US20060064168A1 - Prosthesis for bridging a vertebral body - Google Patents

Prosthesis for bridging a vertebral body Download PDF

Info

Publication number
US20060064168A1
US20060064168A1 US11/137,707 US13770705A US2006064168A1 US 20060064168 A1 US20060064168 A1 US 20060064168A1 US 13770705 A US13770705 A US 13770705A US 2006064168 A1 US2006064168 A1 US 2006064168A1
Authority
US
United States
Prior art keywords
vertebral body
bridging part
bridging
recess
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/137,707
Inventor
Arnold Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cervitech Inc
Original Assignee
Cervitech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cervitech Inc filed Critical Cervitech Inc
Assigned to CERVITECH, INC. reassignment CERVITECH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KELLER, ARNOLD
Publication of US20060064168A1 publication Critical patent/US20060064168A1/en
Assigned to CERVITECH, INC. reassignment CERVITECH, INC. CHANGE OF ADDRESS Assignors: CERVITECH, INC.
Priority to US12/683,919 priority Critical patent/US8192493B2/en
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NUVASIVE CLINICAL SERVICES MONITORING, INC., NUVASIVE CLINICAL SERVICES, INC., NUVASIVE SPECIALIZED ORTHOPEDICS, INC., NUVASIVE, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30565Special structural features of bone or joint prostheses not otherwise provided for having spring elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30576Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30663Ball-and-socket joints multiaxial, e.g. biaxial; multipolar, e.g. bipolar or having an intermediate shell articulating between the ball and the socket
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes

Definitions

  • the invention relates to a prosthesis according to the preamble of claim 1 .
  • a known prosthesis (DE-A-4109941, FIG. 2 ) which comprises an upper contact plate for connection to an upper vertebral body, a lower contact plate for connection to a lower vertebral body, and a bridging part which connects the upper and lower contact plates and is designed for bridging at least one vertebral body which is located between the upper and lower vertebral bodies and whose function is to be replaced by the prosthesis.
  • a hinge is in each case provided for replacement of the intervertebral discs.
  • the cross-sectional size of the bridging part is considerably smaller than that of this vertebral body.
  • the bridging part should be fitted into it in such a way that it is completely embedded therein. How this could be done surgically is unclear. If it is still more or less complete only on the vertebral arch side, a recess is created on its front face and the bridging part is inserted into said recess. For firm connection to the vertebral body, the bridging part has laterally protruding webs which contain an oblong hole for receiving a securing screw. The securing of the prosthesis on the vertebral body determines, in addition to the facet articulations, the position of said vertebral body with respect to the adjacent vertebral bodies.
  • the bridging part is formed by a coil spring which, because of its compliance, has the purpose of permitting a relative movement of the upper and lower vertebral bodies with respect to one another and to the bridged vertebral body.
  • the coil spring is intended to be received in a cavity inside the vertebral body to be bridged, which is also filled with bone chips which may possibly permit new growth of bone tissue inside the cavity.
  • a firm connection between the turns of the coil spring and the bone tissue is not possible. Therefore, the turns of the coil spring do not form a securing means with respect to the bridged vertebral body.
  • the turns of the coil spring which are being constantly moved relative to the bridged vertebral body are a cause of persistent irritation.
  • a spinal column prosthesis is also known (EP-A-1417940) in which the bridging part has a U-shaped configuration in side view, so as to engage with its branches on the lower face and upper face of the vertebral body to be replaced.
  • the web lies on the front face of the vertebral body and is screwed onto it. This requires suitable working of the vertebral body on its upper, lower and front faces, which can be difficult, especially if the vertebral body is damaged.
  • Spinal column prostheses are also known in which the bridging part completely replaces the vertebral body (EP-A-567424, WO 0103614, DE-U-20115281, U.S. Pat. No. 5,895,428). This has the disadvantage that a supporting connection is not really possible between the remaining parts of the vertebra and the bridging part.
  • the bridging part is connected rigidly to the upper and lower vertebral bodies, so that these too are rigidly connected to one another.
  • the bridged vertebral body is in this way kept free from forces and therefore does not require any supporting connection to the bridging part of the prosthesis.
  • the object of the invention is therefore to make available a spinal column prosthesis of the type mentioned at the outset which can also be used when the vertebral body to be replaced is completely or to a large extent preserved.
  • a further aim is that a comparatively simple operating technique will permit a good supporting connection between the implant and the vertebral body to be replaced.
  • a dowel for rigid connection of adjacent vertebral bodies is known (U.S.-A-2002/0128652) which has a rectangular cross section and is fitted into a correspondingly shaped ventral recess in the vertebral body in question and is equipped with means intended to prevent its escaping from the recess.
  • U.S.-A-2002/0128652 which has a rectangular cross section and is fitted into a correspondingly shaped ventral recess in the vertebral body in question and is equipped with means intended to prevent its escaping from the recess.
  • the mutual supporting action and the securing afforded by the lateral projections of the bridging part are all the more effective, the more precisely the recess is adapted to the shape of the bridging part. This is achieved most easily if the cross-sectional shape of the recess is rectangular or trapezoid.
  • This also has the advantage that the side surfaces of the bridging part are large and thus make it easier to accommodate a plurality of anchoring projections. This is especially the case when these are arranged rigidly on the bridging part, for example in the form of a large number of small points. These are expediently designed so that, when the bridging part is pressed into the recess, they find their way to their anchoring position through the elastic or plastic compliance of the bone tissue.
  • the bridging part shape narrowing in cross section in the dorsal direction has the further advantage that, as the bridging part is wedged into the vertebral body recess likewise narrowing in cross section in the dorsal direction, the projections are sunk into the bone substance. They can also have a self-cutting design.
  • Another possible embodiment is one in which the projections are made very small in the form of a surface roughness. This is generally sufficient to create an initial strength of the implant/bone connection and, after a short time, to permit permanent connection by means of bone tissue growing into the surface roughness.
  • the projections can be barb-shaped in order to provide minimal resistance to the movement of the implant into the recess of the bone, but to provide greater resistance to its removal from the recess.
  • the bridging part can have openings or pores for receiving bone tissue. These can be filled with bone chips before implantation. Over the course of time, living bone tissue grows in, so as to permit firm union between the implant and the bones.
  • the invention has particular advantages when applied to the cervical spine.
  • FIG. 1 shows a longitudinal section through an illustrative embodiment in the median plane
  • FIG. 2 shows a front view of the same implant
  • FIG. 3 shows a perspective view of the bridging part.
  • FIG. 2 shows an upper vertebral body 1 and a lower vertebral body 2 and, between them, the vertebral body 3 which is to be replaced.
  • a spinal column prosthesis is inserted between the upper and lower vertebral bodies.
  • This prosthesis comprises an upper contact plate 5 connected to the upper vertebral body 1 , a lower contact plate 6 connected to the lower vertebral body 2 , and a bridging part 7 which connects the plates 5 and 6 .
  • the bridging part 7 has a width which is smaller than that of the associated vertebral body 3 , that is to say small enough to ensure that the bridging part can be inserted into a recess which has been worked into the relevant vertebral body 3 from the front face and the bone substance remaining alongside it suffices for securely anchoring the bridging part in the recess.
  • At least part of the recess has a shape which corresponds as exactly as possible to the shape of the bridging part 7 . It is thus possible for the surface of the implant to bear on the artificially created surface of the bone in a manner substantially free from play. On the one hand, this provides a good mutual support. On the other hand, it affords the possibility of bone growth creating a stable connection between the bone and the implant. Finally, this ensures that the anchoring projections 9 provided on the implant engage in the bone tissue along substantially their full length in order to be able to transmit the anchoring forces.
  • the object of providing shape correspondence between the bridging part and the recess created in the bone is achieved most easily with a trapezoid shape of the cross section of the bridging part, as is indicated in FIG. 3 . It is also possible to use other cross-sectional shapes, but preferably ones which narrow from the front toward the rear so that, when the bridging part is inserted into the recess, the side surfaces bear on the resected bone surfaces in said manner free from play.
  • the bridging part has a rearwardly narrowing, in particular trapezoid shape ought if appropriate to merit protection independently of the characterizing features of claim 1 .
  • the anchoring projections are arranged rigidly on the side surfaces 10 of the bridging part 7 . According to FIG. 3 , they are in the form of a large number of small, pointed elevations 11 which force themselves into the bone surface as the implant is inserted into the recess in the vertebra. In an alternative embodiment not shown, they are larger and in the form of blades, the plane of the blades extending in the direction of insertion so that they cut into the bone substance. Another embodiment uses micro-projections in the form of a surface roughness that covers the entire side surface 10 or a substantial part thereof. In each case, in addition to the anchoring projections, it is possible to provide openings 12 or pores into which bone substance can grow and anchor itself. To accelerate this process, the openings can be filled from the start with bone chips. It is also possible to coat the implant with osteoconductive or osteoinductive substance.

Abstract

Prosthesis for the partial replacement of a vertebral body, with an upper contact plate (5) for connection to an upper vertebral body (1), a lower contact plate (6) for connection to a lower vertebral body (2), and a bridging part (7) which connects the upper and lower contact plates (5, 6) to one another and bridges at least one vertebral body (3) which is located between the upper and lower vertebral bodies (1, 2) and is to be partially replaced. The bridging part (7) is accommodated in a recess in the vertebral body (3). To be secured in said recess, it has lateral anchoring projections (9) which penetrate into the bone substance located on both sides of the bridging part (7). Its cross section narrows toward the rear preferably in a trapezoid shape.

Description

  • The invention relates to a prosthesis according to the preamble of claim 1. This is based on a known prosthesis (DE-A-4109941, FIG. 2) which comprises an upper contact plate for connection to an upper vertebral body, a lower contact plate for connection to a lower vertebral body, and a bridging part which connects the upper and lower contact plates and is designed for bridging at least one vertebral body which is located between the upper and lower vertebral bodies and whose function is to be replaced by the prosthesis. Between the bridging body and the contact plates, a hinge is in each case provided for replacement of the intervertebral discs. The cross-sectional size of the bridging part is considerably smaller than that of this vertebral body. If the latter is more or less completely preserved, the bridging part should be fitted into it in such a way that it is completely embedded therein. How this could be done surgically is unclear. If it is still more or less complete only on the vertebral arch side, a recess is created on its front face and the bridging part is inserted into said recess. For firm connection to the vertebral body, the bridging part has laterally protruding webs which contain an oblong hole for receiving a securing screw. The securing of the prosthesis on the vertebral body determines, in addition to the facet articulations, the position of said vertebral body with respect to the adjacent vertebral bodies. Only when those surfaces of the vertebral body intended for the securing webs to bear on are worked in such a way that the vertebral body, after connection to the webs, can maintain its natural position defined by the facet articulations, is there any prospect of the prosthesis fitting in a way that does not cause discomfort. Such precise working is difficult to achieve. It has also been found that securing by means of a screw is not reliable enough.
  • In another known spinal column prosthesis (U.S. Pat. No. 5,423,816), the bridging part is formed by a coil spring which, because of its compliance, has the purpose of permitting a relative movement of the upper and lower vertebral bodies with respect to one another and to the bridged vertebral body. The coil spring is intended to be received in a cavity inside the vertebral body to be bridged, which is also filled with bone chips which may possibly permit new growth of bone tissue inside the cavity. However, because of their constant relative movement, a firm connection between the turns of the coil spring and the bone tissue is not possible. Therefore, the turns of the coil spring do not form a securing means with respect to the bridged vertebral body. On the contrary, the turns of the coil spring which are being constantly moved relative to the bridged vertebral body are a cause of persistent irritation.
  • A spinal column prosthesis is also known (EP-A-1417940) in which the bridging part has a U-shaped configuration in side view, so as to engage with its branches on the lower face and upper face of the vertebral body to be replaced. The web lies on the front face of the vertebral body and is screwed onto it. This requires suitable working of the vertebral body on its upper, lower and front faces, which can be difficult, especially if the vertebral body is damaged. Spinal column prostheses are also known in which the bridging part completely replaces the vertebral body (EP-A-567424, WO 0103614, DE-U-20115281, U.S. Pat. No. 5,895,428). This has the disadvantage that a supporting connection is not really possible between the remaining parts of the vertebra and the bridging part.
  • In another known group of spinal column prostheses (U.S. Pat. No. 4,892,545, U.S. Pat. No. 4,636,217), the bridging part is connected rigidly to the upper and lower vertebral bodies, so that these too are rigidly connected to one another. The bridged vertebral body is in this way kept free from forces and therefore does not require any supporting connection to the bridging part of the prosthesis.
  • The object of the invention is therefore to make available a spinal column prosthesis of the type mentioned at the outset which can also be used when the vertebral body to be replaced is completely or to a large extent preserved. A further aim is that a comparatively simple operating technique will permit a good supporting connection between the implant and the vertebral body to be replaced.
  • This is achieved by the features of claim 1. It is comparatively easy to create a recess in the vertebral body starting from the front face, which recess matches the shape of the bridging part and receives the latter substantially in its entirety. The bridging part is accordingly designed narrower than the vertebral body. By virtue of the mutual positive engagement between the bridging part and the recess, the bridging part and the vertebral body support each other. The bridging part is also unable to escape from the recess, because its lateral projections hold it securely in the recess.
  • A dowel for rigid connection of adjacent vertebral bodies is known (U.S.-A-2002/0128652) which has a rectangular cross section and is fitted into a correspondingly shaped ventral recess in the vertebral body in question and is equipped with means intended to prevent its escaping from the recess. However, it is not possible to tell how these means are designed.
  • The mutual supporting action and the securing afforded by the lateral projections of the bridging part are all the more effective, the more precisely the recess is adapted to the shape of the bridging part. This is achieved most easily if the cross-sectional shape of the recess is rectangular or trapezoid. This also has the advantage that the side surfaces of the bridging part are large and thus make it easier to accommodate a plurality of anchoring projections. This is especially the case when these are arranged rigidly on the bridging part, for example in the form of a large number of small points. These are expediently designed so that, when the bridging part is pressed into the recess, they find their way to their anchoring position through the elastic or plastic compliance of the bone tissue. In this connection, the bridging part shape narrowing in cross section in the dorsal direction has the further advantage that, as the bridging part is wedged into the vertebral body recess likewise narrowing in cross section in the dorsal direction, the projections are sunk into the bone substance. They can also have a self-cutting design. Another possible embodiment is one in which the projections are made very small in the form of a surface roughness. This is generally sufficient to create an initial strength of the implant/bone connection and, after a short time, to permit permanent connection by means of bone tissue growing into the surface roughness. The projections can be barb-shaped in order to provide minimal resistance to the movement of the implant into the recess of the bone, but to provide greater resistance to its removal from the recess.
  • At least on the side surfaces, the bridging part can have openings or pores for receiving bone tissue. These can be filled with bone chips before implantation. Over the course of time, living bone tissue grows in, so as to permit firm union between the implant and the bones.
  • The invention has particular advantages when applied to the cervical spine.
  • The invention is explained in more detail below with reference to the drawing which depicts advantageous illustrative embodiments. In the drawing:
  • FIG. 1 shows a longitudinal section through an illustrative embodiment in the median plane,
  • FIG. 2 shows a front view of the same implant, and
  • FIG. 3 shows a perspective view of the bridging part.
  • FIG. 2 shows an upper vertebral body 1 and a lower vertebral body 2 and, between them, the vertebral body 3 which is to be replaced. A spinal column prosthesis is inserted between the upper and lower vertebral bodies. This prosthesis comprises an upper contact plate 5 connected to the upper vertebral body 1, a lower contact plate 6 connected to the lower vertebral body 2, and a bridging part 7 which connects the plates 5 and 6. Located between the contact plates 5 and 6 and the bridging part 7 there is in each case a hinge (for example according to EP-A-560140) with a hinge surface 8. This is formed, in the upper hinge, on the one hand by the bottom face of the contact plate 5 and on the other hand by a hinge part 4 connected to the bridging part 7 in a manner not shown. In the lower hinge, it is formed on the one hand by the bottom face of the bridging part 7 and on the other hand by the hinge part 4, which is connected to the lower contact plate 6 in a manner not shown. Instead of a hinge with a spherical hinge surface, another hinge type can also be used, for example one with a flexible cushion (DE-U-20115281) or with a spiral spring (DE-A-4109941). If the upper vertebral body 1 and the lower vertebral body 2 are to be rigidly connected, the hinges can also be omitted altogether. Finally, it is possible to use just one hinge between the upper contact plate 5 and the bridging part 7, or between the lower contact plate 6 and the bridging part 7.
  • While the contact plates 5 and 6 have a customary size which is dimensioned in the interest of low pressure forces between the contact plates and the associated vertebral bodies, the bridging part 7 has a width which is smaller than that of the associated vertebral body 3, that is to say small enough to ensure that the bridging part can be inserted into a recess which has been worked into the relevant vertebral body 3 from the front face and the bone substance remaining alongside it suffices for securely anchoring the bridging part in the recess.
  • At least part of the recess has a shape which corresponds as exactly as possible to the shape of the bridging part 7. It is thus possible for the surface of the implant to bear on the artificially created surface of the bone in a manner substantially free from play. On the one hand, this provides a good mutual support. On the other hand, it affords the possibility of bone growth creating a stable connection between the bone and the implant. Finally, this ensures that the anchoring projections 9 provided on the implant engage in the bone tissue along substantially their full length in order to be able to transmit the anchoring forces.
  • The object of providing shape correspondence between the bridging part and the recess created in the bone is achieved most easily with a trapezoid shape of the cross section of the bridging part, as is indicated in FIG. 3. It is also possible to use other cross-sectional shapes, but preferably ones which narrow from the front toward the rear so that, when the bridging part is inserted into the recess, the side surfaces bear on the resected bone surfaces in said manner free from play.
  • The feature according to which the bridging part has a rearwardly narrowing, in particular trapezoid shape ought if appropriate to merit protection independently of the characterizing features of claim 1.
  • The anchoring projections are arranged rigidly on the side surfaces 10 of the bridging part 7. According to FIG. 3, they are in the form of a large number of small, pointed elevations 11 which force themselves into the bone surface as the implant is inserted into the recess in the vertebra. In an alternative embodiment not shown, they are larger and in the form of blades, the plane of the blades extending in the direction of insertion so that they cut into the bone substance. Another embodiment uses micro-projections in the form of a surface roughness that covers the entire side surface 10 or a substantial part thereof. In each case, in addition to the anchoring projections, it is possible to provide openings 12 or pores into which bone substance can grow and anchor itself. To accelerate this process, the openings can be filled from the start with bone chips. It is also possible to coat the implant with osteoconductive or osteoinductive substance.

Claims (5)

1. Prosthesis for partial replacement of a vertebral body, with an upper contact plate (5) for connection to an upper vertebral body (1), a lower contact plate (6) for connection to a lower vertebral body (2), and a bridging part (7) which connects the upper and lower contact plates (5, 6) to one another, with inclusion of at least one hinge (8), and is designed for bridging at least one vertebral body (3) which is located between the upper and lower vertebral bodies (1, 2) and is to be partially replaced, said bridging part (7) being equipped with means for securing it on the vertebral body (3), characterized in that the means for securing it on the vertebral body (3) are formed by rigid anchoring projections (9, 11, 15, 32) which protrude laterally from the bridging part (7).
2. Spinal column prosthesis according to claim 1, characterized in that the cross-sectional shape of the bridging part (7) is rectangular or narrows in the dorsal direction.
3. Spinal column prosthesis according to claim 1, characterized in that the anchoring projections are in the form of a surface roughness.
4. Spinal column prosthesis according to claim 1, characterized in that the bridging part (7) has openings (12) or pores for receiving bone tissue.
5. Spinal column prosthesis according to claim 4, characterized in that it is provided with a filling of bone material or bone replacement material.
US11/137,707 2004-09-23 2005-05-26 Prosthesis for bridging a vertebral body Abandoned US20060064168A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/683,919 US8192493B2 (en) 2004-09-23 2010-01-07 Prosthesis for bridging a vertebral body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04022671A EP1639969A1 (en) 2004-09-23 2004-09-23 Intravertebral prosthesis for bridging a vertebrae
EP04022671.4 2004-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/683,919 Continuation US8192493B2 (en) 2004-09-23 2010-01-07 Prosthesis for bridging a vertebral body

Publications (1)

Publication Number Publication Date
US20060064168A1 true US20060064168A1 (en) 2006-03-23

Family

ID=34926678

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/137,707 Abandoned US20060064168A1 (en) 2004-09-23 2005-05-26 Prosthesis for bridging a vertebral body
US12/683,919 Active 2026-01-05 US8192493B2 (en) 2004-09-23 2010-01-07 Prosthesis for bridging a vertebral body

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/683,919 Active 2026-01-05 US8192493B2 (en) 2004-09-23 2010-01-07 Prosthesis for bridging a vertebral body

Country Status (17)

Country Link
US (2) US20060064168A1 (en)
EP (2) EP1639969A1 (en)
JP (1) JP4549394B2 (en)
KR (1) KR20070068395A (en)
CN (1) CN101027017A (en)
AR (1) AR055467A1 (en)
AT (1) ATE458456T1 (en)
AU (1) AU2005287681B2 (en)
BR (1) BRPI0515869A (en)
CA (1) CA2580206A1 (en)
DE (1) DE502005009103D1 (en)
IL (1) IL181741A0 (en)
MX (1) MX2007003382A (en)
RU (1) RU2372055C2 (en)
TW (1) TW200616595A (en)
WO (1) WO2006032311A1 (en)
ZA (1) ZA200703144B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131066A1 (en) * 2004-09-23 2010-05-27 Cervitech, Inc. Prosthesis for bridging a vertebral body
WO2011108950A1 (en) 2010-03-03 2011-09-09 Lfc Spółka Z.O.O. Prosthesis for spinal column, instrument for its guiding and method for implantation thereof
US8945228B2 (en) 2012-11-15 2015-02-03 DePuy Synthes Products, LLC Endplate for a vertebral implant
US9700425B1 (en) 2011-03-20 2017-07-11 Nuvasive, Inc. Vertebral body replacement and insertion methods
US20180036132A1 (en) * 2016-08-08 2018-02-08 Wu Jau Ching Intervertebral implant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2858546B1 (en) * 2003-08-04 2006-04-28 Spine Next Sa INTERVERTEBRAL DISC PROSTHESIS
EP1639968A1 (en) * 2004-09-23 2006-03-29 Cervitech, Inc. Implant with a part to be inserted and anchored in a bone cavity
US9968460B2 (en) 2013-03-15 2018-05-15 Medsmart Innovation Inc. Dynamic spinal segment replacement

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636217A (en) * 1985-04-23 1987-01-13 Regents Of The University Of Minnesota Anterior spinal implant
US4892545A (en) * 1988-07-14 1990-01-09 Ohio Medical Instrument Company, Inc. Vertebral lock
US4932975A (en) * 1989-10-16 1990-06-12 Vanderbilt University Vertebral prosthesis
US5423816A (en) * 1993-07-29 1995-06-13 Lin; Chih I. Intervertebral locking device
US5534029A (en) * 1992-12-14 1996-07-09 Yumiko Shima Articulated vertebral body spacer
US5658335A (en) * 1995-03-09 1997-08-19 Cohort Medical Products Group, Inc. Spinal fixator
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US6113637A (en) * 1998-10-22 2000-09-05 Sofamor Danek Holdings, Inc. Artificial intervertebral joint permitting translational and rotational motion
US6432107B1 (en) * 2000-01-15 2002-08-13 Bret A. Ferree Enhanced surface area spinal fusion devices
US6808538B2 (en) * 2002-03-15 2004-10-26 Stryker Spine Vertebral body spacer having variable wedged endplates
US20040254644A1 (en) * 2002-10-21 2004-12-16 Taylor Brett Allison Intervertebral disk prosthesis
US7018417B2 (en) * 2001-07-31 2006-03-28 Xaver Kuoni Artificial socket

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2857550A (en) * 1956-02-29 1958-10-21 Burroughs Corp Variable counter circuit
FR2575059B1 (en) 1984-12-21 1988-11-10 Daher Youssef SHORING DEVICE FOR USE IN A VERTEBRAL PROSTHESIS
CA1333209C (en) * 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
DE4109941A1 (en) * 1991-03-26 1992-10-01 Reljica Kostic Zlatko Dr Flexible prosthesis for backbone - comprises flexible spring forming supporting element connected to two fixing elements attached to adjacent vertebrae
DE4208115A1 (en) 1992-03-13 1993-09-16 Link Waldemar Gmbh Co DISC ENDOPROTHESIS
ES2041221B1 (en) 1992-04-24 1994-05-16 Alacreu Jose Vicente Barbera PROCEDURE FOR THE PROSTHETIC VERTEBRAL SUBSTITUTION IN THE SURGERY OF MALIGNANT TUMORS AND PROTESIS FOR THE PRACTICE OF SUCH PROCEDURE.
DE9413471U1 (en) * 1994-08-20 1995-12-21 Schaefer Micomed Gmbh Ventral intervertebral implant
US6344057B1 (en) * 1994-11-22 2002-02-05 Sdgi Holdings, Inc. Adjustable vertebral body replacement
DE19529605C2 (en) * 1995-08-11 1997-10-09 Bernhard Zientek Intervertebral implant
US5800550A (en) * 1996-03-13 1998-09-01 Sertich; Mario M. Interbody fusion cage
FR2762778B1 (en) * 1997-05-02 1999-07-16 Stryker France Sa IMPLANT, IN PARTICULAR FOR THE REPLACEMENT OF A VERTEBRAL BODY IN RACHIS SURGERY
FR2774581B1 (en) * 1998-02-10 2000-08-11 Dimso Sa INTEREPINOUS STABILIZER TO BE ATTACHED TO SPINOUS APOPHYSIS OF TWO VERTEBRES
DE19807236C2 (en) * 1998-02-20 2000-06-21 Biedermann Motech Gmbh Intervertebral implant
DE19818143A1 (en) 1998-04-23 1999-10-28 Medinorm Ag Device for connecting vertebrae of the spine
EP1089677B1 (en) * 1998-06-23 2004-05-06 Dimso (Distribution Medicale du Sud-Ouest) Backbone intersomatic implant with anchoring elements
FR2784891B1 (en) 1998-10-22 2001-01-26 Hassan Razian INTERSOMATIC CAGE WITH HOLDING DEVICE
US6770096B2 (en) * 1999-07-01 2004-08-03 Spinevision S.A. Interbody spinal stabilization cage and spinal stabilization method
FR2796268B1 (en) 1999-07-13 2001-09-14 Frederic Fortin DEVICE FOR HOLDING A FRAMEWORK FOR RECEIVING A HOLDING AND FILLING PRODUCT WITHOUT THE RISK OF SPREADING THE SAME INSIDE THE HUMAN BODY
US6447546B1 (en) * 2000-08-11 2002-09-10 Dale G. Bramlet Apparatus and method for fusing opposing spinal vertebrae
TW571720U (en) * 2001-05-04 2004-01-11 Chih-I Lin Spine fastener with support component
DE20115281U1 (en) * 2001-09-10 2001-11-22 Aesculap Ag & Co Kg Implant
US6923830B2 (en) * 2002-02-02 2005-08-02 Gary K. Michelson Spinal fusion implant having deployable bone engaging projections
US6723126B1 (en) * 2002-11-01 2004-04-20 Sdgi Holdings, Inc. Laterally expandable cage
EP1417940A1 (en) * 2002-11-08 2004-05-12 Waldemar Link (GmbH & Co.) Vertebral prosthesis
FR2846876B1 (en) 2002-11-12 2005-07-29 Hassan Razian INTERVENIAL CAGE WITH MEDIAN ANCHOR BLADE
US20050049590A1 (en) 2003-03-07 2005-03-03 Neville Alleyne Spinal implant with securement spikes
DE10324319A1 (en) * 2003-05-27 2004-12-16 Ulrich Gmbh & Co. Kg Implant and instrument for placement and distraction of the implant
ES2329897T3 (en) * 2003-07-23 2009-12-02 Ebi, Llc EXPANSIBLE SPINAL IMPLANT.
EP1639968A1 (en) * 2004-09-23 2006-03-29 Cervitech, Inc. Implant with a part to be inserted and anchored in a bone cavity
EP1639969A1 (en) * 2004-09-23 2006-03-29 Cervitech, Inc. Intravertebral prosthesis for bridging a vertebrae

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636217A (en) * 1985-04-23 1987-01-13 Regents Of The University Of Minnesota Anterior spinal implant
US4892545A (en) * 1988-07-14 1990-01-09 Ohio Medical Instrument Company, Inc. Vertebral lock
US4932975A (en) * 1989-10-16 1990-06-12 Vanderbilt University Vertebral prosthesis
US5534029A (en) * 1992-12-14 1996-07-09 Yumiko Shima Articulated vertebral body spacer
US5423816A (en) * 1993-07-29 1995-06-13 Lin; Chih I. Intervertebral locking device
US5658335A (en) * 1995-03-09 1997-08-19 Cohort Medical Products Group, Inc. Spinal fixator
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US6113637A (en) * 1998-10-22 2000-09-05 Sofamor Danek Holdings, Inc. Artificial intervertebral joint permitting translational and rotational motion
US20020128652A1 (en) * 1999-12-03 2002-09-12 Ferree Bret A. Version with markings to show changes made
US6432107B1 (en) * 2000-01-15 2002-08-13 Bret A. Ferree Enhanced surface area spinal fusion devices
US7018417B2 (en) * 2001-07-31 2006-03-28 Xaver Kuoni Artificial socket
US6808538B2 (en) * 2002-03-15 2004-10-26 Stryker Spine Vertebral body spacer having variable wedged endplates
US20040254644A1 (en) * 2002-10-21 2004-12-16 Taylor Brett Allison Intervertebral disk prosthesis

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131066A1 (en) * 2004-09-23 2010-05-27 Cervitech, Inc. Prosthesis for bridging a vertebral body
US8192493B2 (en) 2004-09-23 2012-06-05 Cervitech, Inc. Prosthesis for bridging a vertebral body
WO2011108950A1 (en) 2010-03-03 2011-09-09 Lfc Spółka Z.O.O. Prosthesis for spinal column, instrument for its guiding and method for implantation thereof
US9700425B1 (en) 2011-03-20 2017-07-11 Nuvasive, Inc. Vertebral body replacement and insertion methods
US10485672B2 (en) 2011-03-20 2019-11-26 Nuvasive, Inc. Vertebral body replacement and insertion methods
US11389301B2 (en) 2011-03-20 2022-07-19 Nuvasive, Inc. Vertebral body replacement and insertion methods
US8945228B2 (en) 2012-11-15 2015-02-03 DePuy Synthes Products, LLC Endplate for a vertebral implant
US20180036132A1 (en) * 2016-08-08 2018-02-08 Wu Jau Ching Intervertebral implant
US10537434B2 (en) * 2016-08-08 2020-01-21 Wu Jau Ching Intervertebral implant

Also Published As

Publication number Publication date
CA2580206A1 (en) 2006-03-30
JP2008513169A (en) 2008-05-01
RU2007114196A (en) 2008-10-27
RU2372055C2 (en) 2009-11-10
US8192493B2 (en) 2012-06-05
KR20070068395A (en) 2007-06-29
BRPI0515869A (en) 2008-08-12
EP1809211A1 (en) 2007-07-25
US20100131066A1 (en) 2010-05-27
IL181741A0 (en) 2007-07-04
WO2006032311A1 (en) 2006-03-30
ZA200703144B (en) 2008-09-25
TW200616595A (en) 2006-06-01
EP1809211B1 (en) 2010-02-24
EP1639969A1 (en) 2006-03-29
JP4549394B2 (en) 2010-09-22
DE502005009103D1 (en) 2010-04-08
ATE458456T1 (en) 2010-03-15
AU2005287681A1 (en) 2006-03-30
AU2005287681B2 (en) 2011-04-14
CN101027017A (en) 2007-08-29
MX2007003382A (en) 2007-04-27
AR055467A1 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US8192493B2 (en) Prosthesis for bridging a vertebral body
US10258481B2 (en) Modular, customizable spine stabilization system
US6520993B2 (en) Spinal implant
EP1185221B1 (en) Artificial disc implant
US6440168B1 (en) Articulating spinal implant
US6179874B1 (en) Articulating spinal implant
KR101356241B1 (en) Intervertebral prosthesis comprising self-tapping fixing projections
US7837732B2 (en) Intervertebral body fusion cage with keels and implantation methods
US7267691B2 (en) Cervical intervertebral prosthesis
US20060052870A1 (en) Methods and apparatus to prevent movement through artificial disc replacements
AU777480B2 (en) Articulating spinal implant
US20090138088A1 (en) Mobile spinal fusion implant
AU2002301243B2 (en) Articulating Spinal Implant
KR101009937B1 (en) Intervertebral implant
AU749335B2 (en) Articulating spinal implant

Legal Events

Date Code Title Description
AS Assignment

Owner name: CERVITECH, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KELLER, ARNOLD;REEL/FRAME:016888/0305

Effective date: 20050808

AS Assignment

Owner name: CERVITECH, INC., CALIFORNIA

Free format text: CHANGE OF ADDRESS;ASSIGNOR:CERVITECH, INC.;REEL/FRAME:023035/0968

Effective date: 20090508

Owner name: CERVITECH, INC.,CALIFORNIA

Free format text: CHANGE OF ADDRESS;ASSIGNOR:CERVITECH, INC.;REEL/FRAME:023035/0968

Effective date: 20090508

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNORS:NUVASIVE, INC.;NUVASIVE CLINICAL SERVICES MONITORING, INC.;NUVASIVE CLINICAL SERVICES, INC.;AND OTHERS;REEL/FRAME:052918/0595

Effective date: 20200224