US20050278023A1 - Method and apparatus for filling a cavity - Google Patents

Method and apparatus for filling a cavity Download PDF

Info

Publication number
US20050278023A1
US20050278023A1 US10/866,219 US86621904A US2005278023A1 US 20050278023 A1 US20050278023 A1 US 20050278023A1 US 86621904 A US86621904 A US 86621904A US 2005278023 A1 US2005278023 A1 US 2005278023A1
Authority
US
United States
Prior art keywords
implant
segments
cavity
segmented
applicator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/866,219
Inventor
Paul Zwirkoski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spinal Ventures LLC
Original Assignee
Spinal Ventures LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spinal Ventures LLC filed Critical Spinal Ventures LLC
Priority to US10/866,219 priority Critical patent/US20050278023A1/en
Assigned to SPINAL VENTURES reassignment SPINAL VENTURES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZWIRKOSKI, PAUL A.
Priority to EP05759216A priority patent/EP1768616A4/en
Priority to PCT/US2005/020476 priority patent/WO2005122956A2/en
Priority to US11/298,961 priority patent/US7682400B2/en
Publication of US20050278023A1 publication Critical patent/US20050278023A1/en
Priority to US12/616,843 priority patent/US8734520B2/en
Priority to US14/265,000 priority patent/US9526539B2/en
Priority to US15/390,001 priority patent/US9943411B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30749Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7094Solid vertebral fillers; devices for inserting such fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/686Plugs, i.e. elements forming interface between bone hole and implant or fastener, e.g. screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7097Stabilisers comprising fluid filler in an implant, e.g. balloon; devices for inserting or filling such implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8625Shanks, i.e. parts contacting bone tissue
    • A61B17/8635Tips of screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8863Apparatus for shaping or cutting osteosynthesis equipment by medical personnel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/302Three-dimensional shapes toroidal, e.g. rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30462Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30495Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30662Ball-and-socket joints with rotation-limiting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30663Ball-and-socket joints multiaxial, e.g. biaxial; multipolar, e.g. bipolar or having an intermediate shell articulating between the ball and the socket
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/4415Joints for the spine, e.g. vertebrae, spinal discs elements of the prosthesis being arranged in a chain like manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • A61F2002/443Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/444Intervertebral or spinal discs, e.g. resilient for replacing the nucleus pulposus

Definitions

  • non-soft tissue cavity implants implant applicators, delivery devices, and methods for using them.
  • the description relates to implants having a plurality of flexibly connected segments having a strength sufficient to support, to fill, to create, to maintain, or to distract a bone cavity such as might be found in a fractured vertebral body, and methods and devices for inserting implants into non-soft tissue cavities such as bone cavities.
  • Proper treatment of orthopedic conditions such as trauma, fractures, non-unions, tumors, cysts, and certain fusion procedures may involve filling a cavity that has been created by the pathology itself or by the action of a surgeon. Often the cavities are compressed, and require that the surfaces of the cavity be distracted from one another and then supported to return the bone structure to its anatomic position and form. Furthermore, because non-soft tissues such as bone have a structural and support role in the body, it is critical that such cavities be repaired to allow reliable strength and support.
  • Compression fractures are one type of hard tissue injuries belonging to a class of conditions that may be treated using devices and methods for separating, distracting, and supporting a fractured bone.
  • vertebral compression fractures are crushing injuries to one or more vertebra.
  • a vertebral compression injury may be the result of a trauma to the spine, an underlying medical condition, or a combination of a trauma and an underlying condition.
  • Osteoporosis and metastatic cancers are common medical conditions that also contribute to vertebral compression fractures because they weaken spinal bone, predisposing it to compressive injury.
  • Osteoporosis is a degenerative disease that reduces bone density, and makes bone more prone to fractures such as compression fractures. An osteoporosis-weakened bone can collapse during even normal activity. According to the National Institute of Health, vertebral compression fractures are the most common type of osteoporotic fractures.
  • Vertebral fractures may be painful and may deform the shape of the spine, resulting in unhealthy pressure on other parts of the body, loss of height, and changes in the body's center of gravity. Untreated, such changes and the resulting discomfort can become permanent, since the bone heals without expanding the compression.
  • Vertebroplasty involves injecting bone filler (such as bone cement) into the collapsed vertebra to stabilize and strengthen the crushed bone.
  • bone filler such as bone cement
  • vertebroplasty physicians typically insert a small diameter guide wire or needle along the pedicle path intended for the bone filler delivery needle.
  • the guide wire is advanced into the vertebral body under fluoroscopic guidance to the delivery point within the vertebrae.
  • the access channel into the vertebra may be enlarged to accommodate the delivery tube.
  • the delivery tube is placed directly into a vertebral body and forms its own opening.
  • an access cannula is placed over the guide wire and advanced into the vertebral body.
  • a hollow needle or similar tube is placed into the vertebral body and used to deliver the bone filler into the vertebra.
  • fillers with lower viscosities may leak. Further, even fillers having low viscosities may require the application of a high pressure to disperse the bone filler throughout the vertebral body. However, application of high pressure also increases the risk of bone filler extravasation from the vertebral body. Conversely, injecting a bone filler having a higher viscosity may provide an even greater risk of “leaking” bone filler into sensitive adjacent body areas. Leaks or extrusion of the bone filler may be dangerous to a patient's health. For example, posterior extravasation from a vertebral body may cause spinal cord trauma, perhaps resulting in paralysis. Risk of leakage is even more acute when a bone filler is applied under pressure to expand a compression fracture, especially if the fracture has begun healing and requires substantial force to distract the cavity surfaces.
  • bone cements and bone fillers are difficult to remove or to adjust. Removal and adjustment may be important when distracting a bone cavity. For example, removing a precise amount of bone filler may allow a surgeon to adjust the level of distraction of a vertebral compression fracture and correct the shape of the compressed bone. Many bone cements, once set, are difficult or impossible to remove without further, highly invasive, surgery. Even if the removal is attempted prior to the expiration of the setting time, the materials may have non-Newtonian flow characteristics requiring a substantial removal vacuum to achieve an initial and sudden movement.
  • the implant could be utilized in any area of non-soft tissue where the filling of a cavity with stability and control is desired, for example, intervetebral disc repair, hip, tibia, and other areas of bone displacement.
  • U.S. Pat. No. 5,702,454 to Baumgartner describes an implant made of an elastic plastic for implanting into an intervertebral disk. Because the Baumgartner implant is elastic, it may be less effective for filling and distracting body cavities benefiting from implants having some stiffness, such as non-soft tissue cavities. This is particularly true where sustained distraction is desired.
  • U.S. Pat. No. 6,595,998 to Johnson et al. describes a tissue distraction device in which wafers are inserted to distract a tissue cavity by forming a wafer stack within the cavity.
  • Johnson's column of wafers is not amenable to providing uniform support to all surfaces of a bone cavity, when such support is needed. For example, a tissue cavity supported or distracted on all sides of the cavity may be more stable.
  • U.S. Pat. No. 5,958,465 to Klemm et al. describes a method and apparatus for making a drug containing implants in the form of a string of beads comprising chains of small drug-containing plastic bodies arranged in series on a surgical wire or thread. Similar drug implanted beads-on-a-string are described in U.S. Pat. No. 6,183,768 to Harle and German Patents 2320373 to Klemm and 2651441 to Heusser.
  • the Klemm, Harle, and Heusser implants are designed for drug delivery, and are embedded with one or more drugs which are released from the plastic (e.g. PMMA) beads (also called “corpuscles”).
  • PMMA plastic beads
  • these implants may be limited in strength and durability because of the inclusion of a releasable drug, as well as the properties and shape of the implant beads.
  • segmented implants for filling a non-soft tissue cavity
  • applicators for inserting implants
  • methods of using the segmented implants and applicators to fill and/or distract tissue cavities may be used for filling and/or distracting non-soft tissue cavities such as a bone cavity.
  • the segmented implants described here comprise a plurality of segments, where at least two of the segments are flexibly connected, and configured for insertion into a body region.
  • the segments provide implant segment distractibility to the body region, and stability to the body region into which they are introduced.
  • the segments have sufficient material strength to distract two or more non-soft tissue surfaces.
  • the material strength is crush strength, so that the segments of an implant have sufficient crush strength to allow and sustain the distraction of non-soft tissue surfaces.
  • the implant is inserted into a cavity to distract, to expand, to reduce, or to support the cavity, typically filling the cavity and maintaining a desired shape.
  • At least a portion of the segments of the implant may be configured so that the implant may be introduced into a body region by engaging a rotating introducer member.
  • a rotatable driver may be used to introduce the segments of the implant into a body region using an applicator as described herein.
  • the segments are configured as pellets.
  • the implant may also include a fluent material (such as bone cement).
  • a fluent material such as bone cement
  • the fluent material may be added to a bone cavity that has been distracted by the flexibly connected segments of the implant.
  • the segments may also include a channel or channels to facilitate the passage of a fluent material, for example a bone cement that may eventually harden.
  • the implant segments may be connected in any way allowing sufficient flexibility so that the implant may be introduced into body region such as a bone hollow.
  • the implant segments may include a connection material for connecting segments of the implant. Connection material may comprise, for instance, a string, fiber or wire, variously of single or multiple strands.
  • the connecting string, fiber or wire may be flexible to allow the segments to be inserted into the chosen treatment site.
  • Suitable examples of fibers include those used as suture materials, biodegradable or not, e.g., polylactic acids, polyglycolic acids, mixtures and copolymers of polylactic and polyglycolic acids (PGLA such as “Vicryl” from Ethicon and “Dexon” from Davis & Geck), polydioxanone, various Nylons, polypropylene, silk, etc.).
  • the segments may comprise pellets with openings for stringing or be made adherent to a string, fiber or wire by means of manufacturing, glue, adhesive, or the like, or by simply placing the glue between the pellets.
  • the wires may comprise one or more filaments comprising suitably biocompatible metals or alloys, e.g., stainless steels or superelastic alloys.
  • the segments may be connected by placement within a flexible tube, variously a solid or continuous walled tube, a solid or continuous walled tube having openings in the wall, or a netting woven from string or fiber.
  • the flexible tube may comprise one or more membranes, optionally an expandable or a stretchable material.
  • Suitable materials include polymers, (e.g., polyfluorocarbons such as the various Teflons (including PTFE and expanded PTFE—ePTFE such as is sold as GORETEX), polypropylene, polyethylene, polyoxymethylene, polycarbonate, polyesters (including polyamides such as the Nylons), polyphenylene oxide, and polyurethane) or elastomeric polymers (e.g.
  • the expandable membrane may optionally be filled, for example with a fluent material or a bone cement, before or after the implant has been inserted into the bone cavity.
  • the flexible tube may comprise a woven or non-woven material of non-synthetic materials (e.g. cotton, silk, and the like), polymers such as those listed above, and blends or mixtures of the previously mentioned materials.
  • the segments may also be connected by a string, fiber, or wire in addition to the flexible tube.
  • the segments may be connected by adhesives or glues, such as solvent- or catalyst-curable materials including silicone glues, rubbery epoxies, and adhesives suitable for the materials forming the segments.
  • adhesives or glues such as solvent- or catalyst-curable materials including silicone glues, rubbery epoxies, and adhesives suitable for the materials forming the segments.
  • the segments of the implant may be severable, singly or in groups, such as by severing the connection between the segments.
  • the implant may be severed remotely by a user.
  • the implant may be severed mechanically, chemically, thermally, or electrically.
  • the implant may be severed while inserting it into a non-soft tissue cavity or after the implant has been inserted into a cavity.
  • the connection material connecting flexibly connected segments may be removed from one or more segments without severing the material.
  • a flexible joining material connecting the segments is a fiber
  • the fiber may be removed from the flexibly connected segments (e.g. pellets) after they have been inserted.
  • the implant may include segments that are movably connected along the axis of the implant.
  • the segments may be slideably positioned within a flexible tube.
  • the segments may be slidably connected on one or more stings, fibers, or wires. Some of the segments may be held in a fixed location while others are movable along the axis of the implant.
  • the implant may include segments of different sizes.
  • the implant may include segments of different shapes, such as substantially spherical, substantially cubic, faceted or shaped to facilitate space packing within a cavity, or of random shapes.
  • the segments may be cooperatively shaped to interlock or to interconnect to other nearby segments.
  • the implant may comprise coated segments.
  • the segments may have a medicinal coating.
  • the segments may include pellets with a coating that allows them to crosslink with each other.
  • the segments may be porous or solid.
  • the segments may be imbedded or infused with any compound, for example a therapeutic or medicinal compound so long as the segments provide distractability and stability to the body region into which they are inserted, e.g. a bone cavity.
  • the segments have a crush strength sufficient to maintain the distraction of two or more surfaces of a bone cavity.
  • the segments comprise a material selected to have a minimum adequate crush strength.
  • the segments may comprise one or more polymers, one or more metals or alloys, and one or more inorganic materials such as ceramics and inorganic oxides and phosphates.
  • the segments may comprise a variety of composite materials, e.g., layered, mixed, etc.
  • the segment materials may comprise either or both of biodegradable and non-biodegradable materials.
  • the implant may include segments of different compositions.
  • at least one of the segments includes a radiopaque material to help in visualizing the implant assembly (e.g., during insertion).
  • implants for filling hard tissue cavities having a plurality of connected segments wherein at least two of the segments are flexibly connected.
  • the segments are configured for insertion and packing into a hard tissue cavity and have a material strength allowing them to distract two or more of the hard tissue surfaces.
  • the material strength is compressive strength.
  • the segments have a compressive strength of greater than about 20 MPa.
  • the segments of the implant assemblage have a compressive strength less than cortical bone.
  • the segments of the implant assemblage have a compressive strength of between about 20 MPa and about 160 MPa.
  • the segments of the implant have a compressive strength of between about 100 and 160 MPa.
  • an implant assemblage for filling a non-soft tissue cavity comprises an implant including a plurality of flexibly connected segments configured for insertion into a bone cavity.
  • the implant segments have a crush strength sufficient to maintain the distraction of two or more bone surfaces and also to maintain a selected shape within the cavity.
  • the implant segments have a sufficient crush strength to maintain the distraction and/or shape of a non-soft tissue cavity over time.
  • the implant may be used to stabilize a body region after filling and/or distracting.
  • the implant is intended for long-term use in a body region (e.g. hard tissue cavity).
  • applicators for introducing or inserting an implant into a tissue cavity comprising a cannula with a distal end that can be inserted into the cavity.
  • a region at or near the distal end of the cannula is open to allow the passage of an implant into the cavity.
  • the applicator can connect to a feed guide at the proximal end of the cannula so that an implant (for example, an implant comprising a plurality of flexibly connected segments) may be moved within the cannula from the feed guide using a rotating driver to apply force to at least one region of the implant (e.g. one region of an implant segment).
  • the rotary driver may be located at least partly in the feed guide.
  • the rotary driver may be located at least partly in the cannula.
  • Implants compatible with this applicator include particles, fluent material, pellets, and particularly linear arrays of material (e.g. a segmented implant).
  • the implant applied by the applicator is the segmented implant assembly described herein.
  • an implant compatible with the applicator is a loose pellet or segment.
  • an implant compatible with the applicator is a quantum of any solid material desired to be packed into a tissue cavity.
  • the applicator may also include a force gauge configured to indicate the force applied by the driver to move the implant.
  • the applicator includes a display.
  • the display may indicate force applied, volume (cc) inserted, amount of implant inserted, and/or amount of implant material remaining in the applicator, for example.
  • the applicator may also include a trocar at the distal end of the cannula.
  • the application may also include a gripper at the distal end of the cannula for gripping the bone, therefore resisting ‘back out’ once the implant material (e.g. implant segments) pack and exhibit resisting force to implant material advancement.
  • the gripper may be engageable by a user.
  • the applicator may also include a switch-able gripper to resist implant material motion in either direction per user choice.
  • the applicator may also include a cutter for cutting the implant, particularly when using the applicator with implants having severable segment connections, thereby severing the connection between the connected segments.
  • the cutter may be a mechanical cutter, an electrical cutter, a chemical cutter or a thermal cutter. The cutter may be activated by an actuator controllable by a user.
  • the driver of the applicator may include any driver which actuates movement of the implant (or a part of the implant) by rotating a region of the driver that contacts at least a region of the implant.
  • the rotating driver of the applicator includes an auger.
  • an applicator can insert or remove a segmented implant assembly by engaging at least one region of a segment of the implant. Rotating the auger one direction drives the implant forward (towards the distal end of the cannula), while rotating the auger in the opposite direction drives the implant backwards (towards the proximal end of the cannula).
  • the auger may be at least partly located in the cannula of the applicator.
  • the applicator driver may comprise a cog configured to engage an implant. Rotating the cog one direction drives an implant forward (towards the distal end of the cannula), while rotating the cog in the opposite direction urges the implant back towards the proximal end of the cannula (removing them from the tissue cavity).
  • the cog is a friction wheel.
  • the applicator may also include a controller for controlling the driver.
  • the controller may be configured to activate the driver.
  • the controller may be configured to determine the direction of force applied by the driver (in the distal or proximal direction down the cannula). Applying force down the cannula in the distal direction moves an implant out of the distal end of the cannula (e.g. inserting an implant into a bone cavity); applying force down the cannula in the proximal direction moves an implant in the proximal direction (e.g., withdrawing an implant from a non-soft tissue cavity).
  • the controller may also be configured to determine the amount of force applied by the driver.
  • the controller may be configured to be manually operated by a user.
  • the feed guide of the implant may include a cartridge pre-loaded with an implant.
  • the driver may engage the distal-most portion of an implant (e.g. a segment) of the preloaded implant and apply force to drive the implant distally down the cannula.
  • the driver may also be configured to apply force in the proximal direction to withdraw the implant.
  • the applicator's distal cannula opening may be located on the distal end.
  • the distal opening of the cannula may be located more proximally than the distal tip of the cannula to aid in inserting an implant in a cavity.
  • the distal opening of the cannula is located on an angle from the distal tip of the cannula.
  • the distal opening of the cannula may be located on a side perpendicular to the long axis of the cannula.
  • a method of distracting a non-soft tissue cavity includes providing an implant for filling a bone cavity comprising a plurality of flexibly connected segments, where the segments have a crush strength sufficient to maintain the distraction of two or more tissue cavity surfaces.
  • the method of distracting a non-soft tissue cavity further includes inserting the flexibly connected segments into the bone cavity.
  • a method of filling a tissue cavity includes providing an implant for filling a cavity, and providing an applicator for introducing the implant into the cavity.
  • the applicator includes a cannula configured to pass at least a region of the implant, and a rotary driver at least partly within the cannula.
  • the method further includes inserting the flexibly connected segments into the bone cavity.
  • the methods of filling and/or distracting a bone cavity may also include using a rotating auger to drive the implant into the bone cavity.
  • the method of filling and/or distracting a non-soft tissue cavity may also include applying force to the implant to insert the implant within the bone cavity.
  • the method of filling or distracting a bone cavity may also include measuring the force applied.
  • the method of filling and/or distracting a non-soft tissue cavity may also include removing the implant once a void is created within a non-soft tissue and/or a desired elevation or expansion of a cavity has been achieved.
  • the method of filling and/or distracting a non-soft tissue cavity may be performed where the bone cavity is a fractured vertebral body. This method may further include inserting the implant into the bone cavity until the normal height or shape of the vertebral body is substantially attained.
  • the method of filling and/or distracting a non-soft tissue cavity may include providing a fluent filler (e.g. a bone cement) within the cavity.
  • a fluent filler e.g. a bone cement
  • the non-soft tissue cavity is a hard tissue cavity.
  • the non-soft tissue cavity is a bone cavity.
  • the method of filling and/or distracting a non-soft tissue cavity may also include providing a closure.
  • Suitable closures include, but are not limited to, screw-type closures, particularly screw-closures.
  • Suitable closures may also have a compaction enhancer, such as a spring element, to aid compaction and/or securing of the implant.
  • the method of filling and/or distracting a non-soft tissue cavity may also include closing the soft-tissue cavity with a closure.
  • kits for filling a hard tissue cavity including an implant and an applicator.
  • Implants appropriate for the kit include implant assemblages comprising a plurality of segments wherein at least two of the segments are flexibly connected and the implant segments are capable of distracting and providing stability to a non-soft tissue body region.
  • Applicators appropriate for the kit comprise a cannula configured to pass at least a region of the implant and a rotary driver at last partly within the cannula configured to apply force to at least a region of the implant.
  • the kits may also include fluent material (e.g. bone cement), one or more gauges (e.g. force gauge), and/or a display configured to show the status of the implant insertion.
  • kits may also include compaction tools, e.g., vibrational probes, tamps, etc. Kits may also include closures, e.g., screws, compaction screws, etc.
  • FIGS. 1A to 1 E show variations of the described implant
  • FIGS. 2A to 2 F show variations of the described implant
  • FIGS. 3A to 3 E, 3 G, 31 to 3 T show variations of the described implant
  • FIGS. 3F, 3H , 3 W and 3 X illustrate variations of interlocking segments of the described implant
  • FIGS. 4A to 4 D show variations of the described implant
  • FIG. 5 illustrates a variation of an applicator for the implant
  • FIGS. 6A to 6 C illustrate variations of the distal cannula tip of an applicator
  • FIGS. 7A and 7B show one variation of an applicator driver
  • FIG. 7C shows another variation of an applicator driver
  • FIG. 7D shows the relationship between an applicator and variations of the driver
  • FIGS. 8A to 8 C show insertion of an implant into a vertebral body
  • FIGS. 9A and 9B show a screw closure compatible with the implants and applicators described herein.
  • FIG. 9B is a schematic cross-section of the screw closure shown in FIG. 9A taken along the longitudinal plane A-A.
  • FIG. 10 shows a cutter for cutting segments of the implant as described herein.
  • reference numeral 10 generally denotes an exemplary embodiment of a segmented implant for distracting, filling, creating, or maintaining a cavity in a non-soft tissue.
  • the implant, applicator, and methods of use may be used for distracting, supporting, filling, creating and maintaining the size of virtually any non-soft tissue cavity, particularly hard tissue cavities, including but not limited to: bone separations, fractures (including compression fractures), non-unions, removed tumors, removed cysts, in conjunction with joint replacement implants, and certain fusion procedures.
  • Non-soft tissue cavities include hard tissues cavities such as cavities or voids such as bones, as well as cartilage, and bone connected to ligament and/or muscle, scar tissues, and other mineralized (e.g. calcified) tissues.
  • Non-soft tissue cavities also include tissues cavities having at least one hard surface, including tissues having mixed compositions.
  • non-soft tissue cavities include cavities abutting bone, or cavities surrounded by bone, such as cavities within the spinal disk space, cavities within the bone marrow, and cavities adjacent to bone or bone and ligament.
  • FIGS. 1A to 1 E illustrate variations of implants for distracting or filling a tissue cavity.
  • the implant 10 in each of FIGS. 1A to 1 E includes a plurality of segments (illustrated as pellets) that are flexibly joined. Segments of the segmented implants may include one or more pellets.
  • a perspective view of an implant is shown in FIG. 1A .
  • the segments 12 are shown as spherical pellets that are connected by a centrally located wire, string, or fiber 16 .
  • the joined pellets form a connected construct seen as a flexible linear array that may be inserted into a cavity to distract the cavity walls, to fill the cavity, or to provide continuing support to the cavity.
  • “distract” or “distracting” refers to the process of separating (or enlarging) the walls of a cavity, particularly a bone cavity.
  • An implant may be used to distract, to fill, to create or to maintain the size or shape of a hard tissue body cavity such as a bone cavity.
  • the described implant's segments 12 have crush strength adequate to withstand the forces required to distract and support the cavity without substantial compression or breaking of the segments.
  • Crush strength is defined as average crush load per unit cross-sectional area at which the structure will break or crack, and may be expressed in pounds per square inch or megaPascals (MPa).
  • MPa pounds per square inch or megaPascals
  • the crush strength of an individual segment pellet is a consideration for distracting a cavity. For roughly spherical pellets, force can be approximated as acting at discrete points on the surface of the sphere, so crush force may be approximated as the total force applied to crack the sphere.
  • One factor effecting crush strength is compressible strength of the material.
  • the segments comprise any solid material having an appropriate compressible strength so that the implant assemblage is able to distract, fill and support a tissue cavity without substantially deforming.
  • the segments preferably comprise biocompatible solids with high compressive strength.
  • Compressibility and incompressibility generally describe the ability of molecules in a solid to be compacted or compressed (made more dense) under an applied force and/or their ability to return to their original density after removing the applied force.
  • Compressibility of a solid may also be quantified by the bulk modulus of the substance (bulk modulus is the inverse of compressibility, and is the change in volume of a solid substance as the pressure on it is changed). A relatively incompressible material will have a higher bulk modulus than a more compressible material.
  • the compressive strength of cortical bone is approximately 166 MPa, and the compressive strength of cancellous (spongy) bone is approximately 4 MPa.
  • the implant should have a compressive strength of greater than approximately 20 MPa.
  • the implant should have a compressive strength less than cortical bone.
  • the implant has a compressive strength between about 20 and about 160 MPa.
  • the implant has a compressive strength between about 91 and about 160 MPa.
  • the implant has a compressive strength between about 100 and about 160 MPa.
  • the compressive strength of calcium sulfate is approximately 11 MPa.
  • the crush strength of the implant depends to a large extent, on the segment crush strength, which is a function of the composition, and to a lesser degree, the shape of the segment.
  • Materials with appropriate crush strength include, but are not limited to, metals, alloys, ceramics, certain inorganic oxides and phosphates, polymers, bone derived material, and combinations of these materials.
  • segment materials represent versions of the implant, and are not intended to limit the scope of the implant or segment materials.
  • the implant segment may comprise, consist of, or consist essentially of the materials identified herein.
  • Bioabsorbable (or bioerodible) and non-bioabsorbable (or non-bioerodible) material may be used in the implant separately or in combination.
  • the non-absorbable (or non-bioerodible) materials noted elsewhere provide segments and implants exhibiting a sustainable crush strength adequate to maintain the distraction of the cavity surfaces (e.g. bone cavity surfaces) over a long period of time.
  • bioabsorbable (or bioerodible) segments exhibit a reduction in crush strength over time, as the material is acted upon by the body.
  • bioabsorbable materials may also permit substantial tissue in-growth, allowing tissue to replace implant material while maintaining the distraction and supporting the filled cavity.
  • a nonabsorbable implant may be desirable.
  • Materials that are too rapidly bioabsorbed for example, calcium sulfate hemihydrate
  • segment materials because they do not maintain the cavity structure and/or distraction.
  • Metals that may be used as segment materials include, but are not limited to, biocompatible metals and alloys, such as stainless steels, gold, silver, tantalum, cobalt chromium, titanium, platinum, rhodium, rhenium, ruthenium, and other alloys thereof, combinations thereof, or other equivalent materials.
  • Ceramic materials that may be used in the segments may include, but are not limited to, alumina, carbon or tricalcium phosphate or sintered masses or single crystals of hydroxyapatite. Ceramics capable of high crush strengths may be particularly relevant. Also useful are refractory metal and semi-metal oxides (tantalum oxides, aluminum oxides), phosphates (calcium phosphates), phosphides, borides (niobium borides, tungsten borides), carbides (aluminum carbides, boron carbides, niobium carbides, silicon carbides, tantalum carbides, titanium carbides, tungsten carbides, vanadium carbides, zirconium carbides), nitrides (boron nitrides, chromium nitrides, silicon nitrides, tantalum nitrides, titanium nitrides, zirconium nitrides), silicides (tantalum silicides, tungsten silicide
  • Inorganic materials that may be used as segment materials include, but are not limited to, hardened glasses including oxides of silicon, sodium, calcium and phosphorous and combinations thereof.
  • Polymers that may be used as segment materials include, but are not limited to, elastomers (natural and synthetic rubbers, silicone rubbers), polymethyl methacrylate (PMMA), polyetheretherketone (PEEK), polymethymethacrylate (PMMA), polyglycolic acid and/or polylactic acid compounds, polyvinylchloride (PVC), polyethylene (PE, HDPE, UHMWPE, etc.), polystyrene (PS), polyesters (PET, polycaprolacton, polyglycolied, poylactide, poly-p-dixanone, poly-hydroxy-butylate), polyamides (Nylons, aromatic polyamides), polypropylene (PP), fluorocarbon polymers (PTFE, PTFCE, PVF, FEP) and other biocompatible materials.
  • Other suitable polymers include: collagen and/or collagen derivative preparations alone or in combination with other biomaterials, chitin and chitosan preparations.
  • Bone derived materials that may be used as segment materials include, but are not limited to, bone autografts, bone allografts, bone xenografts, bone-derived tissue, bone-derived collagen, and the like.
  • segment material Any combinations of these materials may be used as a segment material. Segments may include pellets of any of these materials, or combinations thereof.
  • suitable known materials acceptable for use as hard tissue implant materials include various osteogenic and osteoinductive compositions, and combinations thereof. Certain glassy carbon forms are also quite useful.
  • Segment materials may also comprise radiopaque materials to enhance visualization of the implant, or the segments may incorporate a radiopaque material as a part of a segment (e.g., coatings, dispersed, or core materials).
  • radiopaque materials include but are not limited to, barium sulfate, tungsten, bismuth compounds, tantalum, zirconium, platinum, gold, silver, stainless steel, titanium, alloys thereof, combinations thereof, or other equivalent materials for use as radiographic agents.
  • Segments may include coatings to modify the surface properties of the segments, to have a biological effect, and/or to facilitate the insertion or removal of the implant.
  • the coatings may be of any thickness.
  • the segment comprises layers of materials.
  • the segment has a hollow core.
  • a segment or segments may be coated with a therapeutic or medicinal material, such as an antibiotic. Additional medicinal materials may include, but are not limited to, anticoagulants and bone-growth promoting agents.
  • the segments may be coated with a cross-linking or bonding compound that could facilitate adhesion either between the segments, with the body region, or both.
  • the segments are coated with a cross-linker that can be activated after insertion into the bone cavity, for example, by adding an activating compound, by time delay, or by temperature.
  • the segments are coated with a lubricant.
  • the segments may comprise one or more therapeutic or medicinal materials situated away from the surface, e.g., in pores within the segments.
  • the segments may also be embedded with one or more therapeutic or medicinal materials.
  • embedding the segments with an additional material may be particularly useful when the segment comprises a bioabsorbable (bioerodible) material.
  • the segments may be used to deliver any drug or therapy.
  • Drugs which are particularly useful may include, but are not limited to, growth factors and/or growth promoters (e.g. bone derived growth factors (BDGF), bone morphogenetic protein (BMP), etc.), antibacterials, antivirals, vascularizing agents, analgesics, anticoagulants, cell and/or gene therapies, etc.
  • growth factors and/or growth promoters e.g. bone derived growth factors (BDGF), bone morphogenetic protein (BMP), etc.
  • antibacterials e.g., antivirals, vascularizing agents, analgesics, anticoagulants, cell and/or gene therapies, etc.
  • an implant including a drug is inserted at or near a wound site. After an appropriate time the implant is removed.
  • the implant may serve as a removable wound packing material.
  • the implant may be inserted with a removable drain.
  • the implant functions as a removable drain.
  • any portion of the implant may be coated with, implanted with, embedded with, or made from a therapeutic or medicinal material, including but not limited to those described herein.
  • the implant segments are connected in the implant as installed.
  • the segments may be linked together in such a way that each segment in the implant is adjacent, perhaps directly adjacent or in contact with at least one other segment. Generally, each segment in the implant is adjacent, perhaps directly adjacent or in contact with at most two other segments.
  • the assembled segments form a linear array.
  • the segments are linked in a linear array by attachment to a wire, filament, or string 16 .
  • the filament connecting the segments may comprise a separate, independent filament between each segment, or it may be a single continuous filament.
  • the filament may comprise different materials, and may be different lengths. In one version of the implant, the filament comprises one or more monofilaments.
  • the filament comprises one or more fibers.
  • the filament comprises one or more wires.
  • the filament may comprise a bioabsorbable material. The filament may be rapidly bioabsorbable because (unlike the segments) the filament is not typically load bearing in supporting the cavity.
  • the implant segments are connected in any way allowing sufficient flexibility to the resulting implant constrict so that it may be introduced into a cavity such as a bone hollow.
  • the implant segments are flexibly connected so that a segment may contact another segment upon being planted into a body region such as a bone hollow.
  • connection material may comprise, for instance, a string, fiber or wire, variously of single or multiple strands.
  • the connecting string or fiber may be flexible and allow the segments to be inserted into the treatment site.
  • Suitable filament materials include virtually any biocompatible material, including but not limited to: natural materials (e.g. cottons, silks, collagen, etc), rubbers (e.g. natural and synthetic rubbers), composite yarns (e.g. carbon fiber yarns, ceramic fibers, metallic fibers), polymers (e.g.
  • polyethylene polyethylene, polyester, polyolefine, polyethylene terephthalate, polytetrafluoroethylene, polysulfone, nylons, polylactic acids, polyglycolic acids, mixtures and copolymers of polylactic and polyglycolic acids (PGLA such as “Vicryl” from Ethicon and “Dexon” from Davis & Geck), polydioxanone, various Nylons, polypropylene, etc., and the like).
  • PGLA such as “Vicryl” from Ethicon and “Dexon” from Davis & Geck
  • Polydioxanone various Nylons
  • polypropylene etc., and the like.
  • Suture material natural and synthetic materials are examples of particularly appropriate materials.
  • the segments are adapted to connect to the filament, string or wire, for example, by having holes (through which the flexible joining material is threaded), by having attachment sites (to which the flexible joining material could be tied or otherwise attached), or by having a track or groove (which mate to the flexible joining material).
  • the segments are adherent to the string or filament by a glue, adhesive, or the like.
  • the segments are connected by adhesives or glues, such as solvent- or catalyst-curable materials including Silicone glues, rubbery epoxies, and adhesives suitable for the materials forming the segments.
  • adhesives or glues such as solvent- or catalyst-curable materials including Silicone glues, rubbery epoxies, and adhesives suitable for the materials forming the segments.
  • the segments are connected only by adhesives or glues such as those mentioned above.
  • the joining material does not itself have to be flexible, so long as it allows flexibly joined segments of an implant to “flex.”
  • the segments are linked together by a solid linker.
  • the implant is made flexible by incorporating a joint (e.g. socket type joins) between the solid linker and the segment.
  • Solid linkers may be composed of the same material as the segments. Solid linkers may be wires made of one or more filaments comprising suitably biocompatible metals or alloys, e.g., stainless steels or superelastic alloys.
  • a flexible tube may be made of virtually any material, so long as the final implant is adequately flexible to allow bending of the implant.
  • the flexible tube comprises a solid or continuous walled tube, a solid or continuous walled tube having openings in the wall, or a netting woven from string or fiber.
  • the flexible tube may comprise one or more membrane, optionally made of an expandable or a stretchable material.
  • the implant segments are linked by an expandable membrane.
  • the expandable membrane material may be a fabric that has pores allowing passage of fluids and bone growth through it.
  • the membrane could be formed of a flexible polymeric fabric e.g., high molecular weight polyethylene.
  • the flexible tube may be any material (e.g. woven, non-woven, extruded, etc) that is adequately flexible.
  • the segments within the flexible tube are also linked by a filament, wire or string.
  • the flexible joining material may comprise any suitable materials including but not limited to: polymers, (e.g., polyfluorocarbons such as the various Teflons (including PTFE and expanded PTFE—ePTFE such as is sold as GORETEX), polypropylene, polyethylene, polyoxymethylene, polycarbonate, polyesters (including polyamides such as the Nylons), polyphenylene oxide, and polyurethane) or elastomeric polymers (e.g., polymers, (e.g., polyfluorocarbons such as the various Teflons (including PTFE and expanded PTFE—ePTFE such as is sold as GORETEX), polypropylene, polyethylene, polyoxymethylene, polycarbonate, polyesters (including polyamides such as the Nylons), polyphenylene oxide, and polyurethane) or elastomeric polymers (e.g.
  • polymers e.g., polyfluorocarbons such as the various Teflons (including PTFE and expanded PTFE—ePT
  • the material used to join the segments may also have additional biological or mechanical properties.
  • the material may incorporate a therapeutic or medicinal agent for release (e.g., timed release).
  • therapeutic agents include, but are not limited to, antibiotics, analgesics, anticoagulants, bone growth enhancing agents, cells or gene therapies, etc.
  • the material may also incorporate other agents and materials, for example, radiopaque materials to aid visualizing the implant.
  • the joining material may also be severable. It may be desirable to have implants of certain lengths (e.g. a certain number of segments). It may also be desirable to have implants that are continuous, and allow the user to select their length by removing or cutting the connection between any two segments.
  • the joining material may be severable by mechanical, thermal, chemical, or electrical means.
  • the joining material is removable from some or all of the segments during or after insertion into the cavity.
  • FIGS. 1A to 4 D show different variations of the segments 12 compatible with the implant 10 .
  • the segments are all shown as spherical pellets.
  • FIG. 1B shows that the pellet size may vary.
  • FIG. 1C shows that the spacing of the segments on the joining material (shown as a filament 16 ) may vary.
  • the lengths of the implant e.g. number of pellets
  • Larger 14 segments and smaller 18 segments are arranged in the linear array. Virtually any combination of segment sizes and shapes may be used in the implant. Varying the size as shown in FIG. 1B may change the manner that the implant “packs” within a bone cavity. For example, packing of different sized segments may allow different spacing between the segments, and therefore different opportunities for tissue in-growth into the implant, different structural properties, and different loading patterns of adjacent structures.
  • Segmented implants may be configured so that the implant is securely packed into the body region (e.g. non-soft tissue cavity). Size, shape, and spacing all contribute to the packability of the implant within the body region. For example, the same implant may have segments of different sizes, shapes and spacing in order to optimize packing. Additional factors such as the ability of one or more segments to move along the linear axis of the implant may also contribute to packing.
  • body region e.g. non-soft tissue cavity
  • the size of the segments may be selected to optimize the insertion into the cavity and use of the implant applicator described below.
  • the segments may describe a range of sizes suitable for use with an applicator and/or suitable for insertion into a bone cavity of given dimensions.
  • the segments are between 1 to 40 mm in diameter.
  • the segments are between 1 to 37 mm in diameter.
  • the segments are between 1 and 10 mm in diameter.
  • the segments are between 1 and 6 mm in diameter.
  • the segments are approximately 3 mm in diameter.
  • the segment diameter is an average segment diameter.
  • the segment diameter is the maximum diameter of a segment.
  • the implant may have different inter-segment spacing.
  • FIG. 1C shows implant segments 12 arranged in a linear array in which there are larger 20 gaps and smaller 22 gaps between adjacent segments. Different arrangements of segments along the linear array may also have desirable effects on the packing behavior of the implant and the severability of the implant.
  • FIG. 1D shows a version of the implant in which the spacing between segments is extremely small 24 , potentially reducing the flexibility of the implant. However, implant flexibility may also be increased by using more elastic joining materials and potentially allow greater packing.
  • the segments may also be slideable (or partially slideable) in one (e.g. the long or linear) axis of the implant.
  • some of the segments are slideable and some of the segments are fixed to the joining material.
  • the slideable segments allow the implant to be “tensioned” by tightening the joining material, tending to stiffen the implant, perhaps to aid in anchoring the implant or distracting a bone separation, or in anchoring another implant or device.
  • the segments of the implant may also have different shapes, allowing different packing and implantation properties.
  • FIG. 2 shows examples of segments with different shapes.
  • FIGS. 2A and 2B show a schematic and perspective view of cubic segment 202 shapes with rounded edges. The parallel faces of these segments 204 allow closer packing between adjacent segments.
  • FIG. 2C is also an implant with cubic segments 206 .
  • FIG. 2D shows an implant with rectangular-shaped segments 208 .
  • FIG. 2E shows an implant with cylindrical segments 210 .
  • FIG. 2F shows an implant with a slightly more complex segment shape having more than six faces. Virtually any shape that will allow the implant to fill a cavity to distract a cavity, create a cavity, and/or tighten or secure another implant, may be used.
  • “fill” means that the bone cavity is supported in three dimensions.
  • implant assemblage described herein describes space-filling implants (for filling, distracting, void creation, etc.).
  • implant segments may be adapted specifically to fill three dimensional spaces.
  • the implant may have segments of different shapes, including shapes that are configured to communicate with each other, for example, to interlock.
  • interlocking shapes are shown in FIG. 3A to 3 X.
  • the bullet-shaped 302 segments have a front end 306 and a back end 304 , and at least some of them may slide along the axis of the linear array of the implant 10 .
  • the back end of one segment can engage with the front end of an adjacent segment as shown 310 .
  • the segments may also be shaped to engage non-adjacent segments, for example, by having side faces that engage with other segments.
  • the segments may also be shaped to engage with the walls of the cavity.
  • the segments have a bullet shape with a conical nose 320 , a cylindrical body 322 , a conical recessed rear 324 , with linear and rotational inner-locking features, 326 .
  • FIG. 3F shows a frontal view of two segments interlocked;
  • FIGS. 3E and 3G show linked segments.
  • the external surface has an advancing helical ramp 330 for assistance in advancement of a segment relative to adjacent segments when an axial load and rotational load are simultaneously applied to the implant. These features aid in compacting and elevating the hard tissue around the cavity being filled.
  • the flexible rear extension 334 with external round 332 increase the likelihood of interstitial placement.
  • the implant comprises common segment shapes that have six over-lapping male spherical ball geometries creating a complex external multiply spherical surface 340 .
  • FIG. 3H shows three segments interacting.
  • FIGS. 31 to 3 K show linked segments. These segments may interlock because of the spheres nesting within the adjacent segments' depression created by the curved (e.g., semi-spherical) segment surfaces creating multiple coincident mating tangency points 342 .
  • the segments can be arranged along the connective member in a common entry and exit orientation 344 as in FIGS. 31 and 3 K or an alternating pattern 346 as in FIG. 3J .
  • the implant 10 consists of two different segment shapes alternating and repeating along the connective member.
  • the first segment 350 is similar to the segment described in FIGS. 3H to 3 K consisting of six over-lapping male spherical ball geometries 340 .
  • the second segment 352 is a segment that has six female spherical recesses 354 that will enable tight interlocking and packing of the implant within the cavity.
  • the implant 10 consists of two different segment shapes alternating and repeating along the connective member.
  • the first segment 352 is similar to the segment in FIGS. 3L and 3M .
  • the second segment 356 is spherical.
  • the configuration of this implant affords a tight packing with numerous mating receptacles open to accept the spherical segments and thus may be less dependent on packing order than other versions.
  • the implant 10 consists of two different segment shapes alternating and repeating along the connective member.
  • the first segment 360 is arrowhead-shaped with front 361 and rear faces 362 pointed and made up of two angled faces.
  • the second segment 365 is an elongated arrowhead with otherwise similar front and rear faces.
  • the segments can be arranged in a manner that will allow a control of the desired mating and direction that the segments will follow once the segments leave the delivery cannula and meet resistance within the cavity. The direction change will be dictated by slight angular differences between the mating arrowheads.
  • the implant comprises common segments shaped like coins 370 with conical spikes 372 protruding from the faces of the coins.
  • the coin faces 374 have holes through them 376 that facilitates stacking of the coins, and the spikes are conically shaped to facilitate the self-centering stacking of the segments.
  • the stacked coins create common tangency points 180 degrees opposed from each other that create two parallel planes of support.
  • the segments have a cross-sectional area that is rectangular with various previously described front and rear geometries.
  • the segment cross-section is triangular with various previously described front and rear geometries.
  • the segments can have polygonal cross-sections, for example, hexagonal, octagonal, etc.
  • the aspect ratio of the segments' length relative to the segments' height and width can be varied in order to allow variations of stacking, packing, steering or elevating, depending on the desired result.
  • Implant segments shown are illustrated as substantially ‘solid.’ Implant segments may also be hollow or have passages for either the joining material or additional material such as a fluent material (e.g. cement). Implant segments may also be porous, for example, to facilitate tissue in-growth, or reduce overall segment weight.
  • FIGS. 4A and 4B show an implant that has passages 402 .
  • FIGS. 4C and 4D show an implant with pores, or hollow spaces, 404 that do not span the length of the segment. In one version the pores 404 are dimples.
  • Implant segments may also be used with a fluent material.
  • fluent materials include cements (e.g. bone cements, synthetic bone graft cements, etc.), therapeutics (e.g. bone morphogenic proteins, cells or gene therapies, bone growth factors), or combinations or substitutions thereof.
  • the fluent material is applied into the cavity after the implant has been inserted.
  • the fluent material is added before the implant.
  • the fluent material is added concurrent with insertion of the implant.
  • the fluent material is inserted into the flexible joining material (e.g. a flexible tube around the implant segments). The flexible tube may be impermeable to the fluent material, keeping it substantially contained within the bone cavity.
  • An applicator may be provided to insert a material such as the implant into a cavity to fill or distract the cavity, and/or to create or expand a cavity.
  • the applicators described herein may be used to insert or remove an implant described herein.
  • the applicators described herein may be used with any compatible material, including but not limited to individual pellets, fluent materials, and linear arrays of any materials desirable for insertion or removal from the body.
  • FIG. 5 shows an applicator 50 useful for inserting an implant into a cavity (e.g. a bone cavity).
  • the applicator has a cannula 502 having a distal and a proximal end and a lumen 506 with a handle 505 to aid in controlling the distal end orientation of the cannula.
  • An implant 10 can be inserted into a bone cavity from the distal end of the cannula through an opening at the distal end 508 .
  • a feed guide 504 connects to the proximal end of the cannula.
  • the feed guide can insert or withdraw the implant in and out of the lumen of the cannula through an opening in the proximal end of the cannula.
  • An applicator may also have a handle 510 or a feed chamber to store implant material.
  • the cannula may be an elongated tubular member having a lumen or passage to facilitate the movement of an implant through the cannula.
  • the inner lumen of the cannula may be configured to bold and allow the passage of an implant.
  • the inner surface of the lumen may be size-matched to the diameter of the implant.
  • the size of the implant e.g. segment size
  • the inner surface of the cannula may include a material that facilitates the movement of an implant (for example, a friction-reducing coating or a lubricant).
  • the cannula may also allow the passage of a secondary filling material (e.g. a fluent material) before, after and/or during the insertion of an implant.
  • An applicator cannula may be flexible or rigid.
  • the cannula may also have a fastener towards the distal end to hold the cannula in place on the outer surface of the bone being treated.
  • a fastener or gripper near the distal end of the cannula may be used to aid the user in holding an applicator steady while inserting the implant to distract a bone cavity.
  • the distal end of the cannula is threaded to facilitate insertion into, for example, the pedicle of a vertebra.
  • the threads may further serve as a fastener or gripper.
  • the distal end of an applicator cannula may be adapted to aid in penetrating and/or distracting a bone cavity.
  • the distal end of the cannula includes a trocar.
  • the distal end of the cannula includes a spreader to separate bone surfaces and aid insertion of an implant.
  • the distal opening of an applicator cannula may be located at the distal-most part of the cannula, or it may be located all or partly on the perpendicular axis of the cannula (e.g. on the side of the cannula, or at an angle), allowing more directional filling of a bone cavity by an applicator.
  • FIG. 6A shows the distal end of an applicator cannula in which the distal opening is the extreme distal end of the cannula.
  • the implant 10 exits the applicator 502 through the cannula's distal opening 508 , and begins to fill the bone cavity 602 , as shown.
  • FIG. 6B shows the distal end of an applicator cannula in which the distal opening 508 is at a 45° angle from the long axis of the cannula.
  • the implant 10 is inserted into the bone cavity 602 at a 45° angle relative to the cannula.
  • FIG. 6C shows the distal end of an applicator cannula in which the distal opening 508 is at a 90° angle from the long axis of the cannula.
  • the implant 10 is inserted into the bone cavity 602 perpendicular to the cannula.
  • the outer surface of the cannula may have graduated indicia that provide depth of penetration information during insertion by the user.
  • An applicator may be operated with a guide cannula.
  • an applicator cannula fits into the lumen of a guide cannula; the guide cannula is used to locate and prepare the bone cavity for insertion of the implant by an applicator.
  • an applicator cannula locks into a guide cannula and the guide cannula is secured to the bone that is being operated upon.
  • An applicator may also include a cutter configured to sever the implant by removing the connection between two of the segments in the linear array of an implant.
  • An example of a cutter 1001 is shown in FIG. 10 .
  • the cutter may be located at least partly at the distal end of the cannula.
  • the cutter may be located at least partly within a region of the inner lumen of the cannula.
  • the cutter is located at an outer surface 509 of the distal end of an applicator cannula, adjacent to the distal opening 508 .
  • Rotating an external sheath drives a cutting edge across the cannula's distal opening thereby severing the connection between implant segments.
  • the cutter is actuated by rotating the external sheath 510 .
  • the cutter may be a mechanical cutter capable of applying force to sever the implant. Additional examples of mechanical cutters include but are not limited to, a blade, a scissor-like cutter, and the like.
  • the cutter may be an electrical cutter capable of applying electrical energy to sever the implant.
  • the cutter may be a chemical cutter capable of chemically severing the implant, for example, by applying a compound that reacts with the joining material of the implant.
  • the cutter may be a thermal cutter which acts, for example, by heating the material connecting the segments causing it to release.
  • the cutter may be any combination of mechanical, electrical, chemical and thermal cutter.
  • the cutter may be controlled by a cutting controller. The cutting controller may be controlled directly by the user, or as part of a system.
  • An applicator may further comprise a driver for applying force to the implant in order to move the implant within the cannula to insert the implant into or withdraw the implant from a bone cavity.
  • An applicator may be a mechanical drive (e.g. linear driver, a rotary driver, etc.), a pneumatic driver, hydraulic driver, a magnetic driver, an electric driver, or any combination thereof. Examples of drivers include, but are not limited to, rotating auger drivers, and rotating cog drivers.
  • the driver is preferably a rotatable driver. Force generated by the driver is transferred to the implant (or a part of the implant), moving the implant within the cannula, in either the proximal or distal direction.
  • the driver is located at least partly within the cannula.
  • the driver is located at least partly within the feed guide.
  • An introducer member may comprise a driver as described here.
  • FIGS. 7A and 7B illustrate a cog driver 702 engaging at least part of an implant 10 .
  • the implant is moved in the complimentary direction because segments of the implant 12 have engaged with the cog teeth 712 and are pulled or pushed in the direction of the rotation as shown. Because the segments of the implant are connected, movement of at least one of the segments results in moving the implant.
  • An applicator driver may comprise more than one cog, or a cog and other driver components.
  • FIGS. 7A and 7B also show the driver (a cog) at least partly in the lumen 506 of the applicator cannula 502 .
  • the cog is a friction wheel.
  • an outer surface of the friction wheel driver engages one or more regions of an implant (e.g. a segment).
  • the cog is a friction wheel, it may not have “teeth” which engage the implant.
  • FIG. 7C shows a rotating auger driver.
  • the auger is a continuously threaded rod 720 ; the implant's segments 12 fit within the threading gaps 722 .
  • the rotating auger is located at least partly within the cannula. At least some of the implant segments are seated in the auger and are prevented from rotating around the long axis of the auger, for example by the geometry of the cannula or chamber surrounding the auger. Rotating the auger forces the segments (and thus the implant) to move down the long axis of the rod. Reversing the direction of rotation of the auger changes the direction that the implant moves.
  • An applicator driver may comprise more than one auger, or an auger and other driver components.
  • a driver may also be at least partially within the cannula.
  • the cannula lumen contains a rotatable auger.
  • the driver is entirely located within the cannula.
  • a driver may be located at the proximal end of the applicator cannula, as indicated in FIG. 7D . Force applied by the driver moves an implant within the cannula, into or out of the bone cavity 602 .
  • the driver may be capable of moving an implant into or out of a bone cavity by changing the direction that force is applied to the implant.
  • An applicator driver may be attached to, integral to, or coupled to a feed guide.
  • An applicator may include a feed guide 504 for loading the applicator cannula with an implant.
  • a feed guide may be coupled to the proximal end of the cannula as shown in FIG. 5 .
  • a feed guide may comprise a chamber, a cartridge, a track, or other such structure in which an implant can be held. The feed guide may orient the implant for inserting or withdrawing from the cannula. The feed guide may also assist in engaging an implant with a driver.
  • a feed guide is preloaded with an implant.
  • the feed guide may be a pre-loaded cartridge holding an implant.
  • Such a feed guide may be separately sterilized and interchangeable between applicators.
  • the feed guide includes a track configured to guide an implant.
  • a track may keep the implant from jamming or tangling within the applicator.
  • a track may further allow a long implant to be stored compactly.
  • the feed guide may also help regulate the amount of force needed to move the implant.
  • the feed guide may be configured to engage an implant into a driver.
  • a driver is at least partly contained within the feed guide.
  • the feed guide attaches to a driver.
  • the feed guide is configured as an opening in the cannula into which an implant may be manually inserted.
  • An applicator for inserting an implant may also include a controller for controlling the applicator driver.
  • a controller may be manually or automatically operated.
  • a controller may control the force applied by the driver.
  • the controller may control the rate of insertion/withdrawal of an implant.
  • a controller may control the direction that force is applied (e.g. forward/reverse).
  • a controller may be operated by a user.
  • An applicator may also include detectors or indicators for registering implant and applicator parameters.
  • an applicator includes a detector for determining and/or indicating the force applied by the applicator to insert or withdraw an implant.
  • an implant may be applied using a force adequate to insure that the implant is properly positioned within the cavity. Thus it may be important to monitor force and pressure applied to the implant or volume of implants, and/or the tissue. Feedback mechanisms may also be used to regulate the actions of the applicator, including the force applied by the applicator.
  • An applicator may also include detectors or indicators for indicating the status of the implant.
  • a sensor may indicate the amount of implant inserted, the amount of implant left in the applicator, and/or the position of the implant within the applicator or the bone cavity.
  • the applicator includes a force gauge for detecting the force applied by the applicator on the implant being inserted.
  • the applicator may also include a display capable of indicating a status. Examples of the kinds of status that the display could indicate include, but are not limited to, force applied, total volume, linear feed rate, volume feed rate, amount of implant material inserted, and/or amount of implant material remaining in the applicator.
  • the application described herein may be used with any compatible implant, including but not limited to discrete (loose) pellets or segments of any material (including segments or pellets as described herein), fluent materials (e.g. cements, bone fillers, etc.), and any implant, particularly those comprising a linear array of elements.
  • Such applicators may also be useful for filling and distracting bone cavities.
  • the applicator comprises a cannula and a driver where the driver further comprises an auger or a cog.
  • the auger or cog propels the discrete pellet, fluent material, or combination of implants, discrete pellets and/or fluent material, down the cannula in order to fill or distract the cavity into which the cannula has been inserted. It may be particularly advantageous to use the applicator with flexibly connected implants, including those described herein, because the applicator may be used to controllably insert and remove flexibly connected implants.
  • the implants and/or applicators described herein may be used to distract an existing body region.
  • the body region is a non-soft tissue cavity.
  • the body region is a hard tissue cavity, such as a bone cavity arising from a tumor, injury or surgery.
  • FIG. 8A to 8 C shows an example of inserting an implant into a bone cavity 602 .
  • the bone cavity is part of a vertebral compression fracture.
  • Other examples of bone disorders and fractures which may be distracted include, but are not limited to, tibial plateau fractures, femoral head necrosis, osteonecrosis of the hip, knee injury, etc.
  • FIG. 8A shows an applicator 502 inserted into a vertebral compression fracture 804 through the vertebral pedicle 808 ; the applicator is inserting an implant 10 into the collapsed region.
  • the implant is shown as a linear array of pellets 12 . These segments of the implant may be continuously added to the bone cavity to first fill and pack within the cavity.
  • FIG. 8B shows the bone cavity after it has been distracted by application of the implant. While some of the individual segments of the implant remain joined and connected to the applicator, the user may adjust the amount of distraction by removing and/or adding segments of the implant until the shape of the collapsed vertebra has been set to an optimal shape.
  • the optimal shape is the natural (uncompressed) position.
  • an implant Once an implant is inserted, it may be compacted within the body cavity by packing the individual segments. Any appropriate device or method may be used to compact the implant segments. These include utilizing vibration (e.g. ultrasonics, through the delivery of a second cannula or probe, for example, through the second pedicle) or physical compaction (e.g. using a curved probe or tamp through a pedicle path or with an internal or external sheath. Compaction may be particularly useful when filling hard tissue cavities such as bone cavities.
  • vibration e.g. ultrasonics, through the delivery of a second cannula or probe, for example, through the second pedicle
  • physical compaction e.g. using a curved probe or tamp through a pedicle path or with an internal or external sheath. Compaction may be particularly useful when filling hard tissue cavities such as bone cavities.
  • a cavity opening through which an implant was inserted may be closed and/or sealed to maintain the compaction, and to prevent the loss of implant material from the cavity.
  • a user may cut the implant and remove the applicator cannula.
  • FIG. 8C shows that the user may also block 802 or otherwise close the opening into the bone cavity, for example, by the local application of a cement material through the cannula (or another cannula).
  • Other methods for closing the void may include tapered pins, screws with blunt head and tip, or even screws with compressible tip members such as a spring to absorb, minimize, or prevent settling of the implant.
  • FIG. 9 shows an example of a screw closure 900 for use with an implant that comprises a spring 903 for applying pressure to an implant within a cavity.
  • the screw includes threads 905 .
  • the screw closure is screwed into the opening through which the implant was inserted.
  • the spring-loaded tip 910 of the screw is blunt, and applies pressure onto the inserted implant.
  • the screw can minimize any settling or further compaction that may occur after the insertion of the implant by applying pressure to help keep the implant compacted.
  • implants and applicators as described herein may be used for filling cavities that do not require distraction.
  • a secondary filling material may also be used.
  • fluent bone filler may also be used to fill the cavity in addition to the solid implant.
  • the combination of hard segment and fluid filler may provide added stability.
  • the fluent material e.g. cement
  • the implant segments may reduce leakage of additional bone filler (such as bone cement) by blocking openings in the cavity that fluent filler would otherwise leak through. Less fluent filler may be needed if it is used after the solid implant, further reducing the risk of harmful leakage.
  • secondary filling material may be applied in conjunction with an expandable membrane around the implant segments, preventing any substantial leakage from the bone cavity.
  • an implant may be used to create or enlarge a cavity.
  • an implant may be inserted into a body region void to expand the void. The surfaces of the body region void will be compressed by the implant, causing it to expand. After removing the implant, the cavity may remain expanded, facilitating further procedures (e.g. insertion of additional devices or materials, etc).
  • a hard tissue cavity such as a bone cavity may be enlarged or reshaped by inserting an implant which can then be removed or left within the non-soft tissue cavity.
  • the implant is a permanent implant for filling and/or distracting body regions to provide long-term support and shape to the body region.
  • the implant is intended to be used for a period of at least six months.
  • the implant is intended to be used for a period of at least a year.
  • the implant is intended to be used for a period of many years. Implants intended for long-term use may be made of materials which do not lose a significant amount of their strength or shape over time after implantation.
  • the implants and/or applicators described herein may be used to secure another implant.
  • a bone screw may be inserted into an implant filling a bone cavity. This may be particularly useful when it is desirable to use a bone screw in weakened (e.g. osteoporotic or necrotic) bone tissue.
  • the implant described herein may be inserted to secure an existing implant.
  • the described implants, applicators and methods of using them may be used to fill and/or distract a non-soft tissue including a bone cavity, in particular a vertebral compression fracture.
  • the implant may achieve many advantages not realized with other devices intended to fill and/or distract a bone cavity.
  • the implant described herein substantially reduces the chance of harmful leakage of bone filler material and provides three-dimensional support to the bone cavity.
  • the implant, applicator and methods described herein may be used on any tissue cavity, including but not limited to those arising from trauma, fractures, non-unions, tumors, cysts, created by a pathology or by the action of a surgeon. It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the described device as specifically shown here without departing from the spirit or scope of that broader disclosure. The various examples are, therefore, to be considered in all respects as illustrative and not restrictive.

Abstract

An implant for filling and/or distracting a body region, particularly a non-soft tissue cavity, has a plurality of segments wherein at least two of the segments are flexibly connected. The segments have a crush-strength sufficient to create and/or maintain the distraction of two or more non-soft tissue body surfaces, and to maintain the stability of the body region. The implant may be inserted into a cavity by an applicator having a cannula with a distal opening, and a rotary driver for applying force to move the implant within the cannula.

Description

    FIELD
  • Described here are non-soft tissue cavity implants, implant applicators, delivery devices, and methods for using them. In particular, the description relates to implants having a plurality of flexibly connected segments having a strength sufficient to support, to fill, to create, to maintain, or to distract a bone cavity such as might be found in a fractured vertebral body, and methods and devices for inserting implants into non-soft tissue cavities such as bone cavities.
  • BACKGROUND
  • Proper treatment of orthopedic conditions such as trauma, fractures, non-unions, tumors, cysts, and certain fusion procedures may involve filling a cavity that has been created by the pathology itself or by the action of a surgeon. Often the cavities are compressed, and require that the surfaces of the cavity be distracted from one another and then supported to return the bone structure to its anatomic position and form. Furthermore, because non-soft tissues such as bone have a structural and support role in the body, it is critical that such cavities be repaired to allow reliable strength and support.
  • Compression fractures are one type of hard tissue injuries belonging to a class of conditions that may be treated using devices and methods for separating, distracting, and supporting a fractured bone. For example, vertebral compression fractures are crushing injuries to one or more vertebra. A vertebral compression injury may be the result of a trauma to the spine, an underlying medical condition, or a combination of a trauma and an underlying condition. Osteoporosis and metastatic cancers are common medical conditions that also contribute to vertebral compression fractures because they weaken spinal bone, predisposing it to compressive injury.
  • Osteoporosis is a degenerative disease that reduces bone density, and makes bone more prone to fractures such as compression fractures. An osteoporosis-weakened bone can collapse during even normal activity. According to the National Institute of Health, vertebral compression fractures are the most common type of osteoporotic fractures.
  • Vertebral fractures may be painful and may deform the shape of the spine, resulting in unhealthy pressure on other parts of the body, loss of height, and changes in the body's center of gravity. Untreated, such changes and the resulting discomfort can become permanent, since the bone heals without expanding the compression.
  • Existing methods of treating bone injuries such as compression fractures and bone voids may involve highly invasive or inadequate treatments. For example, one method of treatment is percutaneous vertebroplasty. Vertebroplasty involves injecting bone filler (such as bone cement) into the collapsed vertebra to stabilize and strengthen the crushed bone. In vertebroplasty, physicians typically insert a small diameter guide wire or needle along the pedicle path intended for the bone filler delivery needle. The guide wire is advanced into the vertebral body under fluoroscopic guidance to the delivery point within the vertebrae. The access channel into the vertebra may be enlarged to accommodate the delivery tube. In some cases, the delivery tube is placed directly into a vertebral body and forms its own opening. In other cases, an access cannula is placed over the guide wire and advanced into the vertebral body. In both cases, a hollow needle or similar tube is placed into the vertebral body and used to deliver the bone filler into the vertebra.
  • When filling a bone cavity with bone filler using traditional vertebroplasty, fillers with lower viscosities may leak. Further, even fillers having low viscosities may require the application of a high pressure to disperse the bone filler throughout the vertebral body. However, application of high pressure also increases the risk of bone filler extravasation from the vertebral body. Conversely, injecting a bone filler having a higher viscosity may provide an even greater risk of “leaking” bone filler into sensitive adjacent body areas. Leaks or extrusion of the bone filler may be dangerous to a patient's health. For example, posterior extravasation from a vertebral body may cause spinal cord trauma, perhaps resulting in paralysis. Risk of leakage is even more acute when a bone filler is applied under pressure to expand a compression fracture, especially if the fracture has begun healing and requires substantial force to distract the cavity surfaces.
  • Furthermore, most bone cements and bone fillers are difficult to remove or to adjust. Removal and adjustment may be important when distracting a bone cavity. For example, removing a precise amount of bone filler may allow a surgeon to adjust the level of distraction of a vertebral compression fracture and correct the shape of the compressed bone. Many bone cements, once set, are difficult or impossible to remove without further, highly invasive, surgery. Even if the removal is attempted prior to the expiration of the setting time, the materials may have non-Newtonian flow characteristics requiring a substantial removal vacuum to achieve an initial and sudden movement.
  • The implant could be utilized in any area of non-soft tissue where the filling of a cavity with stability and control is desired, for example, intervetebral disc repair, hip, tibia, and other areas of bone displacement.
  • In addition to traditional bone cements, a handful of other bone cavity filling materials have been suggested. In particular, biodegradable and/or bioabsorbable bone-filling devices have been suggested. For example, U.S. Pat. No. 5,756,127 to Grisoni et al. describes a bioresorbable string of calcium sulfate hemihydrate (Plaster of Paris) beads and a means for producing these beads. However, the Grisoni device is not intended for distracting a non-soft tissue cavity, and has many disadvantages. Calcium sulfate hemihydrate (Plaster of Paris) and similar materials have low crush strength, making them unreliable as materials to distract and later support a bone cavity, particularly during the early stages of the healing process. Filling materials that are readily compressed or crushed, may shift within, or exit the bone cavity altogether, leading to detrimental changes in the shape of the corrected bone. Materials with low crush strength (particularly those materials having crush strengths less than that of normal bone) are poor choices in withstanding the stress of distracting the bone surfaces, and may be unable to maintain the distracted shape of the bone after filling a bone cavity. Similar materials are the subjects of U.S. Pat. No. 6,579,533 to Tormala et al.
  • U.S. Pat. No. 5,702,454 to Baumgartner describes an implant made of an elastic plastic for implanting into an intervertebral disk. Because the Baumgartner implant is elastic, it may be less effective for filling and distracting body cavities benefiting from implants having some stiffness, such as non-soft tissue cavities. This is particularly true where sustained distraction is desired.
  • U.S. Pat. No. 6,595,998 to Johnson et al. describes a tissue distraction device in which wafers are inserted to distract a tissue cavity by forming a wafer stack within the cavity. However, Johnson's column of wafers is not amenable to providing uniform support to all surfaces of a bone cavity, when such support is needed. For example, a tissue cavity supported or distracted on all sides of the cavity may be more stable.
  • U.S. Pat. No. 5,958,465 to Klemm et al. describes a method and apparatus for making a drug containing implants in the form of a string of beads comprising chains of small drug-containing plastic bodies arranged in series on a surgical wire or thread. Similar drug implanted beads-on-a-string are described in U.S. Pat. No. 6,183,768 to Harle and German Patents 2320373 to Klemm and 2651441 to Heusser. The Klemm, Harle, and Heusser implants are designed for drug delivery, and are embedded with one or more drugs which are released from the plastic (e.g. PMMA) beads (also called “corpuscles”). Thus, these implants may be limited in strength and durability because of the inclusion of a releasable drug, as well as the properties and shape of the implant beads.
  • In any event, none of the cited documents show the device and methods disclosed below.
  • BRIEF SUMMARY
  • Broadly, described here are segmented implants for filling a non-soft tissue cavity, applicators for inserting implants, and methods of using the segmented implants and applicators to fill and/or distract tissue cavities. In particular, the implants described here may be used for filling and/or distracting non-soft tissue cavities such as a bone cavity. Generally, the segmented implants described here comprise a plurality of segments, where at least two of the segments are flexibly connected, and configured for insertion into a body region. The segments provide implant segment distractibility to the body region, and stability to the body region into which they are introduced. In some variations of the implant described herein, the segments have sufficient material strength to distract two or more non-soft tissue surfaces. In some versions, the material strength is crush strength, so that the segments of an implant have sufficient crush strength to allow and sustain the distraction of non-soft tissue surfaces. Thus, the implant is inserted into a cavity to distract, to expand, to reduce, or to support the cavity, typically filling the cavity and maintaining a desired shape.
  • At least a portion of the segments of the implant may be configured so that the implant may be introduced into a body region by engaging a rotating introducer member. For example, a rotatable driver may be used to introduce the segments of the implant into a body region using an applicator as described herein. In some versions, the segments are configured as pellets.
  • The implant may also include a fluent material (such as bone cement). Thus, for example, the fluent material may be added to a bone cavity that has been distracted by the flexibly connected segments of the implant. The segments may also include a channel or channels to facilitate the passage of a fluent material, for example a bone cement that may eventually harden.
  • Two or more of the implant segments may be connected in any way allowing sufficient flexibility so that the implant may be introduced into body region such as a bone hollow. The implant segments may include a connection material for connecting segments of the implant. Connection material may comprise, for instance, a string, fiber or wire, variously of single or multiple strands. The connecting string, fiber or wire may be flexible to allow the segments to be inserted into the chosen treatment site. Suitable examples of fibers include those used as suture materials, biodegradable or not, e.g., polylactic acids, polyglycolic acids, mixtures and copolymers of polylactic and polyglycolic acids (PGLA such as “Vicryl” from Ethicon and “Dexon” from Davis & Geck), polydioxanone, various Nylons, polypropylene, silk, etc.). In this variation, the segments may comprise pellets with openings for stringing or be made adherent to a string, fiber or wire by means of manufacturing, glue, adhesive, or the like, or by simply placing the glue between the pellets. The wires may comprise one or more filaments comprising suitably biocompatible metals or alloys, e.g., stainless steels or superelastic alloys.
  • The segments may be connected by placement within a flexible tube, variously a solid or continuous walled tube, a solid or continuous walled tube having openings in the wall, or a netting woven from string or fiber. The flexible tube may comprise one or more membranes, optionally an expandable or a stretchable material. Suitable materials include polymers, (e.g., polyfluorocarbons such as the various Teflons (including PTFE and expanded PTFE—ePTFE such as is sold as GORETEX), polypropylene, polyethylene, polyoxymethylene, polycarbonate, polyesters (including polyamides such as the Nylons), polyphenylene oxide, and polyurethane) or elastomeric polymers (e.g. various Silicones, natural rubber, butadiene-styrene rubber, carboxylic butadiene-styrene, butadiene-acrylonitrile rubber, carboxylic butadiene-acrylonitrile rubber, chlorobutadiene rubber, polybutadiene rubber, silicone rubbers, and acrylate rubbers, perhaps vulcanized, and other elastomeric materials) or a composite material. The expandable membrane may optionally be filled, for example with a fluent material or a bone cement, before or after the implant has been inserted into the bone cavity. The flexible tube may comprise a woven or non-woven material of non-synthetic materials (e.g. cotton, silk, and the like), polymers such as those listed above, and blends or mixtures of the previously mentioned materials. The segments may also be connected by a string, fiber, or wire in addition to the flexible tube.
  • The segments may be connected by adhesives or glues, such as solvent- or catalyst-curable materials including silicone glues, rubbery epoxies, and adhesives suitable for the materials forming the segments.
  • The segments of the implant may be severable, singly or in groups, such as by severing the connection between the segments. The implant may be severed remotely by a user. The implant may be severed mechanically, chemically, thermally, or electrically. The implant may be severed while inserting it into a non-soft tissue cavity or after the implant has been inserted into a cavity. In one version, the connection material connecting flexibly connected segments may be removed from one or more segments without severing the material. For example, when a flexible joining material connecting the segments is a fiber, the fiber may be removed from the flexibly connected segments (e.g. pellets) after they have been inserted.
  • The implant may include segments that are movably connected along the axis of the implant. The segments may be slideably positioned within a flexible tube. The segments may be slidably connected on one or more stings, fibers, or wires. Some of the segments may be held in a fixed location while others are movable along the axis of the implant.
  • The implant may include segments of different sizes. The implant may include segments of different shapes, such as substantially spherical, substantially cubic, faceted or shaped to facilitate space packing within a cavity, or of random shapes. The segments may be cooperatively shaped to interlock or to interconnect to other nearby segments.
  • The implant may comprise coated segments. The segments may have a medicinal coating. The segments may include pellets with a coating that allows them to crosslink with each other. The segments may be porous or solid. The segments may be imbedded or infused with any compound, for example a therapeutic or medicinal compound so long as the segments provide distractability and stability to the body region into which they are inserted, e.g. a bone cavity.
  • In some variations of the implant, the segments have a crush strength sufficient to maintain the distraction of two or more surfaces of a bone cavity. In such variation, the segments comprise a material selected to have a minimum adequate crush strength. In any case, the segments may comprise one or more polymers, one or more metals or alloys, and one or more inorganic materials such as ceramics and inorganic oxides and phosphates. The segments may comprise a variety of composite materials, e.g., layered, mixed, etc. The segment materials may comprise either or both of biodegradable and non-biodegradable materials. The implant may include segments of different compositions. In one version, at least one of the segments includes a radiopaque material to help in visualizing the implant assembly (e.g., during insertion).
  • Also described herein are implants for filling hard tissue cavities having a plurality of connected segments wherein at least two of the segments are flexibly connected. The segments are configured for insertion and packing into a hard tissue cavity and have a material strength allowing them to distract two or more of the hard tissue surfaces. In one version, the material strength is compressive strength. In one version, the segments have a compressive strength of greater than about 20 MPa. In one version, the segments of the implant assemblage have a compressive strength less than cortical bone. In one version, the segments of the implant assemblage have a compressive strength of between about 20 MPa and about 160 MPa. In one version, the segments of the implant have a compressive strength of between about 100 and 160 MPa.
  • In one version, an implant assemblage for filling a non-soft tissue cavity comprises an implant including a plurality of flexibly connected segments configured for insertion into a bone cavity. The implant segments have a crush strength sufficient to maintain the distraction of two or more bone surfaces and also to maintain a selected shape within the cavity. In one version, the implant segments have a sufficient crush strength to maintain the distraction and/or shape of a non-soft tissue cavity over time. Thus, the implant may be used to stabilize a body region after filling and/or distracting. In one version, the implant is intended for long-term use in a body region (e.g. hard tissue cavity).
  • Also described herein are applicators for introducing or inserting an implant into a tissue cavity comprising a cannula with a distal end that can be inserted into the cavity. A region at or near the distal end of the cannula is open to allow the passage of an implant into the cavity. The applicator can connect to a feed guide at the proximal end of the cannula so that an implant (for example, an implant comprising a plurality of flexibly connected segments) may be moved within the cannula from the feed guide using a rotating driver to apply force to at least one region of the implant (e.g. one region of an implant segment). The rotary driver may be located at least partly in the feed guide. The rotary driver may be located at least partly in the cannula.
  • Implants compatible with this applicator include particles, fluent material, pellets, and particularly linear arrays of material (e.g. a segmented implant). In one version, the implant applied by the applicator is the segmented implant assembly described herein. In one version, an implant compatible with the applicator is a loose pellet or segment. In one version, an implant compatible with the applicator is a quantum of any solid material desired to be packed into a tissue cavity.
  • The applicator may also include a force gauge configured to indicate the force applied by the driver to move the implant. In one version, the applicator includes a display. The display may indicate force applied, volume (cc) inserted, amount of implant inserted, and/or amount of implant material remaining in the applicator, for example.
  • The applicator may also include a trocar at the distal end of the cannula. The application may also include a gripper at the distal end of the cannula for gripping the bone, therefore resisting ‘back out’ once the implant material (e.g. implant segments) pack and exhibit resisting force to implant material advancement. The gripper may be engageable by a user.
  • The applicator may also include a switch-able gripper to resist implant material motion in either direction per user choice. The applicator may also include a cutter for cutting the implant, particularly when using the applicator with implants having severable segment connections, thereby severing the connection between the connected segments. The cutter may be a mechanical cutter, an electrical cutter, a chemical cutter or a thermal cutter. The cutter may be activated by an actuator controllable by a user.
  • The driver of the applicator may include any driver which actuates movement of the implant (or a part of the implant) by rotating a region of the driver that contacts at least a region of the implant. In one version, the rotating driver of the applicator includes an auger. For example, an applicator can insert or remove a segmented implant assembly by engaging at least one region of a segment of the implant. Rotating the auger one direction drives the implant forward (towards the distal end of the cannula), while rotating the auger in the opposite direction drives the implant backwards (towards the proximal end of the cannula). The auger may be at least partly located in the cannula of the applicator.
  • The applicator driver may comprise a cog configured to engage an implant. Rotating the cog one direction drives an implant forward (towards the distal end of the cannula), while rotating the cog in the opposite direction urges the implant back towards the proximal end of the cannula (removing them from the tissue cavity). In one version, the cog is a friction wheel.
  • The applicator may also include a controller for controlling the driver. The controller may be configured to activate the driver. The controller may be configured to determine the direction of force applied by the driver (in the distal or proximal direction down the cannula). Applying force down the cannula in the distal direction moves an implant out of the distal end of the cannula (e.g. inserting an implant into a bone cavity); applying force down the cannula in the proximal direction moves an implant in the proximal direction (e.g., withdrawing an implant from a non-soft tissue cavity). The controller may also be configured to determine the amount of force applied by the driver. The controller may be configured to be manually operated by a user.
  • The feed guide of the implant may include a cartridge pre-loaded with an implant. The driver may engage the distal-most portion of an implant (e.g. a segment) of the preloaded implant and apply force to drive the implant distally down the cannula. The driver may also be configured to apply force in the proximal direction to withdraw the implant.
  • The applicator's distal cannula opening may be located on the distal end. The distal opening of the cannula may be located more proximally than the distal tip of the cannula to aid in inserting an implant in a cavity. In one version the distal opening of the cannula is located on an angle from the distal tip of the cannula. The distal opening of the cannula may be located on a side perpendicular to the long axis of the cannula.
  • Methods of distracting a non-soft tissue cavity (including a bone cavity) are described. A method of distracting a non-soft tissue cavity includes providing an implant for filling a bone cavity comprising a plurality of flexibly connected segments, where the segments have a crush strength sufficient to maintain the distraction of two or more tissue cavity surfaces. The method of distracting a non-soft tissue cavity further includes inserting the flexibly connected segments into the bone cavity.
  • Methods of filling a tissue cavity are described. A method of filling a tissue cavity includes providing an implant for filling a cavity, and providing an applicator for introducing the implant into the cavity. The applicator includes a cannula configured to pass at least a region of the implant, and a rotary driver at least partly within the cannula. The method further includes inserting the flexibly connected segments into the bone cavity. The methods of filling and/or distracting a bone cavity may also include using a rotating auger to drive the implant into the bone cavity.
  • The method of filling and/or distracting a non-soft tissue cavity may also include applying force to the implant to insert the implant within the bone cavity. The method of filling or distracting a bone cavity may also include measuring the force applied.
  • The method of filling and/or distracting a non-soft tissue cavity may also include removing the implant once a void is created within a non-soft tissue and/or a desired elevation or expansion of a cavity has been achieved.
  • The method of filling and/or distracting a non-soft tissue cavity may be performed where the bone cavity is a fractured vertebral body. This method may further include inserting the implant into the bone cavity until the normal height or shape of the vertebral body is substantially attained.
  • The method of filling and/or distracting a non-soft tissue cavity may include providing a fluent filler (e.g. a bone cement) within the cavity. In one version, the non-soft tissue cavity is a hard tissue cavity. In one version the non-soft tissue cavity is a bone cavity.
  • The method of filling and/or distracting a non-soft tissue cavity may also include providing a closure. Suitable closures include, but are not limited to, screw-type closures, particularly screw-closures. Suitable closures may also have a compaction enhancer, such as a spring element, to aid compaction and/or securing of the implant. The method of filling and/or distracting a non-soft tissue cavity may also include closing the soft-tissue cavity with a closure.
  • Also described herein are kits for filling a hard tissue cavity including an implant and an applicator. Implants appropriate for the kit include implant assemblages comprising a plurality of segments wherein at least two of the segments are flexibly connected and the implant segments are capable of distracting and providing stability to a non-soft tissue body region. Applicators appropriate for the kit comprise a cannula configured to pass at least a region of the implant and a rotary driver at last partly within the cannula configured to apply force to at least a region of the implant. The kits may also include fluent material (e.g. bone cement), one or more gauges (e.g. force gauge), and/or a display configured to show the status of the implant insertion. The display might show the force applied to an implant, the length of the implant inserted, the volume filled, etc. The kits may also include compaction tools, e.g., vibrational probes, tamps, etc. Kits may also include closures, e.g., screws, compaction screws, etc.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments or variations are now described by way of example with reference to the accompanying drawings.
  • FIGS. 1A to 1E show variations of the described implant;
  • FIGS. 2A to 2F show variations of the described implant;
  • FIGS. 3A to 3E, 3G, 31 to 3T show variations of the described implant;
  • FIGS. 3F, 3H, 3W and 3X illustrate variations of interlocking segments of the described implant;
  • FIGS. 4A to 4D show variations of the described implant;
  • FIG. 5 illustrates a variation of an applicator for the implant;
  • FIGS. 6A to 6C illustrate variations of the distal cannula tip of an applicator;
  • FIGS. 7A and 7B show one variation of an applicator driver;
  • FIG. 7C shows another variation of an applicator driver;
  • FIG. 7D shows the relationship between an applicator and variations of the driver;
  • FIGS. 8A to 8C show insertion of an implant into a vertebral body;
  • FIGS. 9A and 9B show a screw closure compatible with the implants and applicators described herein. FIG. 9B is a schematic cross-section of the screw closure shown in FIG. 9A taken along the longitudinal plane A-A.
  • FIG. 10 shows a cutter for cutting segments of the implant as described herein.
  • DETAILED DESCRIPTION
  • In the drawings, reference numeral 10 generally denotes an exemplary embodiment of a segmented implant for distracting, filling, creating, or maintaining a cavity in a non-soft tissue. The implant, applicator, and methods of use may be used for distracting, supporting, filling, creating and maintaining the size of virtually any non-soft tissue cavity, particularly hard tissue cavities, including but not limited to: bone separations, fractures (including compression fractures), non-unions, removed tumors, removed cysts, in conjunction with joint replacement implants, and certain fusion procedures. Although example of implants, implant applicators, combinations of implants and applicators and methods of using the implants are described in the context of treating a vertebral compression fracture, the devices and methods of use described are not intended to be limited to vertebral compression fractures.
  • The implants, applicators and methods described herein are particularly relevant to insertion into body regions such as non-soft tissue cavities. Non-soft tissue cavities include hard tissues cavities such as cavities or voids such as bones, as well as cartilage, and bone connected to ligament and/or muscle, scar tissues, and other mineralized (e.g. calcified) tissues. Non-soft tissue cavities also include tissues cavities having at least one hard surface, including tissues having mixed compositions. For example, non-soft tissue cavities include cavities abutting bone, or cavities surrounded by bone, such as cavities within the spinal disk space, cavities within the bone marrow, and cavities adjacent to bone or bone and ligament.
  • FIGS. 1A to 1E illustrate variations of implants for distracting or filling a tissue cavity. The implant 10 in each of FIGS. 1A to 1E includes a plurality of segments (illustrated as pellets) that are flexibly joined. Segments of the segmented implants may include one or more pellets. A perspective view of an implant is shown in FIG. 1A. The segments 12 are shown as spherical pellets that are connected by a centrally located wire, string, or fiber 16. The joined pellets form a connected construct seen as a flexible linear array that may be inserted into a cavity to distract the cavity walls, to fill the cavity, or to provide continuing support to the cavity. As used herein, unless the context makes clear otherwise, “distract” or “distracting” refers to the process of separating (or enlarging) the walls of a cavity, particularly a bone cavity.
  • Crush Strength
  • An implant may be used to distract, to fill, to create or to maintain the size or shape of a hard tissue body cavity such as a bone cavity. In one version, the described implant's segments 12 have crush strength adequate to withstand the forces required to distract and support the cavity without substantial compression or breaking of the segments. Crush strength is defined as average crush load per unit cross-sectional area at which the structure will break or crack, and may be expressed in pounds per square inch or megaPascals (MPa). Of course, the shape of a segment has both individual and group effects upon the crush strength of the implant after installation. The crush strength of an individual segment pellet, however, is a consideration for distracting a cavity. For roughly spherical pellets, force can be approximated as acting at discrete points on the surface of the sphere, so crush force may be approximated as the total force applied to crack the sphere. One factor effecting crush strength is compressible strength of the material.
  • Compressibility
  • It may be beneficial that the segments comprise any solid material having an appropriate compressible strength so that the implant assemblage is able to distract, fill and support a tissue cavity without substantially deforming. The segments preferably comprise biocompatible solids with high compressive strength. Compressibility and incompressibility generally describe the ability of molecules in a solid to be compacted or compressed (made more dense) under an applied force and/or their ability to return to their original density after removing the applied force. Compressibility of a solid may also be quantified by the bulk modulus of the substance (bulk modulus is the inverse of compressibility, and is the change in volume of a solid substance as the pressure on it is changed). A relatively incompressible material will have a higher bulk modulus than a more compressible material.
  • The compressive strength of cortical bone is approximately 166 MPa, and the compressive strength of cancellous (spongy) bone is approximately 4 MPa. In one version, the implant should have a compressive strength of greater than approximately 20 MPa. In one version, the implant should have a compressive strength less than cortical bone. In one version, the implant has a compressive strength between about 20 and about 160 MPa. In one version, the implant has a compressive strength between about 91 and about 160 MPa. In one version, the implant has a compressive strength between about 100 and about 160 MPa. As a reference, the compressive strength of calcium sulfate is approximately 11 MPa.
  • Segment Materials
  • The crush strength of the implant depends to a large extent, on the segment crush strength, which is a function of the composition, and to a lesser degree, the shape of the segment.
  • Materials with appropriate crush strength include, but are not limited to, metals, alloys, ceramics, certain inorganic oxides and phosphates, polymers, bone derived material, and combinations of these materials. The following descriptions of segment materials represent versions of the implant, and are not intended to limit the scope of the implant or segment materials. The implant segment may comprise, consist of, or consist essentially of the materials identified herein.
  • Bioabsorbable (or bioerodible) and non-bioabsorbable (or non-bioerodible) material may be used in the implant separately or in combination. Typically, the non-absorbable (or non-bioerodible) materials noted elsewhere provide segments and implants exhibiting a sustainable crush strength adequate to maintain the distraction of the cavity surfaces (e.g. bone cavity surfaces) over a long period of time. On the other hand, bioabsorbable (or bioerodible) segments exhibit a reduction in crush strength over time, as the material is acted upon by the body. However, bioabsorbable materials may also permit substantial tissue in-growth, allowing tissue to replace implant material while maintaining the distraction and supporting the filled cavity. In applications in which the likelihood of tissue re-growth is small, for example osteoporotic repair, a nonabsorbable implant may be desirable. Materials that are too rapidly bioabsorbed (for example, calcium sulfate hemihydrate) are generally inappropriate as segment materials, because they do not maintain the cavity structure and/or distraction.
  • Metals that may be used as segment materials include, but are not limited to, biocompatible metals and alloys, such as stainless steels, gold, silver, tantalum, cobalt chromium, titanium, platinum, rhodium, rhenium, ruthenium, and other alloys thereof, combinations thereof, or other equivalent materials.
  • Ceramic materials that may be used in the segments may include, but are not limited to, alumina, carbon or tricalcium phosphate or sintered masses or single crystals of hydroxyapatite. Ceramics capable of high crush strengths may be particularly relevant. Also useful are refractory metal and semi-metal oxides (tantalum oxides, aluminum oxides), phosphates (calcium phosphates), phosphides, borides (niobium borides, tungsten borides), carbides (aluminum carbides, boron carbides, niobium carbides, silicon carbides, tantalum carbides, titanium carbides, tungsten carbides, vanadium carbides, zirconium carbides), nitrides (boron nitrides, chromium nitrides, silicon nitrides, tantalum nitrides, titanium nitrides, zirconium nitrides), silicides (tantalum silicides, tungsten silicides, zirconium silicides), their mixtures, variously sintered as porous particulates or as solid formations.
  • Inorganic materials that may be used as segment materials include, but are not limited to, hardened glasses including oxides of silicon, sodium, calcium and phosphorous and combinations thereof.
  • Polymers that may be used as segment materials include, but are not limited to, elastomers (natural and synthetic rubbers, silicone rubbers), polymethyl methacrylate (PMMA), polyetheretherketone (PEEK), polymethymethacrylate (PMMA), polyglycolic acid and/or polylactic acid compounds, polyvinylchloride (PVC), polyethylene (PE, HDPE, UHMWPE, etc.), polystyrene (PS), polyesters (PET, polycaprolacton, polyglycolied, poylactide, poly-p-dixanone, poly-hydroxy-butylate), polyamides (Nylons, aromatic polyamides), polypropylene (PP), fluorocarbon polymers (PTFE, PTFCE, PVF, FEP) and other biocompatible materials. Other suitable polymers include: collagen and/or collagen derivative preparations alone or in combination with other biomaterials, chitin and chitosan preparations.
  • Bone derived materials that may be used as segment materials include, but are not limited to, bone autografts, bone allografts, bone xenografts, bone-derived tissue, bone-derived collagen, and the like.
  • Any combinations of these materials may be used as a segment material. Segments may include pellets of any of these materials, or combinations thereof. Finally, suitable known materials acceptable for use as hard tissue implant materials include various osteogenic and osteoinductive compositions, and combinations thereof. Certain glassy carbon forms are also quite useful.
  • Segment materials may also comprise radiopaque materials to enhance visualization of the implant, or the segments may incorporate a radiopaque material as a part of a segment (e.g., coatings, dispersed, or core materials). Examples of radiopaque materials include but are not limited to, barium sulfate, tungsten, bismuth compounds, tantalum, zirconium, platinum, gold, silver, stainless steel, titanium, alloys thereof, combinations thereof, or other equivalent materials for use as radiographic agents.
  • Coatings
  • Segments may include coatings to modify the surface properties of the segments, to have a biological effect, and/or to facilitate the insertion or removal of the implant. The coatings may be of any thickness. In one version, the segment comprises layers of materials. In one version, the segment has a hollow core.
  • In one version of the implant described herein, a segment or segments may be coated with a therapeutic or medicinal material, such as an antibiotic. Additional medicinal materials may include, but are not limited to, anticoagulants and bone-growth promoting agents. In one version of the implant, the segments may be coated with a cross-linking or bonding compound that could facilitate adhesion either between the segments, with the body region, or both. In one version the segments are coated with a cross-linker that can be activated after insertion into the bone cavity, for example, by adding an activating compound, by time delay, or by temperature. In one version the segments are coated with a lubricant.
  • The segments may comprise one or more therapeutic or medicinal materials situated away from the surface, e.g., in pores within the segments.
  • Drug Delivery Using the Implant
  • The segments may also be embedded with one or more therapeutic or medicinal materials. For example, embedding the segments with an additional material may be particularly useful when the segment comprises a bioabsorbable (bioerodible) material. Thus, the segments may be used to deliver any drug or therapy. Drugs which are particularly useful may include, but are not limited to, growth factors and/or growth promoters (e.g. bone derived growth factors (BDGF), bone morphogenetic protein (BMP), etc.), antibacterials, antivirals, vascularizing agents, analgesics, anticoagulants, cell and/or gene therapies, etc.
  • In one version an implant including a drug is inserted at or near a wound site. After an appropriate time the implant is removed. Thus, the implant may serve as a removable wound packing material. In one version, the implant may be inserted with a removable drain. In one version, the implant functions as a removable drain.
  • Any portion of the implant may be coated with, implanted with, embedded with, or made from a therapeutic or medicinal material, including but not limited to those described herein.
  • Flexible Joining Material
  • The implant segments are connected in the implant as installed. The segments may be linked together in such a way that each segment in the implant is adjacent, perhaps directly adjacent or in contact with at least one other segment. Generally, each segment in the implant is adjacent, perhaps directly adjacent or in contact with at most two other segments. In some variations, the assembled segments form a linear array. In the version of the implant shown in FIGS. 1A to 1E, the segments are linked in a linear array by attachment to a wire, filament, or string 16. The filament connecting the segments may comprise a separate, independent filament between each segment, or it may be a single continuous filament. The filament may comprise different materials, and may be different lengths. In one version of the implant, the filament comprises one or more monofilaments. In another version of the implant, the filament comprises one or more fibers. In a version of the implant, the filament comprises one or more wires. The filament may comprise a bioabsorbable material. The filament may be rapidly bioabsorbable because (unlike the segments) the filament is not typically load bearing in supporting the cavity.
  • In one version, the implant segments are connected in any way allowing sufficient flexibility to the resulting implant constrict so that it may be introduced into a cavity such as a bone hollow. In one version, the implant segments are flexibly connected so that a segment may contact another segment upon being planted into a body region such as a bone hollow.
  • The connection material may comprise, for instance, a string, fiber or wire, variously of single or multiple strands. The connecting string or fiber may be flexible and allow the segments to be inserted into the treatment site. Suitable filament materials include virtually any biocompatible material, including but not limited to: natural materials (e.g. cottons, silks, collagen, etc), rubbers (e.g. natural and synthetic rubbers), composite yarns (e.g. carbon fiber yarns, ceramic fibers, metallic fibers), polymers (e.g. polyethylene, polyester, polyolefine, polyethylene terephthalate, polytetrafluoroethylene, polysulfone, nylons, polylactic acids, polyglycolic acids, mixtures and copolymers of polylactic and polyglycolic acids (PGLA such as “Vicryl” from Ethicon and “Dexon” from Davis & Geck), polydioxanone, various Nylons, polypropylene, etc., and the like). Suture material (natural and synthetic materials) are examples of particularly appropriate materials.
  • In one variation, the segments are adapted to connect to the filament, string or wire, for example, by having holes (through which the flexible joining material is threaded), by having attachment sites (to which the flexible joining material could be tied or otherwise attached), or by having a track or groove (which mate to the flexible joining material). In one variation the segments are adherent to the string or filament by a glue, adhesive, or the like.
  • In one variation, the segments are connected by adhesives or glues, such as solvent- or catalyst-curable materials including Silicone glues, rubbery epoxies, and adhesives suitable for the materials forming the segments. In one variation the segments are connected only by adhesives or glues such as those mentioned above.
  • The joining material does not itself have to be flexible, so long as it allows flexibly joined segments of an implant to “flex.” In one version of the implant, the segments are linked together by a solid linker. The implant is made flexible by incorporating a joint (e.g. socket type joins) between the solid linker and the segment. Solid linkers may be composed of the same material as the segments. Solid linkers may be wires made of one or more filaments comprising suitably biocompatible metals or alloys, e.g., stainless steels or superelastic alloys.
  • In the version of the implant shown in FIG. 1E, the segments are linked together in linear array because they are held within a flexible tube 19. A flexible tube may be made of virtually any material, so long as the final implant is adequately flexible to allow bending of the implant. The flexible tube comprises a solid or continuous walled tube, a solid or continuous walled tube having openings in the wall, or a netting woven from string or fiber. The flexible tube may comprise one or more membrane, optionally made of an expandable or a stretchable material.
  • In one version, the implant segments are linked by an expandable membrane. The expandable membrane material may be a fabric that has pores allowing passage of fluids and bone growth through it. For example, the membrane could be formed of a flexible polymeric fabric e.g., high molecular weight polyethylene. The flexible tube may be any material (e.g. woven, non-woven, extruded, etc) that is adequately flexible. In one version of the implant the segments within the flexible tube are also linked by a filament, wire or string.
  • The flexible joining material may comprise any suitable materials including but not limited to: polymers, (e.g., polyfluorocarbons such as the various Teflons (including PTFE and expanded PTFE—ePTFE such as is sold as GORETEX), polypropylene, polyethylene, polyoxymethylene, polycarbonate, polyesters (including polyamides such as the Nylons), polyphenylene oxide, and polyurethane) or elastomeric polymers (e.g. various Silicones, natural rubber, butadiene-styrene rubber, carboxylic butadiene-styrene, butadiene-acrylonitrile rubber, carboxylic butadiene-acrylonitrile rubber, chlorobutadiene rubber, polybutadiene rubber, silicone rubbers, and acrylate rubbers, perhaps vulcanized, and other elastomeric materials) or a composite material.
  • The material used to join the segments may also have additional biological or mechanical properties. For example, the material may incorporate a therapeutic or medicinal agent for release (e.g., timed release). Examples of therapeutic agents include, but are not limited to, antibiotics, analgesics, anticoagulants, bone growth enhancing agents, cells or gene therapies, etc. The material may also incorporate other agents and materials, for example, radiopaque materials to aid visualizing the implant.
  • The joining material may also be severable. It may be desirable to have implants of certain lengths (e.g. a certain number of segments). It may also be desirable to have implants that are continuous, and allow the user to select their length by removing or cutting the connection between any two segments. For example, the joining material may be severable by mechanical, thermal, chemical, or electrical means.
  • In one version, the joining material is removable from some or all of the segments during or after insertion into the cavity.
  • Segment Dimension
  • FIGS. 1A to 4D show different variations of the segments 12 compatible with the implant 10. In FIG. 1 the segments are all shown as spherical pellets. FIG. 1B shows that the pellet size may vary. FIG. 1C shows that the spacing of the segments on the joining material (shown as a filament 16) may vary. The lengths of the implant (e.g. number of pellets) may also vary. Larger 14 segments and smaller 18 segments are arranged in the linear array. Virtually any combination of segment sizes and shapes may be used in the implant. Varying the size as shown in FIG. 1B may change the manner that the implant “packs” within a bone cavity. For example, packing of different sized segments may allow different spacing between the segments, and therefore different opportunities for tissue in-growth into the implant, different structural properties, and different loading patterns of adjacent structures.
  • Segmented implants may be configured so that the implant is securely packed into the body region (e.g. non-soft tissue cavity). Size, shape, and spacing all contribute to the packability of the implant within the body region. For example, the same implant may have segments of different sizes, shapes and spacing in order to optimize packing. Additional factors such as the ability of one or more segments to move along the linear axis of the implant may also contribute to packing.
  • The size of the segments may be selected to optimize the insertion into the cavity and use of the implant applicator described below. Thus, the segments may describe a range of sizes suitable for use with an applicator and/or suitable for insertion into a bone cavity of given dimensions. In one version the segments are between 1 to 40 mm in diameter. In one version the segments are between 1 to 37 mm in diameter. In one version the segments are between 1 and 10 mm in diameter. In one version, the segments are between 1 and 6 mm in diameter. In one version the segments are approximately 3 mm in diameter. In one version the segment diameter is an average segment diameter. In one version, the segment diameter is the maximum diameter of a segment.
  • The implant may have different inter-segment spacing. FIG. 1C shows implant segments 12 arranged in a linear array in which there are larger 20 gaps and smaller 22 gaps between adjacent segments. Different arrangements of segments along the linear array may also have desirable effects on the packing behavior of the implant and the severability of the implant. FIG. 1D shows a version of the implant in which the spacing between segments is extremely small 24, potentially reducing the flexibility of the implant. However, implant flexibility may also be increased by using more elastic joining materials and potentially allow greater packing.
  • The segments may also be slideable (or partially slideable) in one (e.g. the long or linear) axis of the implant. In one version of the implant some of the segments are slideable and some of the segments are fixed to the joining material. In at least one version of the implant, the slideable segments allow the implant to be “tensioned” by tightening the joining material, tending to stiffen the implant, perhaps to aid in anchoring the implant or distracting a bone separation, or in anchoring another implant or device.
  • The segments of the implant may also have different shapes, allowing different packing and implantation properties. FIG. 2 shows examples of segments with different shapes. FIGS. 2A and 2B show a schematic and perspective view of cubic segment 202 shapes with rounded edges. The parallel faces of these segments 204 allow closer packing between adjacent segments. FIG. 2C is also an implant with cubic segments 206. FIG. 2D shows an implant with rectangular-shaped segments 208. FIG. 2E shows an implant with cylindrical segments 210. FIG. 2F shows an implant with a slightly more complex segment shape having more than six faces. Virtually any shape that will allow the implant to fill a cavity to distract a cavity, create a cavity, and/or tighten or secure another implant, may be used. As used herein, unless the context makes it clear otherwise, “fill” means that the bone cavity is supported in three dimensions.
  • The implant assemblage described herein describes space-filling implants (for filling, distracting, void creation, etc.). Thus, implant segments may be adapted specifically to fill three dimensional spaces.
  • The implant may have segments of different shapes, including shapes that are configured to communicate with each other, for example, to interlock. Several examples of interlocking shapes are shown in FIG. 3A to 3X. In FIG. 3A to 3G, the bullet-shaped 302 segments have a front end 306 and a back end 304, and at least some of them may slide along the axis of the linear array of the implant 10. The back end of one segment can engage with the front end of an adjacent segment as shown 310.
  • The segments may also be shaped to engage non-adjacent segments, for example, by having side faces that engage with other segments. The segments may also be shaped to engage with the walls of the cavity.
  • In FIG. 3E to 3G, the segments have a bullet shape with a conical nose 320, a cylindrical body 322, a conical recessed rear 324, with linear and rotational inner-locking features, 326. FIG. 3F shows a frontal view of two segments interlocked; FIGS. 3E and 3G show linked segments. The external surface has an advancing helical ramp 330 for assistance in advancement of a segment relative to adjacent segments when an axial load and rotational load are simultaneously applied to the implant. These features aid in compacting and elevating the hard tissue around the cavity being filled. The flexible rear extension 334 with external round 332 increase the likelihood of interstitial placement.
  • In FIGS. 3H to 3K, the implant comprises common segment shapes that have six over-lapping male spherical ball geometries creating a complex external multiply spherical surface 340. FIG. 3H shows three segments interacting. FIGS. 31 to 3K show linked segments. These segments may interlock because of the spheres nesting within the adjacent segments' depression created by the curved (e.g., semi-spherical) segment surfaces creating multiple coincident mating tangency points 342. The segments can be arranged along the connective member in a common entry and exit orientation 344 as in FIGS. 31 and 3K or an alternating pattern 346 as in FIG. 3J.
  • In FIGS. 3L and 3M, the implant 10 consists of two different segment shapes alternating and repeating along the connective member. The first segment 350 is similar to the segment described in FIGS. 3H to 3K consisting of six over-lapping male spherical ball geometries 340. The second segment 352 is a segment that has six female spherical recesses 354 that will enable tight interlocking and packing of the implant within the cavity.
  • In FIGS. 3N and 3P the implant 10 consists of two different segment shapes alternating and repeating along the connective member. The first segment 352 is similar to the segment in FIGS. 3L and 3M. The second segment 356 is spherical. The configuration of this implant affords a tight packing with numerous mating receptacles open to accept the spherical segments and thus may be less dependent on packing order than other versions.
  • In FIG. 3Q, the implant 10 consists of two different segment shapes alternating and repeating along the connective member. The first segment 360 is arrowhead-shaped with front 361 and rear faces 362 pointed and made up of two angled faces. The second segment 365 is an elongated arrowhead with otherwise similar front and rear faces. The segments can be arranged in a manner that will allow a control of the desired mating and direction that the segments will follow once the segments leave the delivery cannula and meet resistance within the cavity. The direction change will be dictated by slight angular differences between the mating arrowheads.
  • In FIG. 3R the implant comprises common segments shaped like coins 370 with conical spikes 372 protruding from the faces of the coins. The coin faces 374 have holes through them 376 that facilitates stacking of the coins, and the spikes are conically shaped to facilitate the self-centering stacking of the segments. The stacked coins create common tangency points 180 degrees opposed from each other that create two parallel planes of support.
  • In FIG. 3W the segments have a cross-sectional area that is rectangular with various previously described front and rear geometries.
  • In FIG. 3X the segment cross-section is triangular with various previously described front and rear geometries. In some versions, the segments can have polygonal cross-sections, for example, hexagonal, octagonal, etc.
  • The aspect ratio of the segments' length relative to the segments' height and width can be varied in order to allow variations of stacking, packing, steering or elevating, depending on the desired result.
  • Many of the implant segments shown (e.g. FIGS. 1, 2 and 3A-3K and 3Q-3T) are illustrated as substantially ‘solid.’ Implant segments may also be hollow or have passages for either the joining material or additional material such as a fluent material (e.g. cement). Implant segments may also be porous, for example, to facilitate tissue in-growth, or reduce overall segment weight. FIGS. 4A and 4B show an implant that has passages 402. FIGS. 4C and 4D show an implant with pores, or hollow spaces, 404 that do not span the length of the segment. In one version the pores 404 are dimples.
  • Implant segments may also be used with a fluent material. Examples of fluent materials include cements (e.g. bone cements, synthetic bone graft cements, etc.), therapeutics (e.g. bone morphogenic proteins, cells or gene therapies, bone growth factors), or combinations or substitutions thereof. In one version the fluent material is applied into the cavity after the implant has been inserted. In one version the fluent material is added before the implant. In one version, the fluent material is added concurrent with insertion of the implant. In one version the fluent material is inserted into the flexible joining material (e.g. a flexible tube around the implant segments). The flexible tube may be impermeable to the fluent material, keeping it substantially contained within the bone cavity.
  • Applicator
  • An applicator may be provided to insert a material such as the implant into a cavity to fill or distract the cavity, and/or to create or expand a cavity. The applicators described herein may be used to insert or remove an implant described herein. The applicators described herein may be used with any compatible material, including but not limited to individual pellets, fluent materials, and linear arrays of any materials desirable for insertion or removal from the body.
  • FIG. 5 shows an applicator 50 useful for inserting an implant into a cavity (e.g. a bone cavity). The applicator has a cannula 502 having a distal and a proximal end and a lumen 506 with a handle 505 to aid in controlling the distal end orientation of the cannula. An implant 10 can be inserted into a bone cavity from the distal end of the cannula through an opening at the distal end 508. A feed guide 504 connects to the proximal end of the cannula. The feed guide can insert or withdraw the implant in and out of the lumen of the cannula through an opening in the proximal end of the cannula. An applicator may also have a handle 510 or a feed chamber to store implant material.
  • Cannula
  • The cannula may be an elongated tubular member having a lumen or passage to facilitate the movement of an implant through the cannula. The inner lumen of the cannula may be configured to bold and allow the passage of an implant. The inner surface of the lumen may be size-matched to the diameter of the implant. Alternatively, the size of the implant (e.g. segment size) may be limited by the inner diameter of the applicator cannula. The inner surface of the cannula may include a material that facilitates the movement of an implant (for example, a friction-reducing coating or a lubricant). The cannula may also allow the passage of a secondary filling material (e.g. a fluent material) before, after and/or during the insertion of an implant. An applicator cannula may be flexible or rigid.
  • The cannula may also have a fastener towards the distal end to hold the cannula in place on the outer surface of the bone being treated. A fastener or gripper near the distal end of the cannula may be used to aid the user in holding an applicator steady while inserting the implant to distract a bone cavity. In one version the distal end of the cannula is threaded to facilitate insertion into, for example, the pedicle of a vertebra. The threads may further serve as a fastener or gripper.
  • The distal end of an applicator cannula may be adapted to aid in penetrating and/or distracting a bone cavity. In one version, the distal end of the cannula includes a trocar. In one version, the distal end of the cannula includes a spreader to separate bone surfaces and aid insertion of an implant.
  • The distal opening of an applicator cannula may be located at the distal-most part of the cannula, or it may be located all or partly on the perpendicular axis of the cannula (e.g. on the side of the cannula, or at an angle), allowing more directional filling of a bone cavity by an applicator. FIG. 6A shows the distal end of an applicator cannula in which the distal opening is the extreme distal end of the cannula. The implant 10 exits the applicator 502 through the cannula's distal opening 508, and begins to fill the bone cavity 602, as shown.
  • FIG. 6B shows the distal end of an applicator cannula in which the distal opening 508 is at a 45° angle from the long axis of the cannula. Thus the implant 10 is inserted into the bone cavity 602 at a 45° angle relative to the cannula. FIG. 6C shows the distal end of an applicator cannula in which the distal opening 508 is at a 90° angle from the long axis of the cannula. Thus the implant 10 is inserted into the bone cavity 602 perpendicular to the cannula.
  • The outer surface of the cannula may have graduated indicia that provide depth of penetration information during insertion by the user.
  • An applicator may be operated with a guide cannula. In one version, an applicator cannula fits into the lumen of a guide cannula; the guide cannula is used to locate and prepare the bone cavity for insertion of the implant by an applicator. In one version, an applicator cannula locks into a guide cannula and the guide cannula is secured to the bone that is being operated upon.
  • An applicator may also include a cutter configured to sever the implant by removing the connection between two of the segments in the linear array of an implant. An example of a cutter 1001 is shown in FIG. 10. The cutter may be located at least partly at the distal end of the cannula. The cutter may be located at least partly within a region of the inner lumen of the cannula. In one version the cutter is located at an outer surface 509 of the distal end of an applicator cannula, adjacent to the distal opening 508. Rotating an external sheath drives a cutting edge across the cannula's distal opening thereby severing the connection between implant segments. In this version the cutter is actuated by rotating the external sheath 510. As illustrated in FIG. 10, the cutter may be a mechanical cutter capable of applying force to sever the implant. Additional examples of mechanical cutters include but are not limited to, a blade, a scissor-like cutter, and the like. The cutter may be an electrical cutter capable of applying electrical energy to sever the implant. The cutter may be a chemical cutter capable of chemically severing the implant, for example, by applying a compound that reacts with the joining material of the implant. The cutter may be a thermal cutter which acts, for example, by heating the material connecting the segments causing it to release. The cutter may be any combination of mechanical, electrical, chemical and thermal cutter. The cutter may be controlled by a cutting controller. The cutting controller may be controlled directly by the user, or as part of a system.
  • Driver
  • An applicator may further comprise a driver for applying force to the implant in order to move the implant within the cannula to insert the implant into or withdraw the implant from a bone cavity. An applicator may be a mechanical drive (e.g. linear driver, a rotary driver, etc.), a pneumatic driver, hydraulic driver, a magnetic driver, an electric driver, or any combination thereof. Examples of drivers include, but are not limited to, rotating auger drivers, and rotating cog drivers. The driver is preferably a rotatable driver. Force generated by the driver is transferred to the implant (or a part of the implant), moving the implant within the cannula, in either the proximal or distal direction. In one version, the driver is located at least partly within the cannula. In one version the driver is located at least partly within the feed guide. An introducer member may comprise a driver as described here.
  • Applicator drivers engage at least a region of an implant. FIGS. 7A and 7B illustrate a cog driver 702 engaging at least part of an implant 10. As the cog is rotated about its central axis 708, in the direction indicated by the arrows (704 and 706), the implant is moved in the complimentary direction because segments of the implant 12 have engaged with the cog teeth 712 and are pulled or pushed in the direction of the rotation as shown. Because the segments of the implant are connected, movement of at least one of the segments results in moving the implant. An applicator driver may comprise more than one cog, or a cog and other driver components. FIGS. 7A and 7B also show the driver (a cog) at least partly in the lumen 506 of the applicator cannula 502.
  • In one version, the cog is a friction wheel. In one version, an outer surface of the friction wheel driver engages one or more regions of an implant (e.g. a segment). When the cog is a friction wheel, it may not have “teeth” which engage the implant.
  • FIG. 7C shows a rotating auger driver. In one version, the auger is a continuously threaded rod 720; the implant's segments 12 fit within the threading gaps 722. In one version, the rotating auger is located at least partly within the cannula. At least some of the implant segments are seated in the auger and are prevented from rotating around the long axis of the auger, for example by the geometry of the cannula or chamber surrounding the auger. Rotating the auger forces the segments (and thus the implant) to move down the long axis of the rod. Reversing the direction of rotation of the auger changes the direction that the implant moves. An applicator driver may comprise more than one auger, or an auger and other driver components.
  • A driver may also be at least partially within the cannula. In one embodiment the cannula lumen contains a rotatable auger. In one version the driver is entirely located within the cannula.
  • A driver may be located at the proximal end of the applicator cannula, as indicated in FIG. 7D. Force applied by the driver moves an implant within the cannula, into or out of the bone cavity 602. The driver may be capable of moving an implant into or out of a bone cavity by changing the direction that force is applied to the implant. An applicator driver may be attached to, integral to, or coupled to a feed guide.
  • Feed Guide
  • An applicator may include a feed guide 504 for loading the applicator cannula with an implant. A feed guide may be coupled to the proximal end of the cannula as shown in FIG. 5. A feed guide may comprise a chamber, a cartridge, a track, or other such structure in which an implant can be held. The feed guide may orient the implant for inserting or withdrawing from the cannula. The feed guide may also assist in engaging an implant with a driver.
  • In one version, a feed guide is preloaded with an implant. For example, it may be advantageous to have the feed guide be a pre-loaded cartridge holding an implant. Such a feed guide may be separately sterilized and interchangeable between applicators.
  • In one version, the feed guide includes a track configured to guide an implant. A track may keep the implant from jamming or tangling within the applicator. A track may further allow a long implant to be stored compactly. The feed guide may also help regulate the amount of force needed to move the implant.
  • In one version the feed guide may be configured to engage an implant into a driver. In one version a driver is at least partly contained within the feed guide. In one version the feed guide attaches to a driver. In one version the feed guide is configured as an opening in the cannula into which an implant may be manually inserted.
  • Controller
  • An applicator for inserting an implant may also include a controller for controlling the applicator driver. A controller may be manually or automatically operated. A controller may control the force applied by the driver. The controller may control the rate of insertion/withdrawal of an implant. A controller may control the direction that force is applied (e.g. forward/reverse). A controller may be operated by a user.
  • An applicator may also include detectors or indicators for registering implant and applicator parameters. In one version an applicator includes a detector for determining and/or indicating the force applied by the applicator to insert or withdraw an implant. When a cavity is being filled, and particularly when a bone cavity is being distracted, an implant may be applied using a force adequate to insure that the implant is properly positioned within the cavity. Thus it may be important to monitor force and pressure applied to the implant or volume of implants, and/or the tissue. Feedback mechanisms may also be used to regulate the actions of the applicator, including the force applied by the applicator.
  • An applicator may also include detectors or indicators for indicating the status of the implant. For example, a sensor may indicate the amount of implant inserted, the amount of implant left in the applicator, and/or the position of the implant within the applicator or the bone cavity. In one version, the applicator includes a force gauge for detecting the force applied by the applicator on the implant being inserted. The applicator may also include a display capable of indicating a status. Examples of the kinds of status that the display could indicate include, but are not limited to, force applied, total volume, linear feed rate, volume feed rate, amount of implant material inserted, and/or amount of implant material remaining in the applicator.
  • Implants Compatible with the Applicator
  • The application described herein may be used with any compatible implant, including but not limited to discrete (loose) pellets or segments of any material (including segments or pellets as described herein), fluent materials (e.g. cements, bone fillers, etc.), and any implant, particularly those comprising a linear array of elements. Such applicators may also be useful for filling and distracting bone cavities. In one version the applicator comprises a cannula and a driver where the driver further comprises an auger or a cog. The auger or cog propels the discrete pellet, fluent material, or combination of implants, discrete pellets and/or fluent material, down the cannula in order to fill or distract the cavity into which the cannula has been inserted. It may be particularly advantageous to use the applicator with flexibly connected implants, including those described herein, because the applicator may be used to controllably insert and remove flexibly connected implants.
  • Additional exemplary applications of the applicator and/or implants as described herein are given below. These examples are intended only to illustrate various embodiments of the implant, applicator, and methods of use, and are not intended to be in any way limiting.
  • EXAMPLES
  • In general, the implants and/or applicators described herein may be used to distract an existing body region. In one version, the body region is a non-soft tissue cavity. In one version, the body region is a hard tissue cavity, such as a bone cavity arising from a tumor, injury or surgery.
  • FIG. 8A to 8C shows an example of inserting an implant into a bone cavity 602. In this example, the bone cavity is part of a vertebral compression fracture. Other examples of bone disorders and fractures which may be distracted include, but are not limited to, tibial plateau fractures, femoral head necrosis, osteonecrosis of the hip, knee injury, etc. FIG. 8A shows an applicator 502 inserted into a vertebral compression fracture 804 through the vertebral pedicle 808; the applicator is inserting an implant 10 into the collapsed region. The implant is shown as a linear array of pellets 12. These segments of the implant may be continuously added to the bone cavity to first fill and pack within the cavity. Once the cavity is filled, adding further segments elevates the collapsed bone. FIG. 8B shows the bone cavity after it has been distracted by application of the implant. While some of the individual segments of the implant remain joined and connected to the applicator, the user may adjust the amount of distraction by removing and/or adding segments of the implant until the shape of the collapsed vertebra has been set to an optimal shape. In one version, the optimal shape is the natural (uncompressed) position.
  • Compaction of the Implant within a Cavity
  • Once an implant is inserted, it may be compacted within the body cavity by packing the individual segments. Any appropriate device or method may be used to compact the implant segments. These include utilizing vibration (e.g. ultrasonics, through the delivery of a second cannula or probe, for example, through the second pedicle) or physical compaction (e.g. using a curved probe or tamp through a pedicle path or with an internal or external sheath. Compaction may be particularly useful when filling hard tissue cavities such as bone cavities.
  • Closing the Filled Cavity
  • A cavity opening through which an implant was inserted may be closed and/or sealed to maintain the compaction, and to prevent the loss of implant material from the cavity. After filling and/or distracting a cavity, a user may cut the implant and remove the applicator cannula. FIG. 8C shows that the user may also block 802 or otherwise close the opening into the bone cavity, for example, by the local application of a cement material through the cannula (or another cannula). Other methods for closing the void may include tapered pins, screws with blunt head and tip, or even screws with compressible tip members such as a spring to absorb, minimize, or prevent settling of the implant.
  • FIG. 9 shows an example of a screw closure 900 for use with an implant that comprises a spring 903 for applying pressure to an implant within a cavity. The screw includes threads 905. After distracting and/or filling a hard tissue cavity as described, the screw closure is screwed into the opening through which the implant was inserted. The spring-loaded tip 910 of the screw is blunt, and applies pressure onto the inserted implant. Thus, the screw can minimize any settling or further compaction that may occur after the insertion of the implant by applying pressure to help keep the implant compacted.
  • In general, implants and applicators as described herein may be used for filling cavities that do not require distraction.
  • A secondary filling material may also be used. For example, when filling a bone cavity, fluent bone filler may also be used to fill the cavity in addition to the solid implant. The combination of hard segment and fluid filler may provide added stability. The fluent material (e.g. cement) may also harden into a solid. In addition, the implant segments may reduce leakage of additional bone filler (such as bone cement) by blocking openings in the cavity that fluent filler would otherwise leak through. Less fluent filler may be needed if it is used after the solid implant, further reducing the risk of harmful leakage. In one version, secondary filling material may be applied in conjunction with an expandable membrane around the implant segments, preventing any substantial leakage from the bone cavity.
  • In general, the implants and/or applicators described herein may be used to distract a cavity without being left in the cavity after distraction. For example, an implant may be used to create or enlarge a cavity. In one example, an implant may be inserted into a body region void to expand the void. The surfaces of the body region void will be compressed by the implant, causing it to expand. After removing the implant, the cavity may remain expanded, facilitating further procedures (e.g. insertion of additional devices or materials, etc). Similarly, a hard tissue cavity such as a bone cavity may be enlarged or reshaped by inserting an implant which can then be removed or left within the non-soft tissue cavity.
  • It may be desirable to leave the implant in the tissue for an extended period of time, up to and including the lifetime of the patient. In one version, the implant is a permanent implant for filling and/or distracting body regions to provide long-term support and shape to the body region. In one version, the implant is intended to be used for a period of at least six months. In one version, the implant is intended to be used for a period of at least a year. In one version, the implant is intended to be used for a period of many years. Implants intended for long-term use may be made of materials which do not lose a significant amount of their strength or shape over time after implantation.
  • In general, the implants and/or applicators described herein may be used to secure another implant. For example, a bone screw may be inserted into an implant filling a bone cavity. This may be particularly useful when it is desirable to use a bone screw in weakened (e.g. osteoporotic or necrotic) bone tissue. In another version, the implant described herein may be inserted to secure an existing implant.
  • In summary, the described implants, applicators and methods of using them may be used to fill and/or distract a non-soft tissue including a bone cavity, in particular a vertebral compression fracture. The implant may achieve many advantages not realized with other devices intended to fill and/or distract a bone cavity. In particular, the implant described herein substantially reduces the chance of harmful leakage of bone filler material and provides three-dimensional support to the bone cavity.
  • Although the above examples have described primarily the filling of bone cavities, and particularly vertebral compression fractures, the implant, applicator and methods described herein may be used on any tissue cavity, including but not limited to those arising from trauma, fractures, non-unions, tumors, cysts, created by a pathology or by the action of a surgeon. It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the described device as specifically shown here without departing from the spirit or scope of that broader disclosure. The various examples are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims (108)

1. A segmented implant for introduction into a body region that is at least partially surrounded by non-soft body tissue, comprising a plurality of implant segments,
wherein at least two of the plurality of implant segments are flexibly connected and wherein at least a portion of the segments provide implant segment distractibility to the body region and form stability to a body region into which the segments have been introduced.
2. The segmented implant of claim 1 wherein at least a portion of the implant segments are configured to be introduced into the body region by engaging a rotating introducer member.
3. The segmented implant of claim 1 wherein at least a portion of the flexibly connected implant segments are configured to be introducible into the body region by engaging a rotating introducer member.
4. The segmented implant of claim 1 wherein at least a portion of the segments are comprised of one or more materials having sufficient material strength to provide implant segment distractibility to the body region.
5. The segmented implant of claim 4 wherein the material strength is crush strength.
6. The segmented implant of claim 1 wherein at least a portion of the segments have one or more shapes and are comprised of one or more materials having material strength and the one or more shapes cooperate with the material strength of the materials to provide implant segment distractibility to the body region.
7. The segmented implant of claim 6 wherein the material strength is crush strength.
8. The segmented implant of claim 1 wherein at least a portion of the segments have one or more shapes and are comprised of one or more materials having material strength and the one or more shapes cooperate with the material strength of the materials to provide form stability to a body region into which the segments have been introduced.
9. The segmented implant of claim 8 wherein the material strength is crush strength.
10. The segmented implant of claim 1 wherein more than two of the plurality of implant segments are flexibly connected.
11. The segmented implant of claim 1 wherein the majority of implant segments are flexibly connected.
12. The segmented implant of claim 1 wherein the implant segments are configured to provide distractibility and form stability to a body region comprising a bone cavity.
13. The segmented implant of claim 1 wherein the implant segments are configured to provide distractibility and form stability to a body region comprising a void between tissue surfaces.
14. The segmented implant of claim 1 wherein the implant segments comprise pellets.
15. The segmented implant of claim 1 wherein the at least two of the plurality of implant segments that are flexibly connected are connected by a filament.
16. The segmented implant of claim 1 wherein the at least two of the plurality of implant segments that are flexibly connected are connected by a fiber.
17. The segmented implant of claim 1 wherein the at least two of the plurality of implant segments that are flexibly connected are within a flexible tube.
18. The segmented implant of claim 1 wherein the at least two of the plurality of implant segments that are flexibly connected are within a flexible tube comprised of a woven material.
19. The segmented implant of claim 1 further comprising a settable fluent material.
20. The segmented implant of claim 19 wherein the fluent material is a bone cement.
21. The segmented implant of claim 1 wherein at least a portion of the implant segments comprise shapes configured to cooperate in enhancing segment packing.
22. The segmented implant of claim 1 wherein at least a portion of the implant segments are different sizes than at least one other implant segment of the plurality of implant segments.
23. The segmented implant of claim 1 wherein at least some of the segments are movably connected along an axis of the implant.
24. The segmented implant of claim 1 wherein the implant segments are selectively severable.
25. The segmented implant of claim 24 wherein the implant segments are remotely severable by a user.
26. The segmented implant of claim 24 wherein the implant segments are mechanically severable.
27. The segmented implant of claim 24 wherein the implant segments are chemically severable.
28. The segmented implant of claim 24 wherein the implant segments are thermally severable.
29. The segmented implant of claim 24 wherein the implant segments are electrically severable.
30. The segmented implant of claim 1 wherein said at least one of the segments comprises a radiopaque material.
31. The segmented implant of claim 1 wherein at least some of the segments comprise a biodegradable material.
32. The segmented implant of claim 1 wherein at least some of the segments comprise a material that is not substantially biodegradable.
33. The segmented implant of claim 1 wherein at least some of the segments comprise a polymer.
34. The segmented implant of claim 1 wherein at least some of the segments comprise a metal.
35. The segmented implant of claim 1 wherein at least some of the segments comprise a composite material.
36. The segmented implant of claim 1 wherein at least one of the segments comprise a medicinal.
37. The segmented implant of claim 1 wherein at least some of the segments comprise a coating.
38. The segmented implant of claim 37 wherein the coating is a medicinal coating.
39. The segmented implant of claim 37 wherein the coating is a cross-linker.
40. An implant assemblage for filling a non-soft tissue cavity comprising:
an implant comprising a plurality of flexibly connected segments configured for insertion into a bone cavity;
wherein said segments have a crush strength sufficient to maintain the distraction of two or more bone surfaces and further
wherein said implant assemblage is configured to maintain a shape within the cavity.
41. An applicator for inserting an implant into a tissue cavity comprising:
a cannula having a distal end and proximal end and a distal opening and a proximal opening;
a feed guide connected to the proximal end of said cannula so that the proximal opening of said cannula is in fluid connection with said feed guide; and
a driver at least partially within said feed guide for applying force to at least one portion of an implant wherein said force is applied by rotating at least a region of said driver in contact with the implant.
42. The applicator of claim 41 wherein said tissue cavity is a non-soft tissue cavity.
43. The applicator of claim 41 further comprising a force gauge configured to detect the force applied by said driver.
44. The applicator of claim 43 further comprising a display configured to show the force detected by said force gauge.
45. The applicator of claim 41 further comprising a trocar located at the distal end of said cannula.
46. The applicator of claim 41 further comprising a fluent material source configured to connect to said cannula for delivering a fluent material.
47. The applicator of claim 41 wherein said implant comprises one or more loose pellets.
48. The applicator of claim 41 further comprising a gripper located distally on the cannula.
49. The applicator of claim 41 wherein said implant is a segmented implant comprising a plurality of flexibly connected segments.
50. The applicator of claim 49 further comprising a cutter configured to sever a connection between at least two of said flexibly connected segments.
51. The applicator of claim 50 wherein said cutter is a mechanical cutter.
52. The applicator of claim 51 further comprising an actuator for activating said cutter by a user.
53. The applicator of claim 41 wherein said driver comprises a rotatable auger.
54. The applicator of claim 53 wherein said auger is located at least partially in said cannula.
55. The applicator of claim 41 wherein said driver comprises at least one cog.
56. The applicator of claim 41 further comprising a controller for controlling said driver.
57. The applicator of claim 56 wherein said controller is configured to control the force applied by said driver.
58. The applicator of claim 56 wherein said controller is configured to control the direction of rotation of said driver so as to allow both insertion and removal of said implant.
59. The applicator of claim 56 wherein said controller is manually controlled.
60. The applicator of claim 41 wherein said feed guide comprises a cartridge pre-loaded with said implant.
61. The applicator of claim 41 wherein said distal opening of said cannula is at least partly on a side perpendicular to the long axis of said cannula.
62. The applicator of claim 41 wherein said distal opening of said cannula opens at an angle perpendicular to the long axis of said cannula.
63. An applicator for inserting and removing an implant into a tissue cavity comprising:
a cannula having a distal end and proximal end and a distal opening and a proximal opening;
a driver at least partially within said cannula for applying force to at least one portion of an implant wherein said force is applied by rotating at least a region of said driver in contact with the implant.
64. An applicator for inserting and removing a bone filler into a bone cavity comprising:
a cannula having a distal end and proximal end and a distal opening and a proximal opening; and
a rotatable auger configured to fit at least partly into said cannula to propel a bone filling material out of said distal end of said cannula.
65. An applicator for inserting and removing a bone filler into a bone cavity comprising:
a cannula having a distal end and proximal end and a distal opening and a proximal opening; and
a rotatable cog configured to fit at least partly into said cannula to propel a bone filling material out of said distal end of said cannula.
66. A method of distracting a non-soft tissue cavity comprising:
providing an implant for filling a non-soft tissue cavity comprising a plurality of flexibly connected segments wherein said segments have a crush strength capable of distraction of two or more tissue surfaces;
inserting the flexibly connected segments into the cavity.
67. The method of claim 66 wherein the implant segments are inserted into the cavity by applying force to at least one segment of the implant.
68. The method of claim 67 further comprising measuring the applied force.
69. The method of claim 66 wherein said non-soft tissue cavity is a bone cavity.
70. The method of claim 69 wherein the bone cavity is a fractured vertebral body.
71. The method of claim 70 further comprising inserting the segmented implant into the fractured vertebral body until the normal height of the vertebra is substantially attained.
72. The method of claim 71 further comprising severing the implant behind the last segment inserted.
73. The method of claim 69 further comprising the step of providing fluent bone filler within the bone cavity.
74. The method of claim 66 wherein the implant segments are inserted into the cavity through a cannula.
75. The method of claim 66 wherein the implant segments are inserted into the tissue cavity using an auger.
76. The method of claim 69 further comprising providing a closure.
77. The method of claim 76 wherein the closure is a screw closure.
78. The method of claim 76 further comprising closing the cavity using the closure.
79. The method of claim 66 further comprising compacting the flexibly connected pellets.
80. A method of distracting a bone cavity comprising:
providing a segmented implant comprising a plurality of flexibly connected segments wherein said segments have a crush strength sufficient to maintain the distraction of two or more bone surfaces;
inserting one or more implant segments into the bone cavity.
81. A method of filling a tissue cavity comprising:
providing an implant for filling a cavity;
providing an applicator for introducing the implant into the cavity, wherein the applicator comprises a cannula configured to pass at least a region of the implant, and a rotary driver at least partially within said cannula; and
introducing the implant into the cavity by rotating the driver.
82. A method of filling a tissue cavity comprising:
providing an implant for filling a tissue cavity comprising a plurality of flexibly connected segments;
providing an applicator for introducing the implant into the cavity, wherein the applicator comprises a cannula configured to pass at least a region of the implant, and a rotary driver at least partially within said cannula; and
inserting the implant into the cavity by rotating the driver.
83. A method of filling a non-soft tissue cavity comprising:
providing an implant for filling a tissue cavity comprising a plurality of flexibly connected segments;
providing an applicator for introducing the implant into the cavity, wherein the applicator comprises a cannula configured to pass at least a region of the implant, and a rotary driver at least partially within said cannula; and
inserting the implant into the cavity by rotating the driver;
providing a closure configured to close the cavity; and
closing the cavity with the closure.
84. A kit for filling a non-soft tissue cavity comprising:
a segmented implant comprising a plurality of segments wherein at least two of the segments are flexibly connected; and
an applicator configured for inserting a segmented implant into cavity wherein the applicator comprises a cannula configured to pass at least a region of the implant, and a rotary driver at least partially within said cannula configured to apply force to at least a region of the implant.
85. The kit of claim 84 further comprising a fluent material.
86. The kit of claim 84 further comprising a feed guide.
87. The kit of claim 84 further comprising a gauge.
88. The kit of claim 87 wherein the gauge is a force gauge.
89. The kit of claim 84 further comprising a display.
90. The kit of claim 84 further comprising a closure.
91. The kit of claim 84 further comprising a compaction device.
92. A segmented implant for introduction into a body region that is at least partially surrounded by non-soft body tissue, comprising a plurality of implant segments,
wherein at least two of the plurality of implant segments are flexibly connected
wherein the segments have a shape, size, and spacing with respect to other segments;
and wherein at least a portion of the segments provide form stability to a body region into which the segments have been introduced.
93. The segmented implant of claim 92 wherein at least one segment is a substantially cubic shape with rounded edges.
94. The segmented implant of claim 92 wherein at least one segment has two or more faces.
95. The segmented implant of claim 92 wherein a plurality of the segments can interlock with other segments.
96. The segmented implant of claim 92 wherein at least one segment is configured to engage non-adjacent segments.
97. The segmented implant of claim 92 wherein at least one segment is a substantially solid shape.
98. The segmented implant of claim 92 wherein at least one segment is a substantially hollow shape.
99. The segmented implant of claim 92 wherein at least one segment is configured to have passages therethrough.
100. The segmented implant of claim 92 wherein at least one segment is a substantially different shape than at least one other segment.
101. The segmented implant of claim 100 wherein the different segment shapes are located adjacent to each other in a repeating pattern.
102. The segmented implant of claim 92 wherein at least one segment is a different size than at least one other segment.
103. The segmented implant of claim 102 wherein segments of different sizes are arranged adjacent to each other in a repeating pattern.
104. The segmented implant of claim 92 wherein at least one segment has a polygonal cross-section.
105. The segmented implant of claim 104 wherein at least one segment has a triangular cross-section.
106. The segmented implant of claim 104 wherein at least one segment has a rectangular cross-section.
107. The segmented implant of claim 92 wherein the distance between at least two adjacent segments is different than the distance between other adjacent segments.
108. The segmented implant of claim 92 wherein at least one segment is substantially slideable with respect to adjacent segments.
US10/866,219 2004-06-10 2004-06-10 Method and apparatus for filling a cavity Abandoned US20050278023A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/866,219 US20050278023A1 (en) 2004-06-10 2004-06-10 Method and apparatus for filling a cavity
EP05759216A EP1768616A4 (en) 2004-06-10 2005-06-10 Method and apparatus for filling a cavity
PCT/US2005/020476 WO2005122956A2 (en) 2004-06-10 2005-06-10 Method and apparatus for filling a cavity
US11/298,961 US7682400B2 (en) 2004-06-10 2005-12-09 Non-soft tissue repair
US12/616,843 US8734520B2 (en) 2004-06-10 2009-11-12 Device and method for securing a fastener
US14/265,000 US9526539B2 (en) 2004-06-10 2014-04-29 Non-soft tissue repair
US15/390,001 US9943411B2 (en) 2004-06-10 2016-12-23 Fastener fixation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/866,219 US20050278023A1 (en) 2004-06-10 2004-06-10 Method and apparatus for filling a cavity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/298,961 Continuation-In-Part US7682400B2 (en) 2004-06-10 2005-12-09 Non-soft tissue repair

Publications (1)

Publication Number Publication Date
US20050278023A1 true US20050278023A1 (en) 2005-12-15

Family

ID=35461526

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/866,219 Abandoned US20050278023A1 (en) 2004-06-10 2004-06-10 Method and apparatus for filling a cavity
US11/298,961 Expired - Fee Related US7682400B2 (en) 2004-06-10 2005-12-09 Non-soft tissue repair
US12/616,843 Expired - Fee Related US8734520B2 (en) 2004-06-10 2009-11-12 Device and method for securing a fastener
US14/265,000 Expired - Fee Related US9526539B2 (en) 2004-06-10 2014-04-29 Non-soft tissue repair
US15/390,001 Expired - Fee Related US9943411B2 (en) 2004-06-10 2016-12-23 Fastener fixation device

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11/298,961 Expired - Fee Related US7682400B2 (en) 2004-06-10 2005-12-09 Non-soft tissue repair
US12/616,843 Expired - Fee Related US8734520B2 (en) 2004-06-10 2009-11-12 Device and method for securing a fastener
US14/265,000 Expired - Fee Related US9526539B2 (en) 2004-06-10 2014-04-29 Non-soft tissue repair
US15/390,001 Expired - Fee Related US9943411B2 (en) 2004-06-10 2016-12-23 Fastener fixation device

Country Status (3)

Country Link
US (5) US20050278023A1 (en)
EP (1) EP1768616A4 (en)
WO (1) WO2005122956A2 (en)

Cited By (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040097930A1 (en) * 2002-08-27 2004-05-20 Justis Jeff R. Systems and methods for intravertebral reduction
US20060184246A1 (en) * 2004-06-10 2006-08-17 Zwirkoski Paul A Non-soft tissue repair
US20060265077A1 (en) * 2005-02-23 2006-11-23 Zwirkoski Paul A Spinal repair
US20070009557A1 (en) * 2005-06-22 2007-01-11 Heraeus Kulzer Gmbh Moldable implant material
US20070093822A1 (en) * 2005-09-28 2007-04-26 Christof Dutoit Apparatus and methods for vertebral augmentation using linked expandable bodies
WO2007076376A2 (en) * 2005-12-19 2007-07-05 Stout Medical Group, L.P. Expandable delivery device
WO2007076049A2 (en) * 2005-12-23 2007-07-05 Synthes (U.S.A.) Flexible elongated chain implant
WO2007089739A2 (en) 2006-01-27 2007-08-09 Stryker Corporation Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment
US20070233249A1 (en) * 2006-02-07 2007-10-04 Shadduck John H Methods for treating bone
US20070260313A1 (en) * 2004-07-14 2007-11-08 Bruno Sidler Filler, Supply Device and Method for Forming a Support Structure in a Bone Cavity
US20080125782A1 (en) * 2006-11-29 2008-05-29 Disc Dynamics, Inc. Method and apparatus for removing an extension from a prosthesis
WO2008089429A2 (en) * 2007-01-19 2008-07-24 University Of Southern California Acoustic back-scattering sensing screw for preventing spine surgery complications
WO2008100425A2 (en) * 2007-02-09 2008-08-21 Rubicor Medical, Inc. Methods and systems for marking post biopsy cavity sites
US20080228231A1 (en) * 2007-01-19 2008-09-18 University Of Southern California Acoustic Back-Scattering Sensing Screw for Preventing Spine Surgery Complications
US20080269904A1 (en) * 2007-04-26 2008-10-30 Voorhies Rand M Lumbar disc replacement implant for posterior implantation with dynamic spinal stabilization device and method
US20100114107A1 (en) * 2000-08-30 2010-05-06 Warsaw Orthopedic, Inc. Intervertebral Disc Nucleus Implants and Methods
US7713301B2 (en) 1994-05-06 2010-05-11 Disc Dynamics, Inc. Intervertebral disc prosthesis
US20100185290A1 (en) * 2007-06-29 2010-07-22 Curtis Compton Flexible chain implants and instrumentation
US20100203155A1 (en) * 2009-02-12 2010-08-12 Guobao Wei Segmented delivery system
US20100249720A1 (en) * 2009-03-31 2010-09-30 Ashok Biyani Integrated device for the storage and delivery of a bone graft or other implantable material to a surgical site
US20100318023A1 (en) * 2009-06-15 2010-12-16 Heraeus Medical Gmbh Medical system, pulling device and method for pulling an active substance chain
US20110077655A1 (en) * 2009-09-25 2011-03-31 Fisher Michael A Vertebral Body Spool Device
US20110106110A1 (en) * 2009-10-30 2011-05-05 Warsaw Orthopedic, Inc. Devices and methods for implanting a plurality of drug depots having one or more anchoring members
WO2011068451A2 (en) * 2009-12-01 2011-06-09 Erik Adolfsson Ceramic component for bone regeneration
US20110184515A1 (en) * 2004-08-11 2011-07-28 Nonliner Technologies Ltd. Devices For Introduction Into A Body Via A Substantially Straight Conduit To Form A Predefined Curved Configuration, And Methods Employing Such Devices
US20110196492A1 (en) * 2007-09-07 2011-08-11 Intrinsic Therapeutics, Inc. Bone anchoring systems
US8092536B2 (en) 2006-05-24 2012-01-10 Disc Dynamics, Inc. Retention structure for in situ formation of an intervertebral prosthesis
US8114082B2 (en) 2005-12-28 2012-02-14 Intrinsic Therapeutics, Inc. Anchoring system for disc repair
US20120065500A1 (en) * 2010-09-15 2012-03-15 Medtronic, Inc. Radiopaque embedded into desiccant for implantable medical device
US20120065503A1 (en) * 2010-09-15 2012-03-15 Medtronic, Inc. Radiopaque markers for implantable medical devices
US20120129133A1 (en) * 2008-01-09 2012-05-24 Kaigler Sr Darnell Implant pellets and methods for performing bone augmentation and preservation
US8231678B2 (en) 1999-08-18 2012-07-31 Intrinsic Therapeutics, Inc. Method of treating a herniated disc
US8257437B2 (en) * 1999-08-18 2012-09-04 Intrinsic Therapeutics, Inc. Methods of intervertebral disc augmentation
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
US20130041469A1 (en) * 2011-08-11 2013-02-14 Jeff Phelps Interbody axis cage
US8382762B2 (en) * 2001-09-19 2013-02-26 James K Brannon Endoscopic bone debridement
US8409289B2 (en) 2004-06-07 2013-04-02 Dfine, Inc. Implants and methods for treating bone
US20130090690A1 (en) * 2011-10-06 2013-04-11 David A. Walsh Dynamic Rod Assembly
US8454617B2 (en) 2005-08-16 2013-06-04 Benvenue Medical, Inc. Devices for treating the spine
US8465524B2 (en) 2004-08-11 2013-06-18 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US8556978B2 (en) 2005-08-16 2013-10-15 Benvenue Medical, Inc. Devices and methods for treating the vertebral body
US8591583B2 (en) 2005-08-16 2013-11-26 Benvenue Medical, Inc. Devices for treating the spine
US8709042B2 (en) 2004-09-21 2014-04-29 Stout Medical Group, LP Expandable support device and method of use
US20140135810A1 (en) * 2012-11-13 2014-05-15 Covidien Lp Occlusive devices
US8814873B2 (en) 2011-06-24 2014-08-26 Benvenue Medical, Inc. Devices and methods for treating bone tissue
US8845649B2 (en) 2004-09-24 2014-09-30 Roger P. Jackson Spinal fixation tool set and method for rod reduction and fastener insertion
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US8870928B2 (en) 2002-09-06 2014-10-28 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US8894657B2 (en) 2004-02-27 2014-11-25 Roger P. Jackson Tool system for dynamic spinal implants
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US8998960B2 (en) 2004-11-10 2015-04-07 Roger P. Jackson Polyaxial bone screw with helically wound capture connection
US9050139B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9050112B2 (en) 2011-08-23 2015-06-09 Flexmedex, LLC Tissue removal device and method
US9055978B2 (en) 2004-02-27 2015-06-16 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US20150216521A1 (en) * 2014-02-05 2015-08-06 Coloplast A/S Kit of parts for surgical anchor placement, method for preparing the kit of parts and a method for surgical anchor placement
US9144444B2 (en) 2003-06-18 2015-09-29 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US9211150B2 (en) 2004-11-23 2015-12-15 Roger P. Jackson Spinal fixation tool set and method
US9216039B2 (en) 2004-02-27 2015-12-22 Roger P. Jackson Dynamic spinal stabilization assemblies, tool set and method
US9220554B2 (en) 2010-02-18 2015-12-29 Globus Medical, Inc. Methods and apparatus for treating vertebral fractures
JP2016509911A (en) * 2013-03-15 2016-04-04 ネオススルヘリー ソシエダッド リミターダ Device for repairing the intervertebral disc
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US9504496B2 (en) 2009-06-15 2016-11-29 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9522021B2 (en) 2004-11-23 2016-12-20 Roger P. Jackson Polyaxial bone anchor with retainer with notch for mono-axial motion
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US9662143B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Dynamic fixation assemblies with inner core and outer coil-like member
US9706947B2 (en) 1999-08-18 2017-07-18 Intrinsic Therapeutics, Inc. Method of performing an anchor implantation procedure within a disc
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9743957B2 (en) 2004-11-10 2017-08-29 Roger P. Jackson Polyaxial bone screw with shank articulation pressure insert and method
US9770339B2 (en) 2005-07-14 2017-09-26 Stout Medical Group, L.P. Expandable support device and method of use
US9788963B2 (en) 2003-02-14 2017-10-17 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9907574B2 (en) 2008-08-01 2018-03-06 Roger P. Jackson Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
US9918745B2 (en) 2009-06-15 2018-03-20 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US9974655B1 (en) * 2016-12-19 2018-05-22 Perumala Corporation Disc and vertebral defect packing tape
US10039577B2 (en) 2004-11-23 2018-08-07 Roger P Jackson Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US10070968B2 (en) 2010-08-24 2018-09-11 Flexmedex, LLC Support device and method for use
US20180263780A1 (en) * 2016-12-19 2018-09-20 Perumala Corporation Disc and Vertebral Defect Packing Tape
US20180271659A1 (en) * 2015-01-09 2018-09-27 Formae, Inc. Rigid segmented flexible anchors
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
US10285819B2 (en) 2008-11-12 2019-05-14 Stout Medical Group, L.P. Fixation device and method
US10299839B2 (en) 2003-12-16 2019-05-28 Medos International Sárl Percutaneous access devices and bone anchor assemblies
US10349983B2 (en) 2003-05-22 2019-07-16 Alphatec Spine, Inc. Pivotal bone anchor assembly with biased bushing for pre-lock friction fit
US10384048B2 (en) 2014-07-25 2019-08-20 Warsaw Orthopedic, Inc. Drug delivery device and methods having an occluding member
US10478603B2 (en) 2014-07-25 2019-11-19 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10485588B2 (en) 2004-02-27 2019-11-26 Nuvasive, Inc. Spinal fixation tool attachment structure
US10549081B2 (en) 2016-06-23 2020-02-04 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10758289B2 (en) 2006-05-01 2020-09-01 Stout Medical Group, L.P. Expandable support device and method of use
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10912647B2 (en) * 2015-08-25 2021-02-09 Innovein, Inc. Vascular valve prosthesis
US10932839B2 (en) 2017-12-19 2021-03-02 Stryker Corporation Systems and methods for delivering elements within a fluent material to an off-axis target site within a bone structure
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10940014B2 (en) 2008-11-12 2021-03-09 Stout Medical Group, L.P. Fixation device and method
US10966840B2 (en) 2010-06-24 2021-04-06 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US10973652B2 (en) 2007-06-26 2021-04-13 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US11234745B2 (en) 2005-07-14 2022-02-01 Roger P. Jackson Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US11273050B2 (en) 2006-12-07 2022-03-15 DePuy Synthes Products, Inc. Intervertebral implant
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11446155B2 (en) 2017-05-08 2022-09-20 Medos International Sarl Expandable cage
US11452607B2 (en) 2010-10-11 2022-09-27 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US11478587B2 (en) 2016-11-08 2022-10-25 Warsaw Orthopedic, Inc. Drug depot delivery system and method
US11497619B2 (en) 2013-03-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US20220409387A1 (en) * 2021-06-23 2022-12-29 Oluwatodimu Richard Raji Methods and systems for facilitating treatment of lumbar degenerative disc disease based on total nucleus replacement using magnetic spherical beads
US11564797B2 (en) 2015-08-25 2023-01-31 Innovein, Inc. Venous valve prosthesis
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
US11602438B2 (en) 2008-04-05 2023-03-14 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11607321B2 (en) 2009-12-10 2023-03-21 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US11612491B2 (en) 2009-03-30 2023-03-28 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US11633818B2 (en) 2019-11-04 2023-04-25 Covidien Lp Devices, systems, and methods for treatment of intracranial aneurysms
US11654033B2 (en) 2010-06-29 2023-05-23 DePuy Synthes Products, Inc. Distractible intervertebral implant
US11707371B2 (en) 2008-05-13 2023-07-25 Covidien Lp Braid implant delivery systems
US11737881B2 (en) 2008-01-17 2023-08-29 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11759614B2 (en) 2015-11-23 2023-09-19 Warsaw Orthopedic, Inc. Enhanced stylet for drug depot injector
US11844528B2 (en) 2008-04-21 2023-12-19 Covidien Lp Multiple layer filamentary devices for treatment of vascular defects
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11911287B2 (en) 2010-06-24 2024-02-27 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530120A (en) * 2004-03-26 2007-11-01 ヌヴァシヴ インコーポレイテッド Porous implant for spinal disc nucleus pulposus replacement
US8048083B2 (en) 2004-11-05 2011-11-01 Dfine, Inc. Bone treatment systems and methods
US20090012525A1 (en) * 2005-09-01 2009-01-08 Eric Buehlmann Devices and systems for delivering bone fill material
WO2007056185A2 (en) * 2005-11-04 2007-05-18 Ceramatec, Inc. Process of making ceramic, mineral and metal beads from powder
WO2007127255A2 (en) 2006-04-26 2007-11-08 Illuminoss Medical, Inc. Apparatus and methods for reinforcing bone
US7806900B2 (en) 2006-04-26 2010-10-05 Illuminoss Medical, Inc. Apparatus and methods for delivery of reinforcing materials to bone
EP2091445B1 (en) 2006-11-10 2015-03-11 Illuminoss Medical, Inc. Systems for internal bone fixation
US7879041B2 (en) 2006-11-10 2011-02-01 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US8758407B2 (en) * 2006-12-21 2014-06-24 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing orthopedic implant device in vivo
US8663328B2 (en) * 2006-12-21 2014-03-04 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing component of an orthopedic implant device by inserting a malleable device that hardens in vivo
US8282681B2 (en) 2007-08-13 2012-10-09 Nuvasive, Inc. Bioresorbable spinal implant and related methods
WO2009039171A2 (en) * 2007-09-17 2009-03-26 Linares Medical Devices, Llc Artificial joint support between first and second bones
US9427289B2 (en) 2007-10-31 2016-08-30 Illuminoss Medical, Inc. Light source
US8403968B2 (en) 2007-12-26 2013-03-26 Illuminoss Medical, Inc. Apparatus and methods for repairing craniomaxillofacial bones using customized bone plates
US8377135B1 (en) 2008-03-31 2013-02-19 Nuvasive, Inc. Textile-based surgical implant and related methods
US20100076463A1 (en) * 2008-04-04 2010-03-25 Akshay Mavani Implantable fistula closure device
US8974462B2 (en) 2008-06-13 2015-03-10 Pivot Medical, Inc. Devices and methods for minimally invasive access into a joint
EP2317942B1 (en) 2008-06-13 2020-02-12 Stryker Corporation Apparatus for joint distraction
CA2735748C (en) 2008-09-04 2017-08-29 Curaseal Inc. Inflatable devices for enteric fistula treatment
US9433436B2 (en) 2008-11-20 2016-09-06 Bioactive Surgical Inc. Therapeutic material delivery system for tissue voids and cannulated implants
US8317799B2 (en) * 2008-11-20 2012-11-27 Bioactive Surgical, Inc. Therapeutic material delivery system for tissue voids and cannulated implants
US8864773B2 (en) * 2009-01-14 2014-10-21 Globus Medical, Inc. Devices and methods for treating vertebral fractures
US20100198140A1 (en) * 2009-02-05 2010-08-05 Kevin Jon Lawson Percutaneous tools and bone pellets for vertebral body reconstruction
CA2754905A1 (en) * 2009-03-17 2010-09-23 Pivot Medical, Inc. Method and apparatus for distracting a joint, including the provision and use of a novel joint-spacing balloon catheter and a novel inflatable perineal post
US9186181B2 (en) 2009-03-17 2015-11-17 Pivot Medical, Inc. Method and apparatus for distracting a joint
US10426453B2 (en) 2009-03-17 2019-10-01 Pivot Medical, Inc. Method and apparatus for distracting a joint
US8210729B2 (en) 2009-04-06 2012-07-03 Illuminoss Medical, Inc. Attachment system for light-conducting fibers
US8512338B2 (en) 2009-04-07 2013-08-20 Illuminoss Medical, Inc. Photodynamic bone stabilization systems and methods for reinforcing bone
US8236343B2 (en) * 2009-05-18 2012-08-07 Jamali Amir A Method and apparatus for in situ drug delivery during distraction osteogenesis
US9039784B2 (en) * 2009-07-28 2015-05-26 Southwest Research Institute Micro-structure particles for load bearing bone growth
WO2011017489A1 (en) 2009-08-05 2011-02-10 Tyco Healthcare Group Lp Surgical wound dressing incorporating connected hydrogel beads having an embedded electrode therein
AU2010328680B2 (en) 2009-08-19 2014-10-23 Illuminoss Medical, Inc. Devices and methods for bone alignment, stabilization and distraction
US9028553B2 (en) 2009-11-05 2015-05-12 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US8858592B2 (en) 2009-11-24 2014-10-14 Covidien Lp Wound plugs
US8721649B2 (en) 2009-12-04 2014-05-13 Pivot Medical, Inc. Hip joint access using a circumferential wire and balloon
CN105125323B (en) 2010-03-10 2017-04-12 奥斯-Q公司 Implants and methods for correcting tissue defects
US8684965B2 (en) 2010-06-21 2014-04-01 Illuminoss Medical, Inc. Photodynamic bone stabilization and drug delivery systems
GB2481974A (en) * 2010-07-12 2012-01-18 Biocomposites Ltd Bone cement pellet mould
EP2637728A4 (en) 2010-11-08 2015-05-06 Pivot Medical Inc Method and apparatus for distracting a joint
US8512408B2 (en) 2010-12-17 2013-08-20 Warsaw Orthopedic, Inc. Flexiable spinal implant
EP2654584A1 (en) 2010-12-22 2013-10-30 Illuminoss Medical, Inc. Systems and methods for treating conditions and diseases of the spine
US8231624B1 (en) * 2010-12-22 2012-07-31 Strippgen Walter E Dynamic surgical implant
US9023085B2 (en) 2010-12-22 2015-05-05 Walter E. Strippgen Dynamic surgical implant
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
AU2012231108B2 (en) 2011-03-22 2015-10-22 DePuy Synthes Products, LLC Universal trial for lateral cages
WO2012158208A2 (en) * 2011-05-08 2012-11-22 Spinal Ventures, Llc Implant and fastener fixation devices and delivery instrumentation
JP6122424B2 (en) 2011-06-16 2017-04-26 キュラシール インコーポレイテッド Device for fistula treatment and related method
CN103841903B (en) 2011-06-17 2017-06-09 库拉希尔公司 For the device and method of fistula treatment
EP2730255A3 (en) * 2011-07-05 2014-08-06 Expanding Orthopedics, Inc. Bone structural device
US8936644B2 (en) 2011-07-19 2015-01-20 Illuminoss Medical, Inc. Systems and methods for joint stabilization
JP2014533965A (en) 2011-07-19 2014-12-18 イルミンオス・メディカル・インコーポレイテッドIlluminOss Medical, Inc. Apparatus and method for bone reconstruction and stabilization
US9463046B2 (en) 2011-08-22 2016-10-11 Ossdsign Ab Implants and methods for using such implants to fill holes in bone tissue
US9226764B2 (en) 2012-03-06 2016-01-05 DePuy Synthes Products, Inc. Conformable soft tissue removal instruments
US8939977B2 (en) 2012-07-10 2015-01-27 Illuminoss Medical, Inc. Systems and methods for separating bone fixation devices from introducer
DE102012213246A1 (en) 2012-07-27 2014-01-30 Aesculap Ag Support unit in oligopodus form useful as tissue repair material e.g. bone substitute for treating tissue defects e.g. bone defects, and filling bone cavities
US9226831B2 (en) * 2012-08-27 2016-01-05 Globus Medical, Inc. Intervertebral implant
US9101487B2 (en) * 2012-08-27 2015-08-11 Globus Medical, Inc. Intevertebral implant
US10786235B2 (en) 2012-10-31 2020-09-29 Anchor Innovation Medical, Inc. Method and apparatus for closing a fissure in the annulus of an intervertebral disc, and/or for effecting other anatomical repairs and/or fixations
US9433404B2 (en) 2012-10-31 2016-09-06 Suture Concepts Inc. Method and apparatus for closing fissures in the annulus fibrosus
US10022245B2 (en) 2012-12-17 2018-07-17 DePuy Synthes Products, Inc. Polyaxial articulating instrument
US9687281B2 (en) 2012-12-20 2017-06-27 Illuminoss Medical, Inc. Distal tip for bone fixation devices
US9220597B2 (en) 2013-02-12 2015-12-29 Ossdsign Ab Mosaic implants, kits and methods for correcting bone defects
EP2956088A2 (en) 2013-02-12 2015-12-23 OssDsign AB Mosaic implants, kits and methods for correcting bone defects
US9788971B1 (en) 2013-05-22 2017-10-17 Nuvasive, Inc. Expandable fusion implant and related methods
WO2015024013A2 (en) 2013-08-16 2015-02-19 Suture Concepts Inc. Method and apparatus for closing a fissure in the annulus of an intervertebral disc, and/or for effecting other anatomical repairs and/or fixations
US10285684B2 (en) 2013-09-26 2019-05-14 Medos International Sàrl Self-assembling suture anchor assembly, surgical kit, and surgical repair method
TWI528938B (en) * 2014-03-21 2016-04-11 Spirit Spine Holdings Corp Inc Bone fixation device
CN105011993B (en) * 2014-04-17 2018-06-01 思必瑞特脊椎股份有限公司 Bone anchoring device
BR112017002863A2 (en) 2014-08-14 2018-01-30 Ossdsign Ab bone implants for correction of bone defects
US9561026B2 (en) 2014-08-19 2017-02-07 Depuy Mitek, Llc Segmented suture anchor
US11234833B2 (en) 2015-05-12 2022-02-01 Nuvasive, Inc. Expandable lordosis intervertebral implants
US10945739B2 (en) 2015-05-21 2021-03-16 Ecole Polytechnique Federale De Lausanne (Epel) Device and method for injection, photoactivation and solidifaction of liquid embolic material in the vascular system or other organic cavities
WO2017032901A1 (en) * 2015-08-26 2017-03-02 Brevexco Sprl System for the intraosseous attachment of a flexible wire intended for anchoring ligament tissue to bone
US10898332B2 (en) 2015-11-24 2021-01-26 Ossdsign Ab Bone implants and methods for correcting bone defects
US10596660B2 (en) 2015-12-15 2020-03-24 Howmedica Osteonics Corp. Porous structures produced by additive layer manufacturing
WO2017117513A1 (en) 2015-12-30 2017-07-06 Nuvasive, Inc. Lordotic expandable fusion implant
US11833034B2 (en) 2016-01-13 2023-12-05 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US10034771B2 (en) * 2016-05-11 2018-07-31 Warsaw Orthopedic, Inc. Spinal implant system and method
AR108432A1 (en) * 2017-05-10 2018-08-22 Jorge Alberto Vanetta BONE FILLING AND BONE FILLING DEVICE; AUXILIARY TOOL AND PLACEMENT AND FILLING METHODS
US11628517B2 (en) 2017-06-15 2023-04-18 Howmedica Osteonics Corp. Porous structures produced by additive layer manufacturing
US10966843B2 (en) 2017-07-18 2021-04-06 DePuy Synthes Products, Inc. Implant inserters and related methods
US11045331B2 (en) 2017-08-14 2021-06-29 DePuy Synthes Products, Inc. Intervertebral implant inserters and related methods
EP3479798B1 (en) 2017-11-03 2023-06-21 Howmedica Osteonics Corp. Flexible construct for femoral reconstruction
US11273047B2 (en) 2017-12-18 2022-03-15 Nuvasive, Inc. Expandable implant device
EP3813696A4 (en) 2018-06-27 2022-04-13 IlluminOss Medical, Inc. Systems and methods for bone stabilization and fixation
WO2020072469A1 (en) * 2018-10-01 2020-04-09 K2M, Inc. Graft scaffold
JP2022504241A (en) 2018-10-05 2022-01-13 シファメド・ホールディングス・エルエルシー Artificial heart valve device, system, and method
US11471282B2 (en) 2019-03-19 2022-10-18 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
EP4051184A4 (en) * 2019-10-30 2023-11-29 Shifamed Holdings, LLC Prosthetic cardiac valve delivery devices, systems, and methods
EP4197494A1 (en) * 2021-12-17 2023-06-21 Heraeus Medical GmbH Augmentation device, composite and method for making a composite

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1347622A (en) * 1919-03-29 1920-07-27 Arthur E Deininger Vaccine-injector
US2659369A (en) * 1952-11-13 1953-11-17 Michael G Lipman Pellet implanter
US3882858A (en) * 1973-04-21 1975-05-13 Merck Patent Gmbh Surgical synthetic-resin material and method of treating osteomyelitis
US4191740A (en) * 1976-11-11 1980-03-04 Merck Patent Gesellschaft Mit Beschrankter Haftung Synthetic resin-base, antibiotic compositions containing amino acids
US4969888A (en) * 1989-02-09 1990-11-13 Arie Scholten Surgical protocol for fixation of osteoporotic bone using inflatable device
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5702454A (en) * 1993-04-21 1997-12-30 Sulzer Orthopadie Ag Process for implanting an invertebral prosthesis
US5756127A (en) * 1996-10-29 1998-05-26 Wright Medical Technology, Inc. Implantable bioresorbable string of calcium sulfate beads
US5958465A (en) * 1996-02-22 1999-09-28 Merck Patent Gesellschaft Apparatus for the production of drug-containing implants in the form of strings of beads
US6048346A (en) * 1997-08-13 2000-04-11 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US6183768B1 (en) * 1995-07-26 2001-02-06 HäRLE ANTON Implantable medicine releasing corpuscles and method of making, implanting and removing the same
US6231615B1 (en) * 1997-10-14 2001-05-15 Parallax Medical, Inc. Enhanced visibility materials for implantation in hard tissue
US6348055B1 (en) * 1999-03-24 2002-02-19 Parallax Medical, Inc. Non-compliant system for delivery of implant material
US6387130B1 (en) * 1999-04-16 2002-05-14 Nuvasive, Inc. Segmented linked intervertebral implant systems
US6395007B1 (en) * 1999-03-16 2002-05-28 American Osteomedix, Inc. Apparatus and method for fixation of osteoporotic bone
US20020068974A1 (en) * 2000-07-21 2002-06-06 Kuslich Stephen D. Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
US20020147497A1 (en) * 2001-04-06 2002-10-10 Integrated Vascular Systems, Inc. Methods for treating spinal discs
US20020183761A1 (en) * 2001-03-08 2002-12-05 Wes Johnson Tissue distraction device
US20030028251A1 (en) * 2001-07-30 2003-02-06 Mathews Hallett H. Methods and devices for interbody spinal stabilization
US6579533B1 (en) * 1999-11-30 2003-06-17 Bioasborbable Concepts, Ltd. Bioabsorbable drug delivery system for local treatment and prevention of infections
US6620162B2 (en) * 2001-07-20 2003-09-16 Spineology, Inc. Device for inserting fill material particles into body cavities
US20030229372A1 (en) * 1994-01-26 2003-12-11 Kyphon Inc. Inflatable device for use in surgical protocols relating to treatment of fractured or diseased bone
US6663647B2 (en) * 1994-01-26 2003-12-16 Kyphon Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US20040010314A1 (en) * 2002-06-12 2004-01-15 Pentax Corporation Bone replacement material
US6713083B1 (en) * 1996-03-15 2004-03-30 Johnson & Johnson Medical, Ltd. Coated bioabsorbable beads for wound treatment
US20040097930A1 (en) * 2002-08-27 2004-05-20 Justis Jeff R. Systems and methods for intravertebral reduction
US20040249464A1 (en) * 2003-06-05 2004-12-09 Bindseil James J. Bone implants and methods of making same
US6960215B2 (en) * 2002-05-08 2005-11-01 Boston Scientific Scimed, Inc. Tactical detachable anatomic containment device and therapeutic treatment system

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US919205A (en) * 1907-08-23 1909-04-20 Henry B Newhall Expansion bolt-anchor.
US1445817A (en) * 1921-05-02 1923-02-20 B A Ballou & Company Inc Neck-chain fastener
US1607996A (en) * 1925-07-02 1926-11-23 Herbert J W Morgenthaler Surgical tourniquet
US1994561A (en) * 1933-12-05 1935-03-19 Akron Standard Mold Co Tire building machine
US2097099A (en) * 1936-02-03 1937-10-26 Prentice G E Mfg Co Fastener
US2260700A (en) * 1940-02-03 1941-10-28 Bloom Gertrude Glove holder
US2378655A (en) * 1942-04-06 1945-06-19 Mc Gill Mfg Co Switch mechanism
US2490364A (en) * 1948-02-27 1949-12-06 Herman H Livingston Bone pin
US2624457A (en) * 1949-01-26 1953-01-06 Theodore M Jablon Bead chain type article or key holder and display means therefor
US2668710A (en) * 1949-09-14 1954-02-09 Richard F Carlson Golf tee
US2659396A (en) 1952-05-15 1953-11-17 Floyd L Lewis Shake board resawing machine
US3023471A (en) * 1958-09-22 1962-03-06 Nabuda John Adjustable clip
US3170311A (en) * 1962-09-24 1965-02-23 Sally F Raphael Necklace with means for shortening the effective length thereof
US3385050A (en) * 1966-03-08 1968-05-28 Auto Swage Products Inc Beaded chain
US3386240A (en) * 1966-04-13 1968-06-04 Blumstein Abraham Bead chain link
US3590519A (en) * 1969-01-23 1971-07-06 Athelstan F Spilhaus Beaded chain-descending toy
US3639137A (en) * 1969-10-09 1972-02-01 Ncr Co Metal fastening coated with pressure-activatable encapsulated sealant system
US3780400A (en) * 1972-09-11 1973-12-25 C Hinsperger Fastener for flexible sheet material
DE7235643U (en) * 1972-09-28 1974-06-27 Fischer A Femoral head prosthesis
US4038703A (en) * 1975-11-14 1977-08-02 General Atomic Company Prosthetic devices having a region of controlled porosity
DE2651441A1 (en) 1976-11-11 1978-05-24 Merck Patent Gmbh Compsn. contg. polyacrylate or polymethacrylate and antibiotic - with aminoacid added to control antibiotic release, esp. useful as cements in bone surgery
US4286360A (en) * 1980-03-10 1981-09-01 Laurel Enterprises Jewelry clasp
DE3279436D1 (en) 1981-03-19 1989-03-16 Merck Patent Gmbh CORPUSCULES CONTAINING MEDICAMENTS
US4430033A (en) * 1981-04-22 1984-02-07 Microdot Inc. Sheet metal insert for foam plastic
US4514125A (en) * 1982-03-19 1985-04-30 Invocas, Inc. Fastener improvement including introduction of selected capsule of adhesive into porous basket hung in bore for activation by fastener installation
FI73300C (en) * 1982-11-10 1987-09-10 Hilti Ag HYLSFORMIG EXPANDERPROPP.
JPS60191836A (en) 1984-03-12 1985-09-30 Ikeda Bussan Co Ltd Damper device for vehicle seat
DE3445738A1 (en) * 1984-12-14 1986-06-19 Draenert Klaus IMPLANT FOR BONE REINFORCEMENT AND ANCHORING OF BONE SCREWS, IMPLANTS OR IMPLANT PARTS
US4654017A (en) * 1985-03-22 1987-03-31 Stein David B Apparatus for forming and controlling large-volume bubbles
US5133755A (en) * 1986-01-28 1992-07-28 Thm Biomedical, Inc. Method and apparatus for diodegradable, osteogenic, bone graft substitute device
US4752170A (en) * 1986-09-04 1988-06-21 Mechanical Plastics Corp. Fastening device with nesting anchoring elements
DE3809571A1 (en) 1987-10-27 1989-04-06 Heil Hans Magnetic jawbone implant
DE59100448D1 (en) * 1990-04-20 1993-11-11 Sulzer Ag Implant, in particular intervertebral prosthesis.
US5372146A (en) * 1990-11-06 1994-12-13 Branch; Thomas P. Method and apparatus for re-approximating tissue
US5161296A (en) * 1991-07-30 1992-11-10 Mechanical Plastics Corp Method of securing an anchor with extrusion plastic molding in a solid wall substrate
US5505736A (en) * 1992-02-14 1996-04-09 American Cyanamid Company Surgical fastener with selectively coated ridges
US5534023A (en) * 1992-12-29 1996-07-09 Henley; Julian L. Fluid filled prosthesis excluding gas-filled beads
US5339618A (en) * 1993-09-29 1994-08-23 Sawyer Gerald F Pull chain adapter
US5423829A (en) * 1993-11-03 1995-06-13 Target Therapeutics, Inc. Electrolytically severable joint for endovascular embolic devices
SE9304093L (en) * 1993-12-09 1995-05-02 Nobelpharma Ab Device for promoting bone growth
WO1995020362A1 (en) * 1994-01-26 1995-08-03 Reiley Mark A Improved inflatable device for use in surgical protocol relating to fixation of bone
US20030032963A1 (en) * 2001-10-24 2003-02-13 Kyphon Inc. Devices and methods using an expandable body with internal restraint for compressing cancellous bone
US5538514A (en) * 1994-04-07 1996-07-23 Zimmer, Inc. Method for forming bone cement to an implant
ATE203885T1 (en) * 1994-09-08 2001-08-15 Stryker Technologies Corp HYDROGEL DISC CORE
US5824093A (en) * 1994-10-17 1998-10-20 Raymedica, Inc. Prosthetic spinal disc nucleus
EP0734697B1 (en) * 1995-03-30 2002-10-30 Boston Scientific Limited System for the implantation of liquid coils with secondary shape
JP3689146B2 (en) * 1995-05-30 2005-08-31 ペンタックス株式会社 Elements for screw fixation to bone
ATE349190T1 (en) * 1995-11-08 2007-01-15 Zimmer Gmbh DEVICE FOR INSERTING AN IMPLANT, IN PARTICULAR AN INTERVERBAL PROSTHESIS
US5749894A (en) * 1996-01-18 1998-05-12 Target Therapeutics, Inc. Aneurysm closure method
US5782917A (en) * 1996-02-26 1998-07-21 Sunmed, Inc. Intramedullary bone plug
US20030110798A1 (en) * 1996-04-08 2003-06-19 Ignatowski Patricia M. Three-piece convertible eyeglass retainer/jewelry article
US6520635B1 (en) * 1996-04-08 2003-02-18 Patricia M. Ignatowski Ornamental eyewear
US5849004A (en) * 1996-07-17 1998-12-15 Bramlet; Dale G. Surgical anchor
US5964797A (en) * 1996-08-30 1999-10-12 Target Therapeutics, Inc. Electrolytically deployable braided vaso-occlusion device
US7083647B1 (en) * 1996-11-27 2006-08-01 Sklar Joseph H Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel
US6554862B2 (en) * 1996-11-27 2003-04-29 Ethicon, Inc. Graft ligament anchor and method for attaching a graft ligament to a bone
DE19710392C1 (en) * 1997-03-13 1999-07-01 Haehnel Michael Slipped disc implant comprises an extensible, hinged or wound body
US5997580A (en) * 1997-03-27 1999-12-07 Johnson & Johnson Professional, Inc. Cement restrictor including shape memory material
US5983385A (en) 1997-08-14 1999-11-09 Ericsson Inc. Communications systems and methods employing parallel coding without interleaving
US5906632A (en) * 1997-10-03 1999-05-25 Innovasive Devices, Inc. Intratunnel attachment device and system for a flexible load-bearing structure and method of use
US5984926A (en) 1998-02-24 1999-11-16 Jones; A. Alexander M. Bone screw shimming and bone graft containment system and method
WO1999049819A1 (en) 1998-04-01 1999-10-07 Parallax Medical, Inc. Pressure applicator for hard tissue implant placement
US5938385A (en) * 1998-05-22 1999-08-17 Garfield; Nathaniel H. Nested solid, solid wall anchor
US6355066B1 (en) * 1998-08-19 2002-03-12 Andrew C. Kim Anterior cruciate ligament reconstruction hamstring tendon fixation system
US6299448B1 (en) * 1999-02-17 2001-10-09 Ivanka J. Zdrahala Surgical implant system for restoration and repair of body function
WO2000054821A1 (en) 1999-03-16 2000-09-21 Regeneration Technologies, Inc. Molded implants for orthopedic applications
US6245107B1 (en) * 1999-05-28 2001-06-12 Bret A. Ferree Methods and apparatus for treating disc herniation
AU5179900A (en) * 1999-06-02 2000-12-18 Sethel Interventional, Inc. Intracorporeal occlusive device
US6251143B1 (en) * 1999-06-04 2001-06-26 Depuy Orthopaedics, Inc. Cartilage repair unit
US6620169B1 (en) 1999-08-26 2003-09-16 Spineology Group, Llc. Tools and method for processing and injecting bone graft
US6383188B2 (en) * 2000-02-15 2002-05-07 The Spineology Group Llc Expandable reamer
US6899716B2 (en) * 2000-02-16 2005-05-31 Trans1, Inc. Method and apparatus for spinal augmentation
EP1255515B1 (en) * 2000-02-18 2008-06-11 IsoTis N.V. Plug for insertion into a bone canal
US6746483B1 (en) * 2000-03-16 2004-06-08 Smith & Nephew, Inc. Sheaths for implantable fixation devices
US7025771B2 (en) * 2000-06-30 2006-04-11 Spineology, Inc. Tool to direct bone replacement material
US9452238B2 (en) * 2000-07-29 2016-09-27 Smith & Nephew LLP Tissue implant
US6620196B1 (en) * 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US20020026244A1 (en) * 2000-08-30 2002-02-28 Trieu Hai H. Intervertebral disc nucleus implants and methods
AU2001243287A1 (en) 2000-10-10 2002-04-22 Vertx, Inc. Method and appartus for treating a vertebral body
WO2002043628A1 (en) 2000-12-01 2002-06-06 Sabitzer Ronald J Method and device for expanding a body cavity
AU2002246690B2 (en) * 2000-12-15 2006-02-02 Spineology, Inc. Annulus- reinforcing band
US6562033B2 (en) * 2001-04-09 2003-05-13 Baylis Medical Co. Intradiscal lesioning apparatus
US6557376B2 (en) * 2001-04-13 2003-05-06 Ronald Pratt Adjustable self-stopping strung beads and method of making same
US6616673B1 (en) * 2001-04-19 2003-09-09 Biomet, Inc. Segmented joint distractor
US6606764B2 (en) * 2001-06-12 2003-08-19 Ball Chain Manufacturing Co., Inc. Beaded chain connector
US6860691B2 (en) * 2001-06-18 2005-03-01 John Duncan Unsworth Self adjusting, high strength, screw system
EP1399100A1 (en) * 2001-06-27 2004-03-24 Mathys Medizinaltechnik AG Intervertebral disk prosthesis
WO2003007854A1 (en) 2001-07-20 2003-01-30 The Spineology Group, Llc Device for inserting fill material particles into body cavities
US7543460B2 (en) * 2001-10-17 2009-06-09 Barbara Cruise Multiple interchangeable carrier attachment system
US6719765B2 (en) * 2001-12-03 2004-04-13 Bonutti 2003 Trust-A Magnetic suturing system and method
US20030171812A1 (en) 2001-12-31 2003-09-11 Ilan Grunberg Minimally invasive modular support implant device and method
US7445629B2 (en) * 2002-01-31 2008-11-04 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
JP4319980B2 (en) * 2002-06-11 2009-08-26 タイコ ヘルスケア グループ エルピー Hernia mesh tack
US7166133B2 (en) * 2002-06-13 2007-01-23 Kensey Nash Corporation Devices and methods for treating defects in the tissue of a living being
US7086991B2 (en) * 2002-07-19 2006-08-08 Michael Edward Williams Rope climbing simulator
US6773450B2 (en) * 2002-08-09 2004-08-10 Quill Medical, Inc. Suture anchor and method
US20040088003A1 (en) * 2002-09-30 2004-05-06 Leung Jeffrey C. Barbed suture in combination with surgical needle
US7497864B2 (en) * 2003-04-30 2009-03-03 Marctec, Llc. Tissue fastener and methods for using same
CN2628289Y (en) * 2003-08-01 2004-07-28 周太和 Pearl beading with improved structure
EP1729672A2 (en) * 2004-01-08 2006-12-13 Spine Wave, Inc. Apparatus and method for injecting fluent material at a distracted tissue site
US7001124B2 (en) * 2004-02-05 2006-02-21 Illinois Tool Works Inc. Anchor
NZ588140A (en) * 2004-05-14 2012-05-25 Quill Medical Inc Suture methods and device using an enlongated body with cut barbs and a needle at one end and a loop at the other
US20060095138A1 (en) * 2004-06-09 2006-05-04 Csaba Truckai Composites and methods for treating bone
US20050278023A1 (en) 2004-06-10 2005-12-15 Zwirkoski Paul A Method and apparatus for filling a cavity
JP4850836B2 (en) * 2004-08-18 2012-01-11 スキャンディウス・バイオメディカル・インコーポレーテッド Method and apparatus for reconstructing a ligament
US9463012B2 (en) * 2004-10-26 2016-10-11 P Tech, Llc Apparatus for guiding and positioning an implant
US8128658B2 (en) * 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US7905904B2 (en) * 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8137382B2 (en) * 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US7309357B2 (en) * 2004-12-30 2007-12-18 Infinesse, Corporation Prosthetic spinal discs
CA2602201C (en) * 2005-03-24 2013-03-12 Synthes Gmbh Device for the cement augmentation of bone implants
US8080061B2 (en) * 2005-06-20 2011-12-20 Synthes Usa, Llc Apparatus and methods for treating bone
AU2006279558B2 (en) * 2005-08-16 2012-05-17 Izi Medical Products, Llc Spinal tissue distraction devices
US20070093822A1 (en) * 2005-09-28 2007-04-26 Christof Dutoit Apparatus and methods for vertebral augmentation using linked expandable bodies
US20070093906A1 (en) * 2005-10-26 2007-04-26 Zimmer Spine, Inc. Nucleus implant and method
US8801783B2 (en) * 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US9468433B2 (en) * 2006-02-03 2016-10-18 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8652171B2 (en) * 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8672969B2 (en) * 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US8226714B2 (en) * 2006-09-29 2012-07-24 Depuy Mitek, Inc. Femoral fixation
US7879041B2 (en) * 2006-11-10 2011-02-01 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US8070797B2 (en) * 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
BRPI0907787B8 (en) * 2008-02-21 2021-06-22 Angiotech Pharm Inc method for forming a self-retaining suture and apparatus for raising the retainers in a suture to a desired angle
US8641732B1 (en) * 2008-02-26 2014-02-04 Ethicon, Inc. Self-retaining suture with variable dimension filament and method
EP2282681B1 (en) * 2008-04-15 2018-12-12 Ethicon, LLC Self-retaining sutures with bi-directional retainers or uni-directional retainers
US8961560B2 (en) * 2008-05-16 2015-02-24 Ethicon, Inc. Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
US8968373B2 (en) * 2008-07-24 2015-03-03 Warsaw Orthopedic, Inc. Cortical tenting screw
US8757697B2 (en) * 2008-10-22 2014-06-24 Michael P Held Mechanized or motored retractable enclosure panels and their support brackets
US8246007B2 (en) * 2009-10-05 2012-08-21 Marie Manvel Indicator pull lead
US8012155B2 (en) * 2009-04-02 2011-09-06 Zimmer, Inc. Apparatus and method for prophylactic hip fixation
US8377136B2 (en) * 2009-04-20 2013-02-19 Warsaw Orthopedic, Inc. Method for stabilizing an intervertebral disc device
DE102009025297A1 (en) * 2009-06-15 2010-12-16 Heraeus Medical Gmbh Medical system
US20120031572A1 (en) * 2010-08-04 2012-02-09 Philip Ng Low Profile Roller Shade Control Unit
US9091117B2 (en) * 2010-08-26 2015-07-28 Philip Ng Universal child safety tensioner for roller blind
EP2637574B1 (en) * 2010-11-09 2016-10-26 Ethicon, LLC Emergency self-retaining sutures
US8739570B2 (en) * 2011-04-06 2014-06-03 Karen Prestwidge Eyeglass holder
US9237887B2 (en) * 2011-05-19 2016-01-19 Biomet Sports Medicine, Llc Tissue engaging member
US20130014351A1 (en) * 2011-07-12 2013-01-17 Kuglen Francesca B Elastic bead and loop fastener
US20130066373A1 (en) * 2011-09-14 2013-03-14 Chung-Fong Liao Body hauling mechanism
US9016347B2 (en) * 2011-09-22 2015-04-28 Whole Space Industries Ltd. Looped-cord system for window coverings
US8978341B2 (en) * 2011-10-27 2015-03-17 T3 Enterprises, Llc Core hole back stop
US20130247336A1 (en) * 2012-03-21 2013-09-26 Tser Wen Chou Roller shutter bead chain connector
US9717490B2 (en) * 2014-02-05 2017-08-01 Coloplast A/S Kit of parts for surgical anchor placement, method for preparing the kit of parts and a method for surgical anchor placement
US9700291B2 (en) * 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US9693856B2 (en) * 2015-04-22 2017-07-04 DePuy Synthes Products, LLC Biceps repair device
US9844664B2 (en) * 2015-10-12 2017-12-19 Medtronic, Inc. Interventional medical systems, catheters, and subassemblies

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1347622A (en) * 1919-03-29 1920-07-27 Arthur E Deininger Vaccine-injector
US2659369A (en) * 1952-11-13 1953-11-17 Michael G Lipman Pellet implanter
US3882858A (en) * 1973-04-21 1975-05-13 Merck Patent Gmbh Surgical synthetic-resin material and method of treating osteomyelitis
US4191740A (en) * 1976-11-11 1980-03-04 Merck Patent Gesellschaft Mit Beschrankter Haftung Synthetic resin-base, antibiotic compositions containing amino acids
US4969888A (en) * 1989-02-09 1990-11-13 Arie Scholten Surgical protocol for fixation of osteoporotic bone using inflatable device
US5108404A (en) * 1989-02-09 1992-04-28 Arie Scholten Surgical protocol for fixation of bone using inflatable device
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5702454A (en) * 1993-04-21 1997-12-30 Sulzer Orthopadie Ag Process for implanting an invertebral prosthesis
US20030229372A1 (en) * 1994-01-26 2003-12-11 Kyphon Inc. Inflatable device for use in surgical protocols relating to treatment of fractured or diseased bone
US6663647B2 (en) * 1994-01-26 2003-12-16 Kyphon Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US6183768B1 (en) * 1995-07-26 2001-02-06 HäRLE ANTON Implantable medicine releasing corpuscles and method of making, implanting and removing the same
US5958465A (en) * 1996-02-22 1999-09-28 Merck Patent Gesellschaft Apparatus for the production of drug-containing implants in the form of strings of beads
US6713083B1 (en) * 1996-03-15 2004-03-30 Johnson & Johnson Medical, Ltd. Coated bioabsorbable beads for wound treatment
US5756127A (en) * 1996-10-29 1998-05-26 Wright Medical Technology, Inc. Implantable bioresorbable string of calcium sulfate beads
US6048346A (en) * 1997-08-13 2000-04-11 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US6231615B1 (en) * 1997-10-14 2001-05-15 Parallax Medical, Inc. Enhanced visibility materials for implantation in hard tissue
US6395007B1 (en) * 1999-03-16 2002-05-28 American Osteomedix, Inc. Apparatus and method for fixation of osteoporotic bone
US6348055B1 (en) * 1999-03-24 2002-02-19 Parallax Medical, Inc. Non-compliant system for delivery of implant material
US6387130B1 (en) * 1999-04-16 2002-05-14 Nuvasive, Inc. Segmented linked intervertebral implant systems
US6579533B1 (en) * 1999-11-30 2003-06-17 Bioasborbable Concepts, Ltd. Bioabsorbable drug delivery system for local treatment and prevention of infections
US20020068974A1 (en) * 2000-07-21 2002-06-06 Kuslich Stephen D. Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
US20020183761A1 (en) * 2001-03-08 2002-12-05 Wes Johnson Tissue distraction device
US6595998B2 (en) * 2001-03-08 2003-07-22 Spinewave, Inc. Tissue distraction device
US20020147496A1 (en) * 2001-04-06 2002-10-10 Integrated Vascular Systems, Inc. Apparatus for treating spinal discs
US20020147497A1 (en) * 2001-04-06 2002-10-10 Integrated Vascular Systems, Inc. Methods for treating spinal discs
US6620162B2 (en) * 2001-07-20 2003-09-16 Spineology, Inc. Device for inserting fill material particles into body cavities
US20030028251A1 (en) * 2001-07-30 2003-02-06 Mathews Hallett H. Methods and devices for interbody spinal stabilization
US6960215B2 (en) * 2002-05-08 2005-11-01 Boston Scientific Scimed, Inc. Tactical detachable anatomic containment device and therapeutic treatment system
US20040010314A1 (en) * 2002-06-12 2004-01-15 Pentax Corporation Bone replacement material
US20040097930A1 (en) * 2002-08-27 2004-05-20 Justis Jeff R. Systems and methods for intravertebral reduction
US20040249464A1 (en) * 2003-06-05 2004-12-09 Bindseil James J. Bone implants and methods of making same

Cited By (281)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7766965B2 (en) 1994-05-06 2010-08-03 Disc Dynamics, Inc. Method of making an intervertebral disc prosthesis
US7713301B2 (en) 1994-05-06 2010-05-11 Disc Dynamics, Inc. Intervertebral disc prosthesis
US9706947B2 (en) 1999-08-18 2017-07-18 Intrinsic Therapeutics, Inc. Method of performing an anchor implantation procedure within a disc
US8231678B2 (en) 1999-08-18 2012-07-31 Intrinsic Therapeutics, Inc. Method of treating a herniated disc
US8409284B2 (en) 1999-08-18 2013-04-02 Intrinsic Therapeutics, Inc. Methods of repairing herniated segments in the disc
US8257437B2 (en) * 1999-08-18 2012-09-04 Intrinsic Therapeutics, Inc. Methods of intervertebral disc augmentation
US9333087B2 (en) 1999-08-18 2016-05-10 Intrinsic Therapeutics, Inc. Herniated disc repair
US20100114107A1 (en) * 2000-08-30 2010-05-06 Warsaw Orthopedic, Inc. Intervertebral Disc Nucleus Implants and Methods
US8382762B2 (en) * 2001-09-19 2013-02-26 James K Brannon Endoscopic bone debridement
US20040097930A1 (en) * 2002-08-27 2004-05-20 Justis Jeff R. Systems and methods for intravertebral reduction
US20110015680A1 (en) * 2002-08-27 2011-01-20 Warsaw Orthopedic, Inc. Systems and methods for intravertebral reduction
US7803188B2 (en) * 2002-08-27 2010-09-28 Warsaw Orthopedic, Inc. Systems and methods for intravertebral reduction
US8870928B2 (en) 2002-09-06 2014-10-28 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US9925060B2 (en) 2003-02-14 2018-03-27 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9814590B2 (en) 2003-02-14 2017-11-14 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11096794B2 (en) 2003-02-14 2021-08-24 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9788963B2 (en) 2003-02-14 2017-10-17 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10786361B2 (en) 2003-02-14 2020-09-29 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10639164B2 (en) 2003-02-14 2020-05-05 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10583013B2 (en) 2003-02-14 2020-03-10 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10575959B2 (en) 2003-02-14 2020-03-03 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10555817B2 (en) 2003-02-14 2020-02-11 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10492918B2 (en) 2003-02-14 2019-12-03 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9801729B2 (en) 2003-02-14 2017-10-31 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11207187B2 (en) 2003-02-14 2021-12-28 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9808351B2 (en) 2003-02-14 2017-11-07 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9814589B2 (en) 2003-02-14 2017-11-14 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10433971B2 (en) 2003-02-14 2019-10-08 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10420651B2 (en) 2003-02-14 2019-09-24 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11432938B2 (en) 2003-02-14 2022-09-06 DePuy Synthes Products, Inc. In-situ intervertebral fusion device and method
US10405986B2 (en) 2003-02-14 2019-09-10 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10376372B2 (en) 2003-02-14 2019-08-13 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10085843B2 (en) 2003-02-14 2018-10-02 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10349983B2 (en) 2003-05-22 2019-07-16 Alphatec Spine, Inc. Pivotal bone anchor assembly with biased bushing for pre-lock friction fit
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
USRE46431E1 (en) 2003-06-18 2017-06-13 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US8936623B2 (en) 2003-06-18 2015-01-20 Roger P. Jackson Polyaxial bone screw assembly
US9144444B2 (en) 2003-06-18 2015-09-29 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US10299839B2 (en) 2003-12-16 2019-05-28 Medos International Sárl Percutaneous access devices and bone anchor assemblies
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US11426216B2 (en) 2003-12-16 2022-08-30 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US9532815B2 (en) 2004-02-27 2017-01-03 Roger P. Jackson Spinal fixation tool set and method
US9918751B2 (en) 2004-02-27 2018-03-20 Roger P. Jackson Tool system for dynamic spinal implants
US11147597B2 (en) 2004-02-27 2021-10-19 Roger P Jackson Dynamic spinal stabilization assemblies, tool set and method
US10485588B2 (en) 2004-02-27 2019-11-26 Nuvasive, Inc. Spinal fixation tool attachment structure
US9055978B2 (en) 2004-02-27 2015-06-16 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US11291480B2 (en) 2004-02-27 2022-04-05 Nuvasive, Inc. Spinal fixation tool attachment structure
US9216039B2 (en) 2004-02-27 2015-12-22 Roger P. Jackson Dynamic spinal stabilization assemblies, tool set and method
US9636151B2 (en) 2004-02-27 2017-05-02 Roger P Jackson Orthopedic implant rod reduction tool set and method
US9662143B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Dynamic fixation assemblies with inner core and outer coil-like member
US9662151B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Orthopedic implant rod reduction tool set and method
US11648039B2 (en) 2004-02-27 2023-05-16 Roger P. Jackson Spinal fixation tool attachment structure
US8894657B2 (en) 2004-02-27 2014-11-25 Roger P. Jackson Tool system for dynamic spinal implants
US9050139B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US8409289B2 (en) 2004-06-07 2013-04-02 Dfine, Inc. Implants and methods for treating bone
US9526539B2 (en) 2004-06-10 2016-12-27 Spinal Ventures, Llc Non-soft tissue repair
US20060184246A1 (en) * 2004-06-10 2006-08-17 Zwirkoski Paul A Non-soft tissue repair
US8734520B2 (en) 2004-06-10 2014-05-27 Spinal Ventures, Llc Device and method for securing a fastener
US7682400B2 (en) 2004-06-10 2010-03-23 Spinal Ventures, Llc Non-soft tissue repair
US7993402B2 (en) * 2004-07-14 2011-08-09 Hkross AG Filler, supply device and method for forming a support structure in a bone cavity
US20070260313A1 (en) * 2004-07-14 2007-11-08 Bruno Sidler Filler, Supply Device and Method for Forming a Support Structure in a Bone Cavity
US8206423B2 (en) 2004-08-11 2012-06-26 NLT-Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
US8906098B2 (en) * 2004-08-11 2014-12-09 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
US20110202133A1 (en) * 2004-08-11 2011-08-18 Nonliner Technologies Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
US8486109B2 (en) 2004-08-11 2013-07-16 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
US20110184515A1 (en) * 2004-08-11 2011-07-28 Nonliner Technologies Ltd. Devices For Introduction Into A Body Via A Substantially Straight Conduit To Form A Predefined Curved Configuration, And Methods Employing Such Devices
US8597330B2 (en) 2004-08-11 2013-12-03 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
US8465524B2 (en) 2004-08-11 2013-06-18 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
US9259329B2 (en) 2004-09-21 2016-02-16 Stout Medical Group, L.P. Expandable support device and method of use
US11051954B2 (en) 2004-09-21 2021-07-06 Stout Medical Group, L.P. Expandable support device and method of use
US9314349B2 (en) 2004-09-21 2016-04-19 Stout Medical Group, L.P. Expandable support device and method of use
US8709042B2 (en) 2004-09-21 2014-04-29 Stout Medical Group, LP Expandable support device and method of use
US8845649B2 (en) 2004-09-24 2014-09-30 Roger P. Jackson Spinal fixation tool set and method for rod reduction and fastener insertion
US8998960B2 (en) 2004-11-10 2015-04-07 Roger P. Jackson Polyaxial bone screw with helically wound capture connection
US11147591B2 (en) 2004-11-10 2021-10-19 Roger P Jackson Pivotal bone anchor receiver assembly with threaded closure
US9743957B2 (en) 2004-11-10 2017-08-29 Roger P. Jackson Polyaxial bone screw with shank articulation pressure insert and method
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US9211150B2 (en) 2004-11-23 2015-12-15 Roger P. Jackson Spinal fixation tool set and method
US10039577B2 (en) 2004-11-23 2018-08-07 Roger P Jackson Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
US11389214B2 (en) 2004-11-23 2022-07-19 Roger P. Jackson Spinal fixation tool set and method
US9522021B2 (en) 2004-11-23 2016-12-20 Roger P. Jackson Polyaxial bone anchor with retainer with notch for mono-axial motion
US9629669B2 (en) 2004-11-23 2017-04-25 Roger P. Jackson Spinal fixation tool set and method
US20060265077A1 (en) * 2005-02-23 2006-11-23 Zwirkoski Paul A Spinal repair
US20070009557A1 (en) * 2005-06-22 2007-01-11 Heraeus Kulzer Gmbh Moldable implant material
US11234745B2 (en) 2005-07-14 2022-02-01 Roger P. Jackson Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert
US9770339B2 (en) 2005-07-14 2017-09-26 Stout Medical Group, L.P. Expandable support device and method of use
US8556978B2 (en) 2005-08-16 2013-10-15 Benvenue Medical, Inc. Devices and methods for treating the vertebral body
US8801787B2 (en) 2005-08-16 2014-08-12 Benvenue Medical, Inc. Methods of distracting tissue layers of the human spine
US8882836B2 (en) 2005-08-16 2014-11-11 Benvenue Medical, Inc. Apparatus and method for treating bone
US10028840B2 (en) 2005-08-16 2018-07-24 Izi Medical Products, Llc Spinal tissue distraction devices
US9259326B2 (en) 2005-08-16 2016-02-16 Benvenue Medical, Inc. Spinal tissue distraction devices
US9788974B2 (en) 2005-08-16 2017-10-17 Benvenue Medical, Inc. Spinal tissue distraction devices
US8808376B2 (en) 2005-08-16 2014-08-19 Benvenue Medical, Inc. Intravertebral implants
US8961609B2 (en) 2005-08-16 2015-02-24 Benvenue Medical, Inc. Devices for distracting tissue layers of the human spine
US9066808B2 (en) 2005-08-16 2015-06-30 Benvenue Medical, Inc. Method of interdigitating flowable material with bone tissue
US8979929B2 (en) 2005-08-16 2015-03-17 Benvenue Medical, Inc. Spinal tissue distraction devices
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
US8591583B2 (en) 2005-08-16 2013-11-26 Benvenue Medical, Inc. Devices for treating the spine
US8454617B2 (en) 2005-08-16 2013-06-04 Benvenue Medical, Inc. Devices for treating the spine
US9044338B2 (en) 2005-08-16 2015-06-02 Benvenue Medical, Inc. Spinal tissue distraction devices
US9326866B2 (en) 2005-08-16 2016-05-03 Benvenue Medical, Inc. Devices for treating the spine
US8267971B2 (en) * 2005-09-08 2012-09-18 Synthes Usa, Llc Apparatus and methods for vertebral augmentation using linked expandable bodies
US20100145392A1 (en) * 2005-09-08 2010-06-10 Christof Dutoit Apparatus and methods for vertebral augmentation using linked expandable bodies
US8663294B2 (en) 2005-09-28 2014-03-04 DePuy Synthes Products, LLC Apparatus and methods for vertebral augmentation using linked expandable bodies
US20070093822A1 (en) * 2005-09-28 2007-04-26 Christof Dutoit Apparatus and methods for vertebral augmentation using linked expandable bodies
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
WO2007076376A3 (en) * 2005-12-19 2008-12-04 Stout Medical Group Lp Expandable delivery device
US20090018524A1 (en) * 2005-12-19 2009-01-15 Stout Medical Group, L.P. Expandable delivery device
WO2007076376A2 (en) * 2005-12-19 2007-07-05 Stout Medical Group, L.P. Expandable delivery device
US20100125274A1 (en) * 2005-12-19 2010-05-20 Stout Medical Group, L.P. Expandable delivery device
WO2007076049A3 (en) * 2005-12-23 2008-01-03 Synthes Usa Flexible elongated chain implant
WO2007076049A2 (en) * 2005-12-23 2007-07-05 Synthes (U.S.A.) Flexible elongated chain implant
US11406508B2 (en) 2005-12-23 2022-08-09 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US11701233B2 (en) * 2005-12-23 2023-07-18 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US20210113346A1 (en) * 2005-12-23 2021-04-22 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US9289240B2 (en) 2005-12-23 2016-03-22 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US20070162132A1 (en) * 2005-12-23 2007-07-12 Dominique Messerli Flexible elongated chain implant and method of supporting body tissue with same
US9956085B2 (en) 2005-12-23 2018-05-01 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US10881520B2 (en) * 2005-12-23 2021-01-05 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US20160199107A1 (en) * 2005-12-23 2016-07-14 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US8394146B2 (en) 2005-12-28 2013-03-12 Intrinsic Therapeutics, Inc. Vertebral anchoring methods
US9610106B2 (en) 2005-12-28 2017-04-04 Intrinsic Therapeutics, Inc. Bone anchor systems
US9039741B2 (en) 2005-12-28 2015-05-26 Intrinsic Therapeutics, Inc. Bone anchor systems
US10470804B2 (en) 2005-12-28 2019-11-12 Intrinsic Therapeutics, Inc. Bone anchor delivery systems and methods
US8114082B2 (en) 2005-12-28 2012-02-14 Intrinsic Therapeutics, Inc. Anchoring system for disc repair
US11185354B2 (en) 2005-12-28 2021-11-30 Intrinsic Therapeutics, Inc. Bone anchor delivery systems and methods
US10426536B2 (en) * 2006-01-27 2019-10-01 Stryker Corporation Method of delivering a plurality of elements and fluent material into a vertebral body
US20160175019A1 (en) * 2006-01-27 2016-06-23 Stryker Corporation Method Of Delivering A Plurality Of Elements And Fluent Material Into A Vertebral Body
US9301792B2 (en) * 2006-01-27 2016-04-05 Stryker Corporation Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment
WO2007089739A3 (en) * 2006-01-27 2007-10-04 Stryker Corp Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment
US8357169B2 (en) 2006-01-27 2013-01-22 Spinal Ventures, Llc System and method for delivering an agglomeration of solid beads and cement to the interior of a bone in order to form an implant within the bone
WO2007089739A2 (en) 2006-01-27 2007-08-09 Stryker Corporation Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment
US20070233250A1 (en) * 2006-02-07 2007-10-04 Shadduck John H Systems for treating bone
US20070233249A1 (en) * 2006-02-07 2007-10-04 Shadduck John H Methods for treating bone
US10758289B2 (en) 2006-05-01 2020-09-01 Stout Medical Group, L.P. Expandable support device and method of use
US11141208B2 (en) 2006-05-01 2021-10-12 Stout Medical Group, L.P. Expandable support device and method of use
US10813677B2 (en) 2006-05-01 2020-10-27 Stout Medical Group, L.P. Expandable support device and method of use
US8092536B2 (en) 2006-05-24 2012-01-10 Disc Dynamics, Inc. Retention structure for in situ formation of an intervertebral prosthesis
US20080125782A1 (en) * 2006-11-29 2008-05-29 Disc Dynamics, Inc. Method and apparatus for removing an extension from a prosthesis
WO2008067214A1 (en) * 2006-11-29 2008-06-05 Disc Dynamics, Inc. Method and apparatus for removing an extension from a prosthesis
US11642229B2 (en) 2006-12-07 2023-05-09 DePuy Synthes Products, Inc. Intervertebral implant
US11712345B2 (en) 2006-12-07 2023-08-01 DePuy Synthes Products, Inc. Intervertebral implant
US11273050B2 (en) 2006-12-07 2022-03-15 DePuy Synthes Products, Inc. Intervertebral implant
US11432942B2 (en) 2006-12-07 2022-09-06 DePuy Synthes Products, Inc. Intervertebral implant
US11660206B2 (en) 2006-12-07 2023-05-30 DePuy Synthes Products, Inc. Intervertebral implant
US11497618B2 (en) 2006-12-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US20080228231A1 (en) * 2007-01-19 2008-09-18 University Of Southern California Acoustic Back-Scattering Sensing Screw for Preventing Spine Surgery Complications
WO2008089429A2 (en) * 2007-01-19 2008-07-24 University Of Southern California Acoustic back-scattering sensing screw for preventing spine surgery complications
WO2008089429A3 (en) * 2007-01-19 2008-11-20 Univ Southern California Acoustic back-scattering sensing screw for preventing spine surgery complications
WO2008100425A2 (en) * 2007-02-09 2008-08-21 Rubicor Medical, Inc. Methods and systems for marking post biopsy cavity sites
WO2008100425A3 (en) * 2007-02-09 2010-09-23 Rubicor Medical, Inc. Methods and systems for marking post biopsy cavity sites
US10575963B2 (en) 2007-02-21 2020-03-03 Benvenue Medical, Inc. Devices for treating the spine
US10426629B2 (en) 2007-02-21 2019-10-01 Benvenue Medical, Inc. Devices for treating the spine
US8968408B2 (en) 2007-02-21 2015-03-03 Benvenue Medical, Inc. Devices for treating the spine
US10285821B2 (en) 2007-02-21 2019-05-14 Benvenue Medical, Inc. Devices for treating the spine
US9642712B2 (en) 2007-02-21 2017-05-09 Benvenue Medical, Inc. Methods for treating the spine
US8241362B2 (en) 2007-04-26 2012-08-14 Voorhies Rand M Lumbar disc replacement implant for posterior implantation with dynamic spinal stabilization device and method
US20080269904A1 (en) * 2007-04-26 2008-10-30 Voorhies Rand M Lumbar disc replacement implant for posterior implantation with dynamic spinal stabilization device and method
US10973652B2 (en) 2007-06-26 2021-04-13 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US11622868B2 (en) 2007-06-26 2023-04-11 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US10716679B2 (en) 2007-06-29 2020-07-21 DePuy Synthes Products, Inc. Flexible chain implants and instrumentation
US9907667B2 (en) 2007-06-29 2018-03-06 DePuy Synthes Products, Inc. Flexible chain implants and instrumentation
US8673010B2 (en) 2007-06-29 2014-03-18 DePuy Synthes Products, LLC Flexible chain implants and instrumentation
US20100185290A1 (en) * 2007-06-29 2010-07-22 Curtis Compton Flexible chain implants and instrumentation
US9226832B2 (en) 2007-09-07 2016-01-05 Intrinsic Therapeutics, Inc. Interbody fusion material retention methods
US8361155B2 (en) 2007-09-07 2013-01-29 Intrinsic Therapeutics, Inc. Soft tissue impaction methods
US20110196492A1 (en) * 2007-09-07 2011-08-11 Intrinsic Therapeutics, Inc. Bone anchoring systems
US8454612B2 (en) 2007-09-07 2013-06-04 Intrinsic Therapeutics, Inc. Method for vertebral endplate reconstruction
US10076424B2 (en) 2007-09-07 2018-09-18 Intrinsic Therapeutics, Inc. Impaction systems
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US10716685B2 (en) 2007-09-07 2020-07-21 Intrinsic Therapeutics, Inc. Bone anchor delivery systems
US9814544B2 (en) * 2008-01-09 2017-11-14 Innovative Health Technologies, Llc Implant pellets and methods for performing bone augmentation and preservation
US20160213449A1 (en) * 2008-01-09 2016-07-28 Innovative Health Technologies, Llc Implant Pellets and Methods for Performing Bone Augmentation and Preservation
US20120129133A1 (en) * 2008-01-09 2012-05-24 Kaigler Sr Darnell Implant pellets and methods for performing bone augmentation and preservation
US9301816B2 (en) * 2008-01-09 2016-04-05 Innovative Health Technologies, Llc Implant pellets and methods for performing bone augmentation and preservation
US11737881B2 (en) 2008-01-17 2023-08-29 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US11712341B2 (en) 2008-04-05 2023-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11707359B2 (en) 2008-04-05 2023-07-25 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11701234B2 (en) 2008-04-05 2023-07-18 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11712342B2 (en) 2008-04-05 2023-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11617655B2 (en) 2008-04-05 2023-04-04 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11602438B2 (en) 2008-04-05 2023-03-14 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11844528B2 (en) 2008-04-21 2023-12-19 Covidien Lp Multiple layer filamentary devices for treatment of vascular defects
US11707371B2 (en) 2008-05-13 2023-07-25 Covidien Lp Braid implant delivery systems
US9907574B2 (en) 2008-08-01 2018-03-06 Roger P. Jackson Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
US10940014B2 (en) 2008-11-12 2021-03-09 Stout Medical Group, L.P. Fixation device and method
US10292828B2 (en) 2008-11-12 2019-05-21 Stout Medical Group, L.P. Fixation device and method
US10285820B2 (en) 2008-11-12 2019-05-14 Stout Medical Group, L.P. Fixation device and method
US10285819B2 (en) 2008-11-12 2019-05-14 Stout Medical Group, L.P. Fixation device and method
US20100203155A1 (en) * 2009-02-12 2010-08-12 Guobao Wei Segmented delivery system
US9101475B2 (en) * 2009-02-12 2015-08-11 Warsaw Orthopedic, Inc. Segmented delivery system
US11612491B2 (en) 2009-03-30 2023-03-28 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US20100249720A1 (en) * 2009-03-31 2010-09-30 Ashok Biyani Integrated device for the storage and delivery of a bone graft or other implantable material to a surgical site
EP2263739A1 (en) * 2009-06-15 2010-12-22 Heraeus Medical GmbH Medical system
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US8613942B2 (en) 2009-06-15 2013-12-24 Heraeus Medical Gmbh Medical system, pulling device and method for pulling an active substance chain
US9918745B2 (en) 2009-06-15 2018-03-20 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US20100318023A1 (en) * 2009-06-15 2010-12-16 Heraeus Medical Gmbh Medical system, pulling device and method for pulling an active substance chain
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US9717534B2 (en) 2009-06-15 2017-08-01 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9504496B2 (en) 2009-06-15 2016-11-29 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US20110077655A1 (en) * 2009-09-25 2011-03-31 Fisher Michael A Vertebral Body Spool Device
CN102573934A (en) * 2009-10-30 2012-07-11 华沙整形外科股份有限公司 Devices and methods for implanting a plurality of drug depots having one or more anchoring members
US20110106110A1 (en) * 2009-10-30 2011-05-05 Warsaw Orthopedic, Inc. Devices and methods for implanting a plurality of drug depots having one or more anchoring members
WO2011068451A2 (en) * 2009-12-01 2011-06-09 Erik Adolfsson Ceramic component for bone regeneration
WO2011068451A3 (en) * 2009-12-01 2011-11-03 Erik Adolfsson Ceramic component for bone regeneration
US11607321B2 (en) 2009-12-10 2023-03-21 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US9220554B2 (en) 2010-02-18 2015-12-29 Globus Medical, Inc. Methods and apparatus for treating vertebral fractures
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US11911287B2 (en) 2010-06-24 2024-02-27 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage
US10966840B2 (en) 2010-06-24 2021-04-06 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US11872139B2 (en) 2010-06-24 2024-01-16 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US11654033B2 (en) 2010-06-29 2023-05-23 DePuy Synthes Products, Inc. Distractible intervertebral implant
US10070968B2 (en) 2010-08-24 2018-09-11 Flexmedex, LLC Support device and method for use
US8903473B2 (en) * 2010-09-15 2014-12-02 Medtronic, Inc. Radiopaque markers for implantable medical devices
US20120065500A1 (en) * 2010-09-15 2012-03-15 Medtronic, Inc. Radiopaque embedded into desiccant for implantable medical device
US20120065503A1 (en) * 2010-09-15 2012-03-15 Medtronic, Inc. Radiopaque markers for implantable medical devices
US11452607B2 (en) 2010-10-11 2022-09-27 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US9314252B2 (en) 2011-06-24 2016-04-19 Benvenue Medical, Inc. Devices and methods for treating bone tissue
US8814873B2 (en) 2011-06-24 2014-08-26 Benvenue Medical, Inc. Devices and methods for treating bone tissue
US9144506B2 (en) * 2011-08-11 2015-09-29 Jeff Phelps Interbody axis cage
US20130041469A1 (en) * 2011-08-11 2013-02-14 Jeff Phelps Interbody axis cage
US9050112B2 (en) 2011-08-23 2015-06-09 Flexmedex, LLC Tissue removal device and method
US20130090690A1 (en) * 2011-10-06 2013-04-11 David A. Walsh Dynamic Rod Assembly
US11690628B2 (en) 2012-11-13 2023-07-04 Covidien Lp Occlusive devices
US11786253B2 (en) 2012-11-13 2023-10-17 Covidien Lp Occlusive devices
US20140135810A1 (en) * 2012-11-13 2014-05-15 Covidien Lp Occlusive devices
US10327781B2 (en) 2012-11-13 2019-06-25 Covidien Lp Occlusive devices
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US9770265B2 (en) 2012-11-21 2017-09-26 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US11497619B2 (en) 2013-03-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US11850164B2 (en) 2013-03-07 2023-12-26 DePuy Synthes Products, Inc. Intervertebral implant
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
JP2016509911A (en) * 2013-03-15 2016-04-04 ネオススルヘリー ソシエダッド リミターダ Device for repairing the intervertebral disc
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US20150216521A1 (en) * 2014-02-05 2015-08-06 Coloplast A/S Kit of parts for surgical anchor placement, method for preparing the kit of parts and a method for surgical anchor placement
US9717490B2 (en) * 2014-02-05 2017-08-01 Coloplast A/S Kit of parts for surgical anchor placement, method for preparing the kit of parts and a method for surgical anchor placement
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US11464958B2 (en) 2014-07-25 2022-10-11 Warsaw Orthopedic, Inc. Drug delivery methods having an occluding member
US10478603B2 (en) 2014-07-25 2019-11-19 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US11504513B2 (en) 2014-07-25 2022-11-22 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10384048B2 (en) 2014-07-25 2019-08-20 Warsaw Orthopedic, Inc. Drug delivery device and methods having an occluding member
US11793646B2 (en) 2015-01-09 2023-10-24 Formae, Inc. Rigid segmented flexible anchors
US20180271659A1 (en) * 2015-01-09 2018-09-27 Formae, Inc. Rigid segmented flexible anchors
US10485664B2 (en) * 2015-01-09 2019-11-26 Formae, Inc. Rigid segmented flexible anchors
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US10912647B2 (en) * 2015-08-25 2021-02-09 Innovein, Inc. Vascular valve prosthesis
US11564797B2 (en) 2015-08-25 2023-01-31 Innovein, Inc. Venous valve prosthesis
US11759614B2 (en) 2015-11-23 2023-09-19 Warsaw Orthopedic, Inc. Enhanced stylet for drug depot injector
US10549081B2 (en) 2016-06-23 2020-02-04 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US11413442B2 (en) 2016-06-23 2022-08-16 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US11596522B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable intervertebral cages with articulating joint
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US11478587B2 (en) 2016-11-08 2022-10-25 Warsaw Orthopedic, Inc. Drug depot delivery system and method
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US9974655B1 (en) * 2016-12-19 2018-05-22 Perumala Corporation Disc and vertebral defect packing tape
US20180263780A1 (en) * 2016-12-19 2018-09-20 Perumala Corporation Disc and Vertebral Defect Packing Tape
US10342663B2 (en) * 2016-12-19 2019-07-09 Perumala Corporation Disc and vertebral defect packing tape
US11446155B2 (en) 2017-05-08 2022-09-20 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10932839B2 (en) 2017-12-19 2021-03-02 Stryker Corporation Systems and methods for delivering elements within a fluent material to an off-axis target site within a bone structure
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11717924B2 (en) 2019-11-04 2023-08-08 Covidien Lp Devices, systems, and methods for treatment of intracranial aneurysms
US11679458B2 (en) 2019-11-04 2023-06-20 Covidien Lp Devices, systems, and methods for treating aneurysms
US11633818B2 (en) 2019-11-04 2023-04-25 Covidien Lp Devices, systems, and methods for treatment of intracranial aneurysms
US11685007B2 (en) 2019-11-04 2023-06-27 Covidien Lp Devices, systems, and methods for treatment of intracranial aneurysms
US11806245B2 (en) 2020-03-06 2023-11-07 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US20220409387A1 (en) * 2021-06-23 2022-12-29 Oluwatodimu Richard Raji Methods and systems for facilitating treatment of lumbar degenerative disc disease based on total nucleus replacement using magnetic spherical beads

Also Published As

Publication number Publication date
US20170202670A1 (en) 2017-07-20
US8734520B2 (en) 2014-05-27
US9526539B2 (en) 2016-12-27
EP1768616A4 (en) 2012-09-05
US20100076497A1 (en) 2010-03-25
US20060184246A1 (en) 2006-08-17
US7682400B2 (en) 2010-03-23
US9943411B2 (en) 2018-04-17
WO2005122956A2 (en) 2005-12-29
US20140249633A1 (en) 2014-09-04
EP1768616A2 (en) 2007-04-04
WO2005122956A3 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US9943411B2 (en) Fastener fixation device
EP1968418B1 (en) Non-soft tissue repair
US20060265077A1 (en) Spinal repair
US10231843B2 (en) Spinal fusion implants and devices and methods for deploying such implants
JP3944081B2 (en) Tissue distraction device
US7789912B2 (en) Apparatus and method for injecting fluent material at a distracted tissue site
AU2006279558B2 (en) Spinal tissue distraction devices
US7608077B2 (en) Method and apparatus for spinal distraction and fusion
JP2006520656A (en) Inflatable spherical spinal graft
AU2007345699A1 (en) Mechanical apparatus and method for artificial disc replacement
EP2124777A2 (en) Devices for treating the spine

Legal Events

Date Code Title Description
AS Assignment

Owner name: SPINAL VENTURES, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZWIRKOSKI, PAUL A.;REEL/FRAME:016188/0410

Effective date: 20050413

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION