures, Inc. Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
US5306501A (en) 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
AU7998091A (en) 1990-05-17 1991-12-10 Harbor Medical Devices, Inc. Medical device polymer
CA2038605C (en) 1990-06-15 2000-06-27 Leonard Pinchuk Crack-resistant polycarbonate urethane polymer prostheses and the like
ATE123658T1 (en) 1990-06-15 1995-06-15 Cortrak Medical Inc DEVICE FOR DISPENSING MEDICATIONS.
US6060451A (en) 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5112457A (en) 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US5344425A (en) 1990-09-14 1994-09-06 Interface Biomedical Laboratories, Corp. Intravascular stent and method for conditioning the surfaces thereof
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5462990A (en) 1990-10-15 1995-10-31 Board Of Regents, The University Of Texas System Multifunctional organic polymers
GB9027793D0 (en) 1990-12-21 1991-02-13 Ucb Sa Polyester-amides containing terminal carboxyl groups
US5344411A (en) 1991-02-27 1994-09-06 Leonard Bloom Method and device for inhibiting HIV, hepatitis B and other viruses and germs when using a catheter in a medical environment
US5762638A (en) 1991-02-27 1998-06-09 Shikani; Alain H. Anti-infective and anti-inflammatory releasing systems for medical devices
US5474089A (en) 1991-06-26 1995-12-12 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method and device for reversible sterilization
US5330768A (en) 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US6102046A (en) 1995-11-22 2000-08-15 Arthrocare Corporation Systems and methods for electrosurgical tissue revascularization
US5599352A (en) 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
GB9206736D0 (en) 1992-03-27 1992-05-13 Sandoz Ltd Improvements of organic compounds and their use in pharmaceutical compositions
US5219980A (en) 1992-04-16 1993-06-15 Sri International Polymers biodegradable or bioerodiable into amino acids
DE69325845T2 (en) 1992-04-28 2000-01-05 Terumo Corp Thermoplastic polymer composition and medical devices made therefrom
US5817102A (en) 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
DE4224401A1 (en) 1992-07-21 1994-01-27 Pharmatech Gmbh New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.
FR2699168B1 (en) 1992-12-11 1995-01-13 Rhone Poulenc Chimie Method of treating a material comprising a polymer by hydrolysis.
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US20020055710A1 (en) 1998-04-30 2002-05-09 Ronald J. Tuch Medical device for delivering a therapeutic agent and method of preparation
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
EP0696185B1 (en) 1993-04-28 1998-08-12 Focal, Inc. Apparatus, product and use related to intraluminal photothermoforming
JPH0767895A (en) 1993-06-25 1995-03-14 Sumitomo Electric Ind Ltd Antimicrobial artificial blood vessel and suture yarn for antimicrobial operation
EG20321A (en) 1993-07-21 1998-10-31 Otsuka Pharma Co Ltd Medical material and process for producing the same
DE4327024A1 (en) 1993-08-12 1995-02-16 Bayer Ag Thermoplastically processable and biodegradable aliphatic polyesteramides
WO1995010989A1 (en) 1993-10-19 1995-04-27 Scimed Life Systems, Inc. Intravascular stent pump
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5759205A (en) 1994-01-21 1998-06-02 Brown University Research Foundation Negatively charged polymeric electret implant
US6051576A (en) 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
WO1995024929A2 (en) 1994-03-15 1995-09-21 Brown University Research Foundation Polymeric gene delivery system
CA2188563C (en) 1994-04-29 2005-08-02 Andrew W. Buirge Stent with collagen
WO1998020939A2 (en) 1996-11-15 1998-05-22 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
US6140452A (en) 1994-05-06 2000-10-31 Advanced Bio Surfaces, Inc. Biomaterial for in situ tissue repair
US5567410A (en) 1994-06-24 1996-10-22 The General Hospital Corporation Composotions and methods for radiographic imaging
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5788979A (en) 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5516881A (en) 1994-08-10 1996-05-14 Cornell Research Foundation, Inc. Aminoxyl-containing radical spin labeling in polymers and copolymers
US5898066A (en) 1994-08-26 1999-04-27 Children's Medical Center Corporation Trophic factors for central nervous system regeneration
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
FR2724938A1 (en) 1994-09-28 1996-03-29 Lvmh Rech POLYMERS FUNCTIONALIZED BY AMINO ACIDS OR AMINO ACID DERIVATIVES, THEIR USE AS SURFACTANTS, IN PARTICULAR, IN COSMETIC COMPOSITIONS AND IN PARTICULAR NAIL POLISH.
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5569198A (en) 1995-01-23 1996-10-29 Cortrak Medical Inc. Microporous catheter
US5919570A (en) 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
US5576072A (en) 1995-02-01 1996-11-19 Schneider (Usa), Inc. Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with at least one other, dissimilar polymer hydrogel
JP3359640B2 (en) 1995-02-01 2002-12-24 シュナイダー(ユーエスエー)インク Method for hydrophilizing hydrophobic polymers
US5662960A (en) 1995-02-01 1997-09-02 Schneider (Usa) Inc. Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly (n-vinylpyrrolidone) polymer hydrogel
US5830430A (en) 1995-02-21 1998-11-03 Imarx Pharmaceutical Corp. Cationic lipids and the use thereof
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US5854376A (en) 1995-03-09 1998-12-29 Sekisui Kaseihin Kogyo Kabushiki Kaisha Aliphatic ester-amide copolymer resins
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US5925720A (en) 1995-04-19 1999-07-20 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US5676685A (en) 1995-06-22 1997-10-14 Razavi; Ali Temporary stent
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US6283951B1 (en) 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US5658995A (en) 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
DE19545678A1 (en) 1995-12-07 1997-06-12 Goldschmidt Ag Th Copolymers of polyamino acid esters
PT1704878E (en) 1995-12-18 2013-07-17 Angiodevice Internat Gmbh Crosslinked polymer compositions and methods for their use
US6054553A (en) 1996-01-29 2000-04-25 Bayer Ag Process for the preparation of polymers having recurring agents
US5951458A (en) 1996-02-29 1999-09-14 Scimed Life Systems, Inc. Local application of oxidizing agents to prevent restenosis
US6162244A (en) 1996-03-29 2000-12-19 Willy Ruesch Ag Layered stent
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5955509A (en) 1996-05-01 1999-09-21 Board Of Regents, The University Of Texas System pH dependent polymer micelles
US5874165A (en) 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US6060518A (en) 1996-08-16 2000-05-09 Supratek Pharma Inc. Polymer compositions for chemotherapy and methods of treatment using the same
US5783657A (en) 1996-10-18 1998-07-21 Union Camp Corporation Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids
US6261320B1 (en) 1996-11-21 2001-07-17 Radiance Medical Systems, Inc. Radioactive vascular liner
US6120491A (en) 1997-11-07 2000-09-19 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
WO1998032777A1 (en) 1997-01-28 1998-07-30 United States Surgical Corporation Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom
EP0960148B1 (en) 1997-01-28 2003-04-02 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
AU5932198A (en) 1997-01-28 1998-08-18 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
US6287249B1 (en) 1998-02-19 2001-09-11 Radiance Medical Systems, Inc. Thin film radiation source
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6273913B1 (en) * 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6061587A (en) 1997-05-15 2000-05-09 Regents Of The University Of Minnesota Method and apparatus for use with MR imaging
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6056993A (en) 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US6211249B1 (en) 1997-07-11 2001-04-03 Life Medical Sciences, Inc. Polyester polyether block copolymers
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US5899935A (en) 1997-08-04 1999-05-04 Schneider (Usa) Inc. Balloon expandable braided stent with restraint
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6316522B1 (en) 1997-08-18 2001-11-13 Scimed Life Systems, Inc. Bioresorbable hydrogel compositions for implantable prostheses
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US6120788A (en) 1997-10-16 2000-09-19 Bioamide, Inc. Bioabsorbable triglycolic acid poly(ester-amide)s
US5911702A (en) 1997-11-06 1999-06-15 Heartport, Inc. Methods and devices for cannulating a patient's blood vessel
US6159232A (en) 1997-12-16 2000-12-12 Closys Corporation Clotting cascade initiating apparatus and methods of use and methods of closing wounds
US6210703B1 (en) 1997-12-19 2001-04-03 Ppg Industries Ohio, Inc. Glass fiber chemical delivery system
US5962007A (en) 1997-12-19 1999-10-05 Indigo Medical, Inc. Use of a multi-component coil medical construct
US6083188A (en) 1998-02-04 2000-07-04 Becker; Bruce B. Lacrimal silicone stent with very large diameter segment insertable transnasally
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6096726A (en) 1998-03-11 2000-08-01 Surface Solutions Laboratories Incorporated Multicomponent complex for use with substrate
US6410044B1 (en) 1998-03-19 2002-06-25 Surmodics, Inc. Crosslinkable macromers
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US7658727B1 (en) 1998-04-20 2010-02-09 Medtronic, Inc Implantable medical device with enhanced biocompatibility and biostability
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
US6086773A (en) 1998-05-22 2000-07-11 Bmc Industries, Inc. Method and apparatus for etching-manufacture of cylindrical elements
KR100314496B1 (en) 1998-05-28 2001-11-22 윤동진 Non-thrombogenic heparin derivatives, process for preparation and use thereof
US6254634B1 (en) 1998-06-10 2001-07-03 Surmodics, Inc. Coating compositions
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6265199B1 (en) 1998-07-10 2001-07-24 Zymogenetics, Inc. Disintegrin homologs
US6156064A (en) 1998-08-14 2000-12-05 Schneider (Usa) Inc Stent-graft-membrane and method of making the same
US6248127B1 (en) 1998-08-21 2001-06-19 Medtronic Ave, Inc. Thromboresistant coated medical device
US6419692B1 (en) 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US6126649A (en) 1999-06-10 2000-10-03 Transvascular, Inc. Steerable catheter with external guidewire as catheter tip deflector
US6322771B1 (en) 1999-06-18 2001-11-27 University Of Virginia Patent Foundation Induction of pharmacological stress with adenosine receptor agonists
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6713119B2 (en) 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6759054B2 (en) 1999-09-03 2004-07-06 Advanced Cardiovascular Systems, Inc. Ethylene vinyl alcohol composition and coating
US6749626B1 (en) 2000-03-31 2004-06-15 Advanced Cardiovascular Systems, Inc. Actinomycin D for the treatment of vascular disease
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6287628B1 (en) 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6156350A (en) 1999-12-02 2000-12-05 Corazon Technologies, Inc. Methods and kits for use in preventing restenosis
US6251136B1 (en) 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US6908624B2 (en) 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
AU2599501A (en) 1999-12-29 2001-07-09 Advanced Cardiovascular Systems Inc. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US6899731B2 (en) 1999-12-30 2005-05-31 Boston Scientific Scimed, Inc. Controlled delivery of therapeutic agents by insertable medical devices
JP4473390B2 (en) 2000-01-07 2010-06-02 川澄化学工業株式会社 Stent and stent graft
US6270779B1 (en) 2000-05-10 2001-08-07 United States Of America Nitric oxide-releasing metallic medical devices
US6585765B1 (en) 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
US20020077693A1 (en) 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
US6555157B1 (en) 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
WO2002009768A2 (en) 2000-07-27 2002-02-07 Rutgers, The State University Therapeutic polyesters and polyamides
US6585926B1 (en) 2000-08-31 2003-07-01 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
US6953560B1 (en) * 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US6254632B1 (en) 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US6716444B1 (en) 2000-09-28 2004-04-06 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US6746773B2 (en) 2000-09-29 2004-06-08 Ethicon, Inc. Coatings for medical devices
US7261735B2 (en) 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US6558733B1 (en) 2000-10-26 2003-05-06 Advanced Cardiovascular Systems, Inc. Method for etching a micropatterned microdepot prosthesis
US6758859B1 (en) 2000-10-30 2004-07-06 Kenny L. Dang Increased drug-loading and reduced stress drug delivery device
US6824559B2 (en) 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US7077859B2 (en) 2000-12-22 2006-07-18 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US6544543B1 (en) 2000-12-27 2003-04-08 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
US6540776B2 (en) 2000-12-28 2003-04-01 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
US20020087123A1 (en) 2001-01-02 2002-07-04 Hossainy Syed F.A. Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices
US6645195B1 (en) 2001-01-05 2003-11-11 Advanced Cardiovascular Systems, Inc. Intraventricularly guided agent delivery system and method of use
US6544582B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US6740040B1 (en) 2001-01-30 2004-05-25 Advanced Cardiovascular Systems, Inc. Ultrasound energy driven intraventricular catheter to treat ischemia
AU2002238076B2 (en) 2001-02-09 2007-05-17 Endoluminal Therapeutics, Inc. Endomural therapy
US6613077B2 (en) 2001-03-27 2003-09-02 Scimed Life Systems, Inc. Stent with controlled expansion
US6645135B1 (en) 2001-03-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance
US6780424B2 (en) 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US6623448B2 (en) 2001-03-30 2003-09-23 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
US6625486B2 (en) 2001-04-11 2003-09-23 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US6712845B2 (en) 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US6660034B1 (en) 2001-04-30 2003-12-09 Advanced Cardiovascular Systems, Inc. Stent for increasing blood flow to ischemic tissues and a method of using the same
US7651695B2 (en) 2001-05-18 2010-01-26 Advanced Cardiovascular Systems, Inc. Medicated stents for the treatment of vascular disease
US7862495B2 (en) 2001-05-31 2011-01-04 Advanced Cardiovascular Systems, Inc. Radiation or drug delivery source with activity gradient to minimize edge effects
US6605154B1 (en) 2001-05-31 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent mounting device
US6743462B1 (en) 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US6572644B1 (en) 2001-06-27 2003-06-03 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
US6565659B1 (en) 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US6706013B1 (en) 2001-06-29 2004-03-16 Advanced Cardiovascular Systems, Inc. Variable length drug delivery catheter
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
EP1273314A1 (en) 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
US6641611B2 (en) 2001-11-26 2003-11-04 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
WO2003028590A1 (en) 2001-09-24 2003-04-10 Medtronic Ave Inc. Rational drug therapy device and methods
US6753071B1 (en) 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US20030073961A1 (en) 2001-09-28 2003-04-17 Happ Dorrie M. Medical device containing light-protected therapeutic agent and a method for fabricating thereof
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US7585516B2 (en) 2001-11-12 2009-09-08 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices
US6663880B1 (en) 2001-11-30 2003-12-16 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
US6709514B1 (en) 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
US7445629B2 (en) 2002-01-31 2008-11-04 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US6887270B2 (en) 2002-02-08 2005-05-03 Boston Scientific Scimed, Inc. Implantable or insertable medical device resistant to microbial growth and biofilm formation
US6743463B2 (en) 2002-03-28 2004-06-01 Scimed Life Systems, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
US6865810B2 (en) 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US20040054104A1 (en) 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20040063805A1 (en) 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
US7087263B2 (en) 2002-10-09 2006-08-08 Advanced Cardiovascular Systems, Inc. Rare limiting barriers for implantable medical devices
US8088404B2 (en) 2003-03-20 2012-01-03 Medtronic Vasular, Inc. Biocompatible controlled release coatings for medical devices and related methods
US7318944B2 (en) 2003-08-07 2008-01-15 Medtronic Vascular, Inc. Extrusion process for coating stents
US20050049693A1 (en) 2003-08-25 2005-03-03 Medtronic Vascular Inc. Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease
US20050055078A1 (en) 2003-09-04 2005-03-10 Medtronic Vascular, Inc. Stent with outer slough coating
US20050054774A1 (en) 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coating
US7544381B2 (en) 2003-09-09 2009-06-09 Boston Scientific Scimed, Inc. Lubricious coatings for medical device
US20050060020A1 (en) 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
US7371228B2 (en) 2003-09-19 2008-05-13 Medtronic Vascular, Inc. Delivery of therapeutics to treat aneurysms
US20050065501A1 (en) 2003-09-23 2005-03-24 Scimed Life Systems, Inc. Energy activated vaso-occlusive devices
US7789891B2 (en) 2003-09-23 2010-09-07 Boston Scientific Scimed, Inc. External activation of vaso-occlusive implants
US8801692B2 (en) 2003-09-24 2014-08-12 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US7060319B2 (en) 2003-09-24 2006-06-13 Boston Scientific Scimed, Inc. method for using an ultrasonic nozzle to coat a medical appliance
US7055237B2 (en) 2003-09-29 2006-06-06 Medtronic Vascular, Inc. Method of forming a drug eluting stent
US20050074406A1 (en) 2003-10-03 2005-04-07 Scimed Life Systems, Inc. Ultrasound coating for enhancing visualization of medical device in ultrasound images
US6984411B2 (en) 2003-10-14 2006-01-10 Boston Scientific Scimed, Inc. Method for roll coating multiple stents

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072303A (en) * 1932-10-18 1937-03-02 Chemische Forschungs Gmbh Artificial threads, bands, tubes, and the like for surgical and other purposes
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US5721131A (en) * 1987-03-06 1998-02-24 United States Of America As Represented By The Secretary Of The Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5100992A (en) * 1989-05-04 1992-03-31 Biomedical Polymers International, Ltd. Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
US5292516A (en) * 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5298260A (en) * 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5092841A (en) * 1990-05-17 1992-03-03 Wayne State University Method for treating an arterial wall injured during angioplasty
US5607467A (en) * 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
US5858746A (en) * 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5855563A (en) * 1992-11-02 1999-01-05 Localmed, Inc. Method and apparatus for sequentially performing multiple intraluminal procedures
US5716981A (en) * 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5380299A (en) * 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5857998A (en) * 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5485496A (en) * 1994-09-22 1996-01-16 Cornell Research Foundation, Inc. Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
US5879713A (en) * 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US6040058A (en) * 1995-02-01 2000-03-21 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated metal substrate materials, and coated medical devices
US6030656A (en) * 1995-02-01 2000-02-29 Schneider (Usa) Inc. Process for the preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coatings, coated metal substrate materials, and coated medical devices
US6017577A (en) * 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
US5869127A (en) * 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US6179817B1 (en) * 1995-02-22 2001-01-30 Boston Scientific Corporation Hybrid coating for medical devices
US5605696A (en) * 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US6358556B1 (en) * 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US5873904A (en) * 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US5865814A (en) * 1995-06-07 1999-02-02 Medtronic, Inc. Blood contacting medical device and method
US5728152A (en) * 1995-06-07 1998-03-17 St. Jude Medical, Inc. Bioresorbable heart valve support
US20030036794A1 (en) * 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US20030028243A1 (en) * 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030028244A1 (en) * 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US5877224A (en) * 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US6334867B1 (en) * 1995-09-08 2002-01-01 Anson Medical Ltd Surgical graft/stent system
US5723219A (en) * 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US6033582A (en) * 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5610241A (en) * 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
US5876433A (en) * 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US6172167B1 (en) * 1996-06-28 2001-01-09 Universiteit Twente Copoly(ester-amides) and copoly(ester-urethanes)
US5711958A (en) * 1996-07-11 1998-01-27 Life Medical Sciences, Inc. Methods for reducing or eliminating post-surgical adhesion formation
US6013780A (en) * 1996-09-06 2000-01-11 Technion Research & Development Co. Ltd. VEGF145 expression vectors
US6530951B1 (en) * 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US5858990A (en) * 1997-03-04 1999-01-12 St. Elizabeth's Medical Center Fas ligand compositions for treatment of proliferative disorders
US6042875A (en) * 1997-04-30 2000-03-28 Schneider (Usa) Inc. Drug-releasing coatings for medical devices
US6026316A (en) * 1997-05-15 2000-02-15 Regents Of The University Of Minnesota Method and apparatus for use with MR imaging
US6524347B1 (en) * 1997-05-28 2003-02-25 Avantis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6528526B1 (en) * 1997-05-28 2003-03-04 Aventis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6180632B1 (en) * 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6197051B1 (en) * 1997-06-18 2001-03-06 Boston Scientific Corporation Polycarbonate-polyurethane dispersions for thromobo-resistant coatings
US6034204A (en) * 1997-08-08 2000-03-07 Basf Aktiengesellschaft Condensation products of basic amino acids with copolymerizable compounds and a process for their production
US6028164A (en) * 1997-08-18 2000-02-22 Meadox Medicals, Inc. Bioresorbable compositions for implantable prostheses
US6183469B1 (en) * 1997-08-27 2001-02-06 Arthrocare Corporation Electrosurgical systems and methods for the removal of pacemaker leads
US5855599A (en) * 1997-09-02 1999-01-05 Sitek, Inc. Silicon micro machined occlusion implant
US6015541A (en) * 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US20030040790A1 (en) * 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20020032434A1 (en) * 1998-04-27 2002-03-14 Chudzik Stephen J. Bioactive agent release coating
US20030031780A1 (en) * 1998-04-27 2003-02-13 Chudzik Stephen J. Bioactive agent release coating
US6344035B1 (en) * 1998-04-27 2002-02-05 Surmodics, Inc. Bioactive agent release coating
US6022901A (en) * 1998-05-13 2000-02-08 Pharmascience Inc. Administration of resveratrol to prevent or treat restenosis following coronary intervention
US20020032414A1 (en) * 1998-08-20 2002-03-14 Ragheb Anthony O. Coated implantable medical device
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US6011125A (en) * 1998-09-25 2000-01-04 General Electric Company Amide modified polyesters
US6178346B1 (en) * 1998-10-23 2001-01-23 David C. Amundson Infrared endoscopic imaging in a liquid with suspended particles: method and apparatus
US6530950B1 (en) * 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US20030040712A1 (en) * 1999-07-13 2003-02-27 Pinaki Ray Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6689099B2 (en) * 1999-07-13 2004-02-10 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6177523B1 (en) * 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
US20040029952A1 (en) * 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6346110B2 (en) * 1999-10-04 2002-02-12 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implantable device
US6203551B1 (en) * 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US20020009604A1 (en) * 1999-12-22 2002-01-24 Zamora Paul O. Plasma-deposited coatings, devices and methods
US6503954B1 (en) * 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US20020016625A1 (en) * 2000-05-12 2002-02-07 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007213A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007215A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007214A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20040018296A1 (en) * 2000-05-31 2004-01-29 Daniel Castro Method for depositing a coating onto a surface of a prosthesis
US6673385B1 (en) * 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US20040047978A1 (en) * 2000-08-04 2004-03-11 Hossainy Syed F.A. Composition for coating an implantable prosthesis
US6503538B1 (en) * 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6506437B1 (en) * 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US20040047980A1 (en) * 2000-12-28 2004-03-11 Pacetti Stephen D. Method of forming a diffusion barrier layer for implantable devices
US6503556B2 (en) * 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US20030032767A1 (en) * 2001-02-05 2003-02-13 Yasuhiro Tada High-strength polyester-amide fiber and process for producing the same
US20030004141A1 (en) * 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US20030039689A1 (en) * 2001-04-26 2003-02-27 Jianbing Chen Polymer-based, sustained release drug delivery system
US20040052858A1 (en) * 2001-05-09 2004-03-18 Wu Steven Z. Microparticle coated medical device
US6695920B1 (en) * 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US6673154B1 (en) * 2001-06-28 2004-01-06 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
US6527863B1 (en) * 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US20030060877A1 (en) * 2001-09-25 2003-03-27 Robert Falotico Coated medical devices for the treatment of vascular disease
US20030059520A1 (en) * 2001-09-27 2003-03-27 Yung-Ming Chen Apparatus for regulating temperature of a composition and a method of coating implantable devices
US20050038497A1 (en) * 2003-08-11 2005-02-17 Scimed Life Systems, Inc. Deformation medical device without material deformation
US20050037134A1 (en) * 2003-08-12 2005-02-17 Chunghwa Picture Tubes, Ltd. Process of manufacturing micronized oxide cathode
US20050037052A1 (en) * 2003-08-13 2005-02-17 Medtronic Vascular, Inc. Stent coating with gradient porosity
US20050043786A1 (en) * 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8066763B2 (en) 1998-04-11 2011-11-29 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US20050113907A1 (en) * 2002-06-28 2005-05-26 Fischell David R. Method and apparatus for treating vulnerable coronary plaques using drug-eluting stents
US20100136212A1 (en) * 2004-03-30 2010-06-03 Yoshinori Abe Method for fabricating material
US8221823B2 (en) * 2004-03-30 2012-07-17 Toyo Advanced Technologies Co., Ltd. Method for fabricating material
US10835396B2 (en) 2005-07-15 2020-11-17 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
US8758429B2 (en) 2005-07-15 2014-06-24 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US11911301B2 (en) 2005-07-15 2024-02-27 Micell Medtech Inc. Polymer coatings containing drug powder of controlled morphology
US10898353B2 (en) 2005-07-15 2021-01-26 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US8574615B2 (en) 2006-03-24 2013-11-05 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US11850333B2 (en) 2006-04-26 2023-12-26 Micell Medtech Inc. Coatings containing multiple drugs
US9415142B2 (en) 2006-04-26 2016-08-16 Micell Technologies, Inc. Coatings containing multiple drugs
US11007307B2 (en) 2006-04-26 2021-05-18 Micell Technologies, Inc. Coatings containing multiple drugs
US8852625B2 (en) 2006-04-26 2014-10-07 Micell Technologies, Inc. Coatings containing multiple drugs
US9737645B2 (en) 2006-04-26 2017-08-22 Micell Technologies, Inc. Coatings containing multiple drugs
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US8353949B2 (en) 2006-09-14 2013-01-15 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
US9539593B2 (en) 2006-10-23 2017-01-10 Micell Technologies, Inc. Holder for electrically charging a substrate during coating
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
US10617795B2 (en) 2007-01-08 2020-04-14 Micell Technologies, Inc. Stents having biodegradable layers
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US9775729B2 (en) 2007-04-17 2017-10-03 Micell Technologies, Inc. Stents having controlled elution
US9433516B2 (en) 2007-04-17 2016-09-06 Micell Technologies, Inc. Stents having controlled elution
US9486338B2 (en) 2007-04-17 2016-11-08 Micell Technologies, Inc. Stents having controlled elution
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US8900651B2 (en) 2007-05-25 2014-12-02 Micell Technologies, Inc. Polymer films for medical device coating
US8252361B2 (en) 2007-06-05 2012-08-28 Abbott Cardiovascular Systems Inc. Implantable medical devices for local and regional treatment
US20080306584A1 (en) * 2007-06-05 2008-12-11 Pamela Kramer-Brown Implantable medical devices for local and regional treatment
US20090053392A1 (en) * 2007-06-05 2009-02-26 Abbott Cardiovascular Systems Inc. Implantable medical devices for local and regional treatment
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8900292B2 (en) 2007-08-03 2014-12-02 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8252048B2 (en) * 2008-03-19 2012-08-28 Boston Scientific Scimed, Inc. Drug eluting stent and method of making the same
US20110166646A1 (en) * 2008-03-19 2011-07-07 Boston Scientific Scimed, Inc. Drug Eluting Stent and Method of Making the Same
US20090240324A1 (en) * 2008-03-19 2009-09-24 Boston Scientific Scimed, Inc. Drug Eluting Stent and Method of Making the Same
US8187322B2 (en) * 2008-03-19 2012-05-29 Boston Scientific Scimed, Inc. Drug eluting stent and method of making the same
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US10350333B2 (en) 2008-04-17 2019-07-16 Micell Technologies, Inc. Stents having bioabsorable layers
WO2009131911A2 (en) 2008-04-22 2009-10-29 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
WO2009131911A3 (en) * 2008-04-22 2010-12-23 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US20090264975A1 (en) * 2008-04-22 2009-10-22 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
JP2011518019A (en) * 2008-04-22 2011-06-23 ボストン サイエンティフィック サイムド,インコーポレイテッド Medical device having a coating of inorganic material
US8920491B2 (en) * 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US20090311304A1 (en) * 2008-06-12 2009-12-17 Alexander Borck Drug-loaded implant
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US9981071B2 (en) 2008-07-17 2018-05-29 Micell Technologies, Inc. Drug delivery medical device
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
US9486431B2 (en) 2008-07-17 2016-11-08 Micell Technologies, Inc. Drug delivery medical device
US10350391B2 (en) 2008-07-17 2019-07-16 Micell Technologies, Inc. Drug delivery medical device
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8834913B2 (en) 2008-12-26 2014-09-16 Battelle Memorial Institute Medical implants and methods of making medical implants
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US9981072B2 (en) 2009-04-01 2018-05-29 Micell Technologies, Inc. Coated stents
US10653820B2 (en) 2009-04-01 2020-05-19 Micell Technologies, Inc. Coated stents
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US11369498B2 (en) 2010-02-02 2022-06-28 MT Acquisition Holdings LLC Stent and stent delivery system with improved deliverability
US9687864B2 (en) 2010-03-26 2017-06-27 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
US8795762B2 (en) 2010-03-26 2014-08-05 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
US20110257732A1 (en) * 2010-04-16 2011-10-20 Micell Technologies, Inc. Stents having controlled elution
US10232092B2 (en) 2010-04-22 2019-03-19 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
US11904118B2 (en) 2010-07-16 2024-02-20 Micell Medtech Inc. Drug delivery medical device
US9636309B2 (en) 2010-09-09 2017-05-02 Micell Technologies, Inc. Macrolide dosage forms
US10293050B2 (en) 2010-09-09 2019-05-21 Micell Technologies, Inc. Macrolide dosage forms
US10464100B2 (en) 2011-05-31 2019-11-05 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
US10729819B2 (en) 2011-07-15 2020-08-04 Micell Technologies, Inc. Drug delivery medical device
US10117972B2 (en) 2011-07-15 2018-11-06 Micell Technologies, Inc. Drug delivery medical device
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
US11039943B2 (en) 2013-03-12 2021-06-22 Micell Technologies, Inc. Bioabsorbable biomedical implants
US10272606B2 (en) 2013-05-15 2019-04-30 Micell Technologies, Inc. Bioabsorbable biomedical implants

Also Published As

Publication number Publication date
US20050208098A1 (en) 2005-09-22
US6953560B1 (en) 2005-10-11
US7691401B2 (en) 2010-04-06

Similar Documents

Publication Publication Date Title
US7691401B2 (en) Poly(butylmethacrylate) and rapamycin coated stent
US6716444B1 (en) Barriers for polymer-coated implantable medical devices and methods for making the same
US20100092535A1 (en) Nanoporous Drug Delivery System
US8003123B2 (en) Biologically absorbable coatings for implantable devices and methods for fabricating the same
US8192752B2 (en) Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
EP1566187B1 (en) Polyacrylates coating for implantable medical devices
AU783336B2 (en) Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
JP4806163B2 (en) Metal reinforced biodegradable endoluminal stent
EP1135178B1 (en) Polymeric coatings with controlled delivery active agents
US20080243240A1 (en) Biodegradable Metal Barrier Layer for a Drug-Eluting Stent
US20090118815A1 (en) Stent
US20090005861A1 (en) Stent coatings with engineered drug release rate
WO2004032804A1 (en) Rate limiting barriers for implantable medical devices
US20080215132A1 (en) Implantable devices having textured surfaces and methods of forming the same
Unverdorben et al. Comparison of a silicon carbide-coated stent versus a noncoated stent in human beings: the Tenax versus Nir Stent Study's long-term outcome
EP2190494B1 (en) Implantable medical devices having thin absorbable coatings
US20100274352A1 (en) Endoprosthesis with Selective Drug Coatings
WO2008027872A2 (en) Implantable devices having textured surfaces and methods of forming the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION