US20050101213A1 - Anti-microbial fabrics, garments and articles - Google Patents

Anti-microbial fabrics, garments and articles Download PDF

Info

Publication number
US20050101213A1
US20050101213A1 US10/655,330 US65533003A US2005101213A1 US 20050101213 A1 US20050101213 A1 US 20050101213A1 US 65533003 A US65533003 A US 65533003A US 2005101213 A1 US2005101213 A1 US 2005101213A1
Authority
US
United States
Prior art keywords
microbial
fabric
fiber
fibers
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/655,330
Inventor
Stephen Foss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foss Manufacturing Co Inc
Original Assignee
Foss Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foss Manufacturing Co Inc filed Critical Foss Manufacturing Co Inc
Priority to US10/655,330 priority Critical patent/US20050101213A1/en
Priority to US10/762,920 priority patent/US20040214495A1/en
Priority to US10/768,840 priority patent/US6946196B2/en
Assigned to FOSS MANUFACTURING CO., INC. reassignment FOSS MANUFACTURING CO., INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOSS, STEPHEN W.
Publication of US20050101213A1 publication Critical patent/US20050101213A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/16Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B17/00Selection of special materials for underwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/12Hygroscopic; Water retaining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • A61F13/8405Additives, e.g. for odour, disinfectant or pH control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets
    • A61L2/238Metals or alloys, e.g. oligodynamic metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1615Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of natural origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0028Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions provided with antibacterial or antifungal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/449Yarns or threads with antibacterial properties
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B2400/00Functions or special features of shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass
    • A41B2400/60Moisture handling or wicking function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • A61F13/8405Additives, e.g. for odour, disinfectant or pH control
    • A61F2013/8408Additives, e.g. for odour, disinfectant or pH control with odour control
    • A61F2013/8414Additives, e.g. for odour, disinfectant or pH control with odour control with anti-microbic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/10Multiple layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/20Fibres of continuous length in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/70Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/251Mica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • Y10T428/2907Staple length fiber with coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2915Rod, strand, filament or fiber including textile, cloth or fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition
    • Y10T442/3073Strand material is core-spun [not sheath-core bicomponent strand]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3146Strand material is composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3146Strand material is composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/3154Sheath-core multicomponent strand material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/444Strand is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/638Side-by-side multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/64Islands-in-sea multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric
    • Y10T442/692Containing at least two chemically different strand or fiber materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/697Containing at least two chemically different strand or fiber materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/699Including particulate material other than strand or fiber material

Definitions

  • the present invention relates generally to anti-microbial articles, and, more particularly, to fabrics, fabric construction (having qualities imparted to it which remain for the life of the fabric, such as excellent color fastness without the need for a dye bath), garments and athletic wear and other articles which have anti-microbial properties.
  • Such garments and articles may be made of woven fabric, knitted fabric or non-woven fabric.
  • Moisture absorbing incontinence products are produced in various manners including plastic film or coated nylon for a waterproof backing, paper fiber, gelling material, or cotton gauze; flannel for a middle absorbent layer and nonwoven or woven or knitted fabrics made of polyester, olefin, viscose or cotton for the coverstock.
  • This article discusses health issues for babies relating to the condition of the skin and to the transmission of infectious diseases. Prolonged contact with urine and stool is a major cause of diaper rash.
  • PETG as used herein means an amorphous polyester of terephthalic acid and a mixture of predominately ethylene glycol and a lesser amount of 1,4-cyclohexanedimethanol. It is known that PETG can be used in polycarbonate blends to improve impact strength, transparency, processability, solvent resistance and environmental stress cracking resistance.
  • Udipi discloses in U.S. Pat. Nos. 5,104,934 and 5,187,230 that polymer blends consisting essentially of PC, PETG and a graft rubber composition, can be useful as thermoplastic injection molding resins.
  • Batdorf in U.S. Pat. No. 5,268,203 discloses a method of thermoforming thermoplastic substrates wherein an integral coating is formed on the thermoplastic substrate that is resistant to removal of the coating.
  • the coating composition employs, in a solvent base, a pigment and a thermoplastic material compatible with the to-be-coated thermoplastic substrate.
  • the thermoplastic material in cooperation with the pigment, solvent and other components of the coating composition, are, after coating on the thermoplastic substrate, heated to a thermoforming temperature and the thermoplastic material is intimately fused to the thermoplastic substrate surface.
  • Hanes in U.S. Pat. No. 5,756,578 discloses that a polymer blend comprising a monovinylarene/conjugated diene black copolymer, an amorphous poly(ethylene terephthalate), e.g. PETG, and a crystalline poly(ethylene terephthalate), e.g. PET, has a combination of good clarity, stiffness and toughness.
  • thermoplastic article typically in the form of sheet material, having a fabric comprising textile fibers embedded therein.
  • the thermoplastic article is obtained by applying heat and pressure to a laminate comprising an upper sheet material, a fabric comprised of textile fibers and a lower sheet material.
  • the upper and lower sheet materials are formed from a co-polyester, e.g. PETG.
  • PETG co-polyester
  • This thermoplastic article may be used in the construction industry as glazing for windows. One or both surface of the article may be textured during the formation of the articles.
  • Ellison in U.S. Pat. No. 5,985,079 discloses a flexible composite surfacing film for providing a substrate with desired surface characteristics and a method for producing this film.
  • the film comprises a flexible temporary carrier film and a flexible transparent outer polymer clear coat layer releasably bonded to the temporary carrier film.
  • a pigment base coat layer is adhered to the outer clear coat layer and is visible there through, and a thermo-formable backing layer is adhered to the pigmented base coat layer.
  • the film is produced by extruding a molten transparent thermoplastic polymer and applying the polymer to a flexible temporary carrier thereby forming a continuous thin transparent film.
  • the formed composite may be heated while the transparent thermoplastic polymer film is bonded to the flexible temporary carrier to evaporate the volatile liquid vehicle and form a pigment polymer layer.
  • the heating step also molecularly relaxes the underlying film of transparent thermoplastic polymer to relieve any molecular orientation caused by the extrusion. Ellison also mentions that it is desirable to form the flexible temporary carrier from a material that can withstand the molten temperature of the transparent thermoplastic polymer.
  • the preferred flexible temporary carriers used in his invention are PET and PETG.
  • tee shirts such as the grey athletic shirts, are made by blending in up to 10% of either solution dyed black polyester or stock dyed cotton.
  • the solution dyed polyester has a disadvantage in that the product can no longer be labeled 100% cotton.
  • the stock dyed cotton has the disadvantage in that it is not color fast, especially to bleach, and that it needs to be passed through a dye bath.
  • PETG can be used to distribute the anti-microbial additive uniformly within a yarn or fabric.
  • the carrier e.g. a zeolite
  • the PETG could carry ions of other inorganic anti-microbial additives such as copper, zinc, or tin in their respective carriers.
  • the invention may be used to carry pigments with the PETG to achieve certain colors without the need to dye the other fibers.
  • the created synthetic fibers of polymers and additives can further be blended with non anti-microbial fibers to provide anti-microbial finished fabrics that are able to withstand significant wear and washings and maintain their effectiveness.
  • these garments are suitable for the use of anti-microbial and anti-fungal fibers during their manufacture.
  • the use of such anti-microbial material allows these garments to be reusable without the negative effects of present reusable garments of this type.
  • the anti-microbial may be fabric (knitted or woven) plus absorbent pads. This also applies to bed pads, mattress pads or absorbent pads for bed ridden patents to prevent bed sores.
  • the present invention provides an anti-microbial finished fabric by blending the synthetic anti-microbial fibers with non-anti-microbial fibers such as cotton, wool, polyester, acrylic, nylon, and the like.
  • PETG is an amorphous binder fiber which can be blended into yarns with other fibers to form fabrics, as well as non-woven fabrics. After heat activation, the PETG fiber melts, wets the surface of the surrounding fibers, and settles at the crossing points of the fibers, thus forming “a drop of glue” which bonds the fibers together and distributes the anti-microbial additives.
  • PETG can be used to distribute the anti-microbial additive uniformly within a yarn or fabric.
  • the PETG could carry other inorganic anti-microbial additives such as copper, zinc, or tin.
  • the invention may be used to carry pigments with the PETG to achieve certain colors without the need to dye the other fibers.
  • the created synthetic fibers of polymers and additives can further be blended with non anti-microbial fibers to provide anti-microbial finished fabrics that are able to withstand significant wear and washings and maintain their effectiveness.
  • PETG may be used as one of the polymer blends and/or carriers for a wide variety of applications.
  • PETG is an amorphous binder fiber that can be blended into yarns with other fibers to form woven fabrics, as well as knits and non-woven fabrics. It has two characteristics of particular interest: (1) excellent wetting and (2) low melting temperature (which can be controlled between 90° C. and 160° C.). It is used in the present invention as a carrier to carry pigments and/or anti-microbial additives and/or other additives and is blended with other fibers which may be natural fibers such as cotton, silk, flax, wool, etc. or other synthetic fibers such as: PET, PP, PE, Nylon, Acrylic, etc.
  • PETG melts, continuously releases the color pigments and/or anti-microbial or other additives and wets the surface of the surrounding fibers with the pigment and/or anti-microbial or other additives it carries. It settles at the crossing points of the fibers, thus forming “a drop of glue” which bonds the fibers together. Therefore, PETG delivers and distributes the pigments and/or anti-microbial or other additives uniformly within a fabric, generating the finished fabrics and/or fabrics having anti-microbial properties.
  • the natural fibers used to blend with PETG are not changed physically after heat activation of PETG, they contain the same characteristics as natural fibers.
  • the PETG may be used together with or without anti-microbial agents to form a fabric having excellent color fastness even in the presence of sunlight, and will withstand many washings without deterioration.
  • the fabric is made by blending PETG used as a carrier for pigments and/or anti-microbial additives, with cotton or any other fibers of synthetic material such as from polyester and rayon, and activating PETG from 110° to 140° C. The color is thus provided to the yarn and fabric without the need of going through a dye bath. This fabric remains color-fast for in excess of 50 commercial launderings.
  • PETG can be used to distribute the pigments and/or anti-microbial additive uniformly within a yarn or fabric. While many anti-microbial agents may be used, such as those, which use copper, zinc, or tin, the preferred agent is zeolite of silver. In addition to the anti-microbial component and the pigment added to the PETG, the PETG may be used as a carrier to add other properties to yarn and fabric, such as fire retardants.
  • FIGS. 1A, 1B , 1 B′, 1 B′′ and 1 C are cross-sectional views of various fiber configurations used in practice of the various embodiments of the invention.
  • FIG. 2 is a sketch of a fibrous mass using one or more of the fibers of FIGS. 1A-1C .
  • FIG. 3 is a schematic view of the feed hopper, screw and extruder.
  • FIG. 4 is a sectional view through the exit of the extruder showing the formation of coaxial bi-component fibers of the present invention.
  • FIGS. 5 and 6 are photomicrographs of fibers showing the particles of zeolite of silver.
  • FIG. 7 shows a garment made from the fibers of the present invention for a person who is incontinent.
  • FIG. 8 is a cross section of one type of filter using the fibers of the present invention.
  • FIGS. 9A, 9B , 9 C, 9 D are diagrams of air flow systems utilizing the fibers of the invention.
  • FIG. 10 is a cross section of one type of wound care or burn dressing.
  • FIG. 11 is a flow chart showing the preparation of the fibers and yarn for use in making a woven or nonwoven fabric.
  • FIG. 12 is a flow chart showing the preparation of fibers and yarn and then of a fabric.
  • FIG. 13 is a flow chart showing another manner of preparing fibers in accordance with the present invention.
  • FIG. 14 is a schematic isometric view of a first type of insole using latex.
  • FIG. 15 is a schematic isometric view of a second type of insole using a layer of anti-microbial fibers.
  • FIG. 16 is a side view of a sheet material having an anti-microbial film layer co-extruded thereon.
  • FIG. 17 is a side view of a sheet material having two anti-microbial films extruded thereon, one on each side.
  • FIG. 18 is a side view of a further arrangement in which a double sheet material is complete surrounded by an anti-microbial film.
  • FIG. 19 is a side view of a shaped sheet material having two anti-microbial films extruded thereon.
  • FIG. 20 is an isometric view of a food tray constructed in accordance with the present invention.
  • FIG. 21 is a partial sectional view of apparatus for making a multi-layer co-extruded sheet.
  • FIG. 22 is a sectional view through the apparatus shown in FIG. 21 .
  • FIG. 23 is an isometric view of apparatus for making a side-by-side co-extruded sheet.
  • FIG. 24 is a cross section through an insole made in accordance with the present invention.
  • FIG. 25 is a plan view of the insole of FIG. 24 .
  • FIG. 26 is a cross section through a laminate for footwear components.
  • FIG. 27 is a cross-sectional exploded view through an office partition.
  • FIG. 28 is a schematic view of a humidifier evaporation surface media used to humidify air.
  • FIG. 29 is a schematic view of a humidifier pad or filter in a system.
  • FIG. 30 is a pad or filter for a circulation/aeration system.
  • the anti-microbial fiber of the present invention was used in the making of a mattress pad.
  • 15% of a 6.7 denier 76 mm cut length natural white fiber was used as a homofilament with zeolite of silver as the anti-microbial agent and 15% of a bi-component fiber was used together with 70% PET 6x3 T295 in a blend in which the zeolite of silver comprised 0.9% of the fiber.
  • the blend of this fiber was made into a batt of about 1-11 ⁇ 2′′ thickness of nonwoven material which was then placed between two layers of woven fabric to form a mattress pad. When tested using the shake flask test this provided a 99.99% microbial kill ratio.
  • Example 1 There are other examples in which all of the parameters of Example 1 were used and in each of which there was 15% of a bi-component fiber used. Again the zeolite of silver comprised 0.9% of the fiber. The percentage of the anti-microbial fiber ranged from 20% to 40% and the PET ranged from 45% to 65%. In all examples the microbial kill ratio was 99.99% using the shake flask test.
  • a second group similar to the first one was prepared in which the sheath/core bi-component fiber with zeolite of silver as the anti-microbial agent comprised from 10 to 35% of the fiber blend, 15% of another bi-component fiber was used and from 50 to 75% of PET 6 ⁇ 3 T295 was used.
  • the zeolite of silver comprised 0.75% of the fiber. In the shake flask test, there was a 99.99% microbial kill ratio.
  • 15% of a 3.5 denier 38 mm cut length PETG fiber was used as a homofilament with zeolite of silver as the anti-microbial agent.
  • 85% PET fiber was blended with the PETG anti-microbial fiber to form a blend in which the zeolite of silver comprised 1.8% of the fiber.
  • the fiber was made into a wall covering and was tested by the shake flask test, which provided a microbial kill rate of 99.99%.
  • a modified version was prepared the same way except that there was only 10% fiber with zeolite of silver in the blend and 90% PET fiber was used. After the fiber was made into a wall covering, this too provided a 99.99% microbial kill rate using the shake flask method of testing.
  • a further modified version was used in which there was only 5% fiber having zeolite of silver in the blend and 95% PET fiber in the blend.
  • the fibers described above can be used to make both woven and nonwoven fabrics as well as knitted fabrics. Such fabrics are useful for various types of articles, some of which are listed below:
  • Incontinent garments including disposable diapers, underwear, pajamas, and linens, some of which may be knitted.
  • This is disclosed, for example, in pending provisional application Ser. No. 60/173,207 filed Dec. 27, 1999, the contents of which are physically incorporated herein below, in which garments and other articles for incontinent persons made of an anti-microbial fiber comprises various thermoplastic polymers and additives in a mono-component or bi-component form in either a core-sheath or side-by-side configurations.
  • the anti-microbial synthetic fibers can comprise inorganic anti-microbial additives, distributed only in certain areas in order to reduce the amount of the anti-microbial agents being used, and therefore the cost of such fibers.
  • the anti-microbial additives used in the synthetic fibers do not wash off over time because they are integrally incorporated into these fibers, thus their effectiveness is increased and prolonged.
  • the anti-microbial synthetic fibers comprise high tenacity polymers (e.g. PET) in one component and hydrolysis resistance polymers (e.g. PCT) in another component.
  • the hydrophilic and anti-microbial additives provide a hydrolysis-resistant surface with good wrinkle resistance that results in long-term protection against washings in boiling water and strong soaps.
  • the anti-microbial synthetic fibers can further be blended with non-anti-microbial fibers such as cotton, wool, polyester, acrylic, nylon etc. to provide anti-microbial finished fabrics that are able to withstand significant wear and washings and while maintaining their effectiveness.
  • the invention further comprises a method for making a fiber blend which includes mixing a polyester polymer, characterized by a low melting temperature and having binder qualities, with an additive for providing desired characteristics to a finished fiber.
  • the mixture is heated and extruded to form a continuous filament.
  • the continuous filament fiber is cut to form a cut filament fiber.
  • the cut filament fiber is blended with a natural fiber to form a fiber blend.
  • the fiber blend is heated to a temperature in the melting temperature range of said polyester polymer for a sufficient period of time to melt the low melting temperature polyester polymer and wet the natural fiber and provide such natural fiber with the additive firmly attached thereto.
  • the polyester polymer may be PETG. After the fiber is prepared it may be spun to make a yarn and the yarn may be made into a fabric.
  • the heating step can take place after the yarn is made into a fabric.
  • the additive may be a colorant, an anti-microbial agent, a fire retarding agent, or another agent which adds properties to the fiber or yarn or fabric.
  • There is another method for making a fiber which includes mixing a polyester polymer, characterized by a low melting temperature and having binder qualities, with an additive for providing desired characteristics to a finished fiber, heating the mixture and extruding it to form a continuous filament. Another polymer is heated and extruded to form a continuous filament. The extruding steps form a bi-component fiber with the mixture forming the sheath and the other polymer forming the core.
  • Office partition and office component fabrics can be made in accordance with the present invention.
  • An example is shown in FIG. 27 which is a cross section through an office partition in which there is a multi-layer partition having a filling layer 240 , a fabric layer 242 on one side and a third layer 244 which may also be of fabric or can be of a solid material.
  • Office type partitions walls can be portable or semi-portable dividers of open area for personnel work stations and other assigned work and waiting areas for employees and clients.
  • the fiber can be wholly or partly synthetic fibers which is mono-or multi-component and can be used with other synthetic or natural fibers to form a variety of fabrics uses as wall covering and/or wall fillers. Partitions of this type are used in office factory, storage and customer service areas. They are provided with fabric surfaces (woven, knits, or non-woven) for aesthetic reasons, sound absorption and/or to cushion impacts. They may also be divided with internal fabric or loose fiber fills for cushioning, wall covering substrate support and sound and/or thermal insulation purposes.
  • the anti-microbial agent is incorporated into the fibers in one or both of the outer layers 240 and 244 .
  • This can include fabrics for office, hospital, waiting area, classrooms, busses, cars, and the like and also curtains, upholstery, carpets and bedspreads.
  • other materials can be added to the fibers such as pigments, fire retardants, color fixing agents, and UV resistant agents. Partitions are assembled, disassembled, moved and reassembled with some frequency. This and traffic around such partitions creates an environment for spread of airborne or contact transmitted disease, and partitions are frequently touched.
  • This invention provides partition systems and other articles of the type described.
  • An anti-static agent can be added to assist in dissipating static charges which create problems, for example, when computers are being used.
  • the product remains intact when subjected to normal cleaning and can be assembled by being needle punched, resin bonded wet laid, thermo-bonded, and spun bond.
  • office environments there is the spillage of food and spills from office supply and janitorial materials and simple hand contact on wall surfaces.
  • These and other environmental insults have the potential to leave residues that can be good substrates for the growth of bacteria, mold and other microbes. They can be in moist environments and the partitions are site for growth, and also from airborne microbes.
  • Athletic wear clothing and liners including athletic wear liners made from a wholly or partly synthetic fiber that can be wither mono-or multi-component in nature, and binder fibers both staple and filament, with anti-microbial properties and which can be used with other synthetic or natural fibers to form a variety of fabrics and materials.
  • Athletic wear is subject to the accumulation of bacteria, fungi, and associated odors that can proliferate in the presence of sweat and other bodily secretions that result from strenuous exercise in this type of clothing.
  • This type of product may be made using anti-microbial fibers, and which for some applications are provided with a layer which touches the skin and wicks away the sweat to make a more comfortable garment (or liner) and this type of article benefits from the use of anti-microbial fibers in at least one layer.
  • They can include T-shirts, crotch liners, bicycle pants and shirts, sweat suits, athletic supporters, stretch pants, long underwear, and athletic socks. Because this type of clothing is constantly and intermittently being soaked with sweat and brought into contact with dirt and associated materials, they are subject to bacterial and fungal growth as well as to the development of associated odors. By manufacturing this clothing with lining materials made, at least partially, of the anti-microbial fibers of this invention, growth of microbes could be reduced.
  • anti-microbial fiber-containing clothing is useful in reducing the growth of bacteria, fungi, and other microbes once soaked with sweat, thus reducing associated odors and the discomfort of the individual.
  • the anti-microbial-fiber containing fabrics may be used in the interior linings of shirts and pants or shorts, such as those used in running and bicycling. These anti-microbial fibers may also be used in the manufacture of athletic clothing that does not have linings. This type of athletic clothing is then able to be used for long periods of time while maintaining its anti-microbial and anti-odor properties because of its resistance to multiple washings.
  • Anti-microbial fibers can be used to make materials for a variety of applications in which it is necessary or desirable to reduce bacterial and fungal growth and the resultant odor.
  • these materials can be used in reusable or re-wearable incontinent garments and other articles such as linens and bed pads, mattress pads or absorbent pads to prevent bed sores on persons confined to bed for extended periods of time. Diapers and other clothing and articles for incontinent individuals are constantly and intermittently being soaked with urine and these items as now manufactured are not effective at killing odor and infection-causing bacteria.
  • anti-microbial fibers in the manufacture of incontinent garments is desirable.
  • These anti-microbial fiber-containing garments are useful in reducing the growth of bacteria, fungi, and other microbes once soaked with urine, thus reducing the discomfort of the individual and preventing infections generally.
  • the anti-microbial fiber-containing fabrics may be used in both the covering fabric and the water absorbent interior material. In this way, both surface and interior protection is achieved.
  • these materials may also be made to be reusable because the anti-microbial effect of the fibers of these garments and articles are resistant to multiple washings. Thus, a significant cost savings is realized in the laundry operations of hospitals and nursing homes as well as in the economics of individual households.
  • any of the fiber embodiments described below could be used. Both the strength and resiliency of these materials is important since they must stand up to multiple wettings and subsequent cleanings. Thus, both bi-component fibers and mixed fiber fabrics are useful embodiments for incontinent garments. Also, other modifications of the characteristics of these fibers and fabrics beyond that of adding anti-microbial agents, including the addition of agents to increase or decrease hydrophobicity, are useful in view of the repeated wettings and the need for frequent cleanings and washings. In addition, anti-odor additives may be particularly useful in this application in light of this frequency of cleaning, as well as the wetting with urine. Thus, these anti-microbial materials, garments and articles significantly reduce the growth of mold, mildew, and bacteria in home and institutional environments.
  • Garments for incontinent persons are made of anti-microbial fibers designed to use inorganic silver-containing compounds that are integrated into the polymers that are used to make these anti-microbial fibers.
  • other metals such as copper, potassium, magnesium, and calcium
  • mixtures of different metal-containing anti-microbial agents in differing concentrations can be used that result in hybrid agents tailored for specific tasks.
  • Such garments may be knitted or woven and include underwear, pajamas, linens, disposable diapers, and the like.
  • FIG. 7 One type of such garment of the present invention is shown in FIG. 7 in which there is a garment 34 which carries a removable liner assembly 36 which is detachably secured within the garment.
  • the liner assembly includes an outer layer 33 which contacts the skin of a wearer 44 around the buttocks and crotch area. This layer is made to be smooth and soft so as to be comfortable for the wearer even when fluids such as urine contact this layer and pass therethrough.
  • There is a wick layer 35 which changes color when it is wet so that attendants can see from a distance that a wearer is wet and needs to receive some attention, such as the changing of the liner assembly.
  • an absorbent layer 31 formed of a mass of fibers.
  • the liner assembly 36 is held together by soft fiber connectors, 38 .
  • the liner itself may be removably attached to the basic garment with Velcro so that it is easily removable and changed.
  • the liners 36 may be constructed to be washable so that they can be reused, or can be made to be disposable.
  • the garment has a belt 42 for holding the garment in place.
  • the outer layer 33 is made of anti-microbial fiber of the type described in further detail below so that there is protection from microbes and fungus which causes infection and odors.
  • Layer 33 is made to be a porous fiber material which will draw any moisture from the wearer by wick action away from the wearer's skin and into the absorbent liner. Since the layer 33 is always against the wearer's skin and at least at times is wet from urine, there is the risk of infection which, with the present invention is prevented, due to the layer 33 being constructed of anti-microbial fibers, the construction of which is described in more detail above.
  • the absorbent material 31 of the liner 36 may also be made of non-woven fibrous material which is also anti-microbial if desired.
  • Anti-microbial fibers may be made into other products intended for incontinent persons, such as bed linens, and bed pads, mattress pads or absorbent pads which are used to prevent bed sores in persons who are confined to bed for extended periods of time.
  • Such products provide a first line of attack against problems caused by microbes especially when used in all areas of the products which come into contact with a person's skin.
  • Nautical fabrics can be made at least in part using the anti-microbial fibers of the present invention and are particularly useful for this type of application in which the fabrics are constantly wet and subject to mildew.

Abstract

An anti-microbial and/or anti-fungal synthetic fiber and various products made partially or wholly therefrom. Anti-microbial fabrics, garments and articles made from fibers that may comprise various thermoplastic polymers and additives in a mono-component form or a bi-component form in either a core-sheath or side-by-side configurations. The anti-microbial synthetic fibers comprise inorganic anti-microbial additives, distributed in certain areas to reduce the amount of the anti-microbial agents being used, and therefore the cost of such fibers. The fibers can incorporate anti-microbial additives so that they are not removed by repeated washing in boiling water and in dry clean cycles and become ineffective and conversely enhance access to the additives by washing or the like. The fibers comprise high tenacity polymers (e.g. PET) in one portion and hydrolysis resistance polymers (e.g. PCT) in another portion with the additives. The fibers can further be blended with non-anti-microbial fibers such as cotton, wool, polyester, acrylic, nylon etc. to provide anti-microbial finished fabrics.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a division of Ser. No. 09/565,138 filed May 5, 2000, and which claims the priority of the following provisional applications: Ser. No. 60/136,261, filed May 27, 1999; Ser. No. 60/172,285 filed Dec. 17, 1999; Ser. No. 60/172,533 filed Dec. 17, 1999; Ser. No. 60/173,207, filed Dec. 27, 1999; Ser. No. 60/180,240 filed Feb. 4, 2000; Serial No. 180,536 filed Feb. 7, 2000; and Ser. No. 60/181,251 filed Feb. 9, 2000, the entire content of all such applications being incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates generally to anti-microbial articles, and, more particularly, to fabrics, fabric construction (having qualities imparted to it which remain for the life of the fabric, such as excellent color fastness without the need for a dye bath), garments and athletic wear and other articles which have anti-microbial properties. This includes garments and similar articles as well as underwear, pajamas, washable and/or disposable diapers, as well as linens, and bed pads, mattress pads or absorbent pads for bed ridden patients, to prevent bed sores. Such garments and articles may be made of woven fabric, knitted fabric or non-woven fabric.
  • BACKGROUND OF THE INVENTION
  • There are many patents and other forms of published information which are available concerning garments and other articles some of which are intended for use for incontinent persons. Many of these deal with the problem of moving body fluids away from a person's skin to prevent the type of problems created when such fluids remain in contact with the skin for long periods of time, such as rashes and other skin eruptions. Absorbent layers are provided behind the layer which touches the skin.
  • However, there is the danger of infection due to bacterial and fungal growth in urine-soaked fabrics and the overall discomfort caused by wet clothing.
  • There has been little attention to a problem which remains even when the fluids are moved away from the skin. This is the problem caused by microbes which attach to the outer layer which touches the skin even when the fluids move into the absorbent layer. These microbes cause a variety of problems.
  • The University of Minnesota Extension Service, Waste Education Series published an article in 1998, “Infant Diapers and Incontinence Products: Choices for Families and Communities by Gahring et al relating to this subject (hereafter “UOM Article”). This article indicates that the use of disposable diapers and incontinence products have been widely adopted for babies and for adults with certain problems. There is an estimate that there are at least ten million adult Americans who are incontinent. One of the problems is rashes and skin irritation.
  • Moisture absorbing incontinence products are produced in various manners including plastic film or coated nylon for a waterproof backing, paper fiber, gelling material, or cotton gauze; flannel for a middle absorbent layer and nonwoven or woven or knitted fabrics made of polyester, olefin, viscose or cotton for the coverstock.
  • This article discusses health issues for babies relating to the condition of the skin and to the transmission of infectious diseases. Prolonged contact with urine and stool is a major cause of diaper rash.
  • There are environmental problems associated with the large use of disposable products of this type. And this will increase as the number of elderly people in our society increases. While disposables are placed into landfills together with other trash, it appears that many people do not empty the contents of disposables into the toilet, and a study has shown that diaper wastes represent a significant health hazard in landfills. While many such products claim to be biodegradable, this is not always correct and there is some difficulty in making the moisture impervious layers of the plastics used in such products, biodegradable.
  • Also it has been found that super-absorbent disposable diapers are more effective than cloth diapers with separate waterproof pants/wraps. The transmission of infectious disease is a major concern for care, outside of the home. The fecal containment of disposable diapers is found to be significantly better than that of cloth diapers with plastic pants.
  • Thus, there still exists a need to develop garments and articles of the type described which are made of fibers having metal-containing anti-microbials that do not cause the development of resistant bacterial strains for incorporation into fibers that are used to make a variety of fabrics. There also still exists a need for these anti-microbial agents to be resistant to being washed away, thus maintaining their potency as an integral part of the garments and articles into which they are incorporated.
  • PETG as used herein means an amorphous polyester of terephthalic acid and a mixture of predominately ethylene glycol and a lesser amount of 1,4-cyclohexanedimethanol. It is known that PETG can be used in polycarbonate blends to improve impact strength, transparency, processability, solvent resistance and environmental stress cracking resistance.
  • Udipi discloses in U.S. Pat. Nos. 5,104,934 and 5,187,230 that polymer blends consisting essentially of PC, PETG and a graft rubber composition, can be useful as thermoplastic injection molding resins.
  • Chen et al. in U.S. Pat. No. 5,106,897 disclose a method for improving the low temperature impact strength of a thermoplastic polyblend of PETG and SAN with no adverse effect on the polyblends clarity. The polyblends are useful in a wide variety of applications including low temperature applications.
  • Billovits et al. in U.S. Pat. No. 5,134,201 disclose that miscible blends of a thermoplastic methylol polyester and a linear, saturated polyester or co-polyester of aromatic dicarboxylic acid, such as PETG and PET, have improved clarity and exhibit an enhanced barrier to oxygen relative to PET and PETG.
  • Batdorf in U.S. Pat. No. 5,268,203 discloses a method of thermoforming thermoplastic substrates wherein an integral coating is formed on the thermoplastic substrate that is resistant to removal of the coating. The coating composition employs, in a solvent base, a pigment and a thermoplastic material compatible with the to-be-coated thermoplastic substrate. The thermoplastic material, in cooperation with the pigment, solvent and other components of the coating composition, are, after coating on the thermoplastic substrate, heated to a thermoforming temperature and the thermoplastic material is intimately fused to the thermoplastic substrate surface.
  • Ogoe et al. in U.S. Pat. No. 5,525,651 disclose that a blend of polycarbonate and chlorinated polyethylene has a desirable balance of impact and ignition resistance properties, and useful in the production of films, fibers, extruded sheets, multi-layer laminates, and the like.
  • Hanes in U.S. Pat. No. 5,756,578 discloses that a polymer blend comprising a monovinylarene/conjugated diene black copolymer, an amorphous poly(ethylene terephthalate), e.g. PETG, and a crystalline poly(ethylene terephthalate), e.g. PET, has a combination of good clarity, stiffness and toughness.
  • Eckart et al. in U.S. Pat. No. 5,958,539 disclose a novel thermoplastic article, typically in the form of sheet material, having a fabric comprising textile fibers embedded therein. The thermoplastic article is obtained by applying heat and pressure to a laminate comprising an upper sheet material, a fabric comprised of textile fibers and a lower sheet material. The upper and lower sheet materials are formed from a co-polyester, e.g. PETG. This thermoplastic article may be used in the construction industry as glazing for windows. One or both surface of the article may be textured during the formation of the articles.
  • Ellison in U.S. Pat. No. 5,985,079 discloses a flexible composite surfacing film for providing a substrate with desired surface characteristics and a method for producing this film. The film comprises a flexible temporary carrier film and a flexible transparent outer polymer clear coat layer releasably bonded to the temporary carrier film. A pigment base coat layer is adhered to the outer clear coat layer and is visible there through, and a thermo-formable backing layer is adhered to the pigmented base coat layer. The film is produced by extruding a molten transparent thermoplastic polymer and applying the polymer to a flexible temporary carrier thereby forming a continuous thin transparent film. The formed composite may be heated while the transparent thermoplastic polymer film is bonded to the flexible temporary carrier to evaporate the volatile liquid vehicle and form a pigment polymer layer. The heating step also molecularly relaxes the underlying film of transparent thermoplastic polymer to relieve any molecular orientation caused by the extrusion. Ellison also mentions that it is desirable to form the flexible temporary carrier from a material that can withstand the molten temperature of the transparent thermoplastic polymer. The preferred flexible temporary carriers used in his invention are PET and PETG.
  • Currently, many tee shirts, such as the grey athletic shirts, are made by blending in up to 10% of either solution dyed black polyester or stock dyed cotton. The solution dyed polyester has a disadvantage in that the product can no longer be labeled 100% cotton. The stock dyed cotton has the disadvantage in that it is not color fast, especially to bleach, and that it needs to be passed through a dye bath.
  • SUMMARY OF THE INVENTION
  • The excellent wetting characteristics of PETG can be used to distribute the anti-microbial additive uniformly within a yarn or fabric. In addition to the carrier (e.g. a zeolite) of silver, the PETG could carry ions of other inorganic anti-microbial additives such as copper, zinc, or tin in their respective carriers.
  • In addition to the anti-microbial component, the invention may be used to carry pigments with the PETG to achieve certain colors without the need to dye the other fibers.
  • The created synthetic fibers of polymers and additives can further be blended with non anti-microbial fibers to provide anti-microbial finished fabrics that are able to withstand significant wear and washings and maintain their effectiveness.
  • The use of a cloth diaper and a garment over it is effective, especially when anti-microbial/anti-fungal fibers are used for the fibers which have contact with the waste matter, although beneficial effects are available even when the anti-microbial/anti-fungal agents are used only in the fibers which touch the body.
  • Due to the urine soaking which occurs with incontinent persons, these garments are suitable for the use of anti-microbial and anti-fungal fibers during their manufacture. The use of such anti-microbial material allows these garments to be reusable without the negative effects of present reusable garments of this type. The anti-microbial may be fabric (knitted or woven) plus absorbent pads. This also applies to bed pads, mattress pads or absorbent pads for bed ridden patents to prevent bed sores.
  • It is an object of the invention to provide garments and articles intended for use for incontinent persons which articles have anti-microbial and/or anti-fungal fibers in a woven or non-woven fabric of the garment or article which is in contact with such person's skin to eliminate or substantially reduce the problems caused by such microbes.
  • It is another object of the invention to provide such garments and articles which may be cleaned and reused many times while maintaining the beneficial anti-microbial qualities thereof.
  • It is a further object of the invention to provide anti-microbial fibers in the absorbent material usually used in such articles.
  • The present invention provides an anti-microbial finished fabric by blending the synthetic anti-microbial fibers with non-anti-microbial fibers such as cotton, wool, polyester, acrylic, nylon, and the like.
  • PETG is an amorphous binder fiber which can be blended into yarns with other fibers to form fabrics, as well as non-woven fabrics. After heat activation, the PETG fiber melts, wets the surface of the surrounding fibers, and settles at the crossing points of the fibers, thus forming “a drop of glue” which bonds the fibers together and distributes the anti-microbial additives.
  • The excellent wetting characteristics of PETG can be used to distribute the anti-microbial additive uniformly within a yarn or fabric. In addition to the zeolite of silver, the PETG could carry other inorganic anti-microbial additives such as copper, zinc, or tin.
  • In addition to the anti-microbial component, the invention may be used to carry pigments with the PETG to achieve certain colors without the need to dye the other fibers.
  • The created synthetic fibers of polymers and additives can further be blended with non anti-microbial fibers to provide anti-microbial finished fabrics that are able to withstand significant wear and washings and maintain their effectiveness.
  • It is an object of the invention to provide a fabric formed from a fiber to which qualities may be imparted which last for the life of the fabric.
  • It is another object of the invention to provide such a fabric which is provided with coloring which remains fast even to sunlight and many launderings.
  • It is a further object of the invention to provide such a fabric which is provided with a colorant without the use of a dye bath.
  • It is still another object of the invention to provide a fiber and fabric of the type described which possesses anti-microbial properties.
  • It is yet another object of the invention to provide a fiber and fabric of the type described in which characteristics may be imparted using agents which become permanently fixed and are maintained for the life of the fabric.
  • These objects and others are accomplished in accordance with the present invention which uses PETG:
      • a. As a carrier for pigments for coloration for use in finished fabrics to withstand fading;
      • b. With pigments together with other fibers, so that the need for conventional dyeing and disposal of dye materials is avoided;
      • c. With pigments and other fibers, and the resulting fabric possesses excellent fastness for both sunlight resistance and washing;
      • d. With pigments for coloration, the color of the fabric remains fast for in excess of 50 commercial launderings;
      • e. With pigments blended with cotton, which leaves the encapsulated pigment attached to the outside of the cotton fiber and ceases to be a fiber after activation, so that the resulting fabric can still be labeled 100% cotton fiber; and
      • f. With anti-microbial and/or other additives with any natural fibers, so that the resulting fabrics have anti-microbial and/or other properties with the same characteristics of natural fabrics.
  • PETG may be used as one of the polymer blends and/or carriers for a wide variety of applications. PETG is an amorphous binder fiber that can be blended into yarns with other fibers to form woven fabrics, as well as knits and non-woven fabrics. It has two characteristics of particular interest: (1) excellent wetting and (2) low melting temperature (which can be controlled between 90° C. and 160° C.). It is used in the present invention as a carrier to carry pigments and/or anti-microbial additives and/or other additives and is blended with other fibers which may be natural fibers such as cotton, silk, flax, wool, etc. or other synthetic fibers such as: PET, PP, PE, Nylon, Acrylic, etc. After heat activation, the PETG melts, continuously releases the color pigments and/or anti-microbial or other additives and wets the surface of the surrounding fibers with the pigment and/or anti-microbial or other additives it carries. It settles at the crossing points of the fibers, thus forming “a drop of glue” which bonds the fibers together. Therefore, PETG delivers and distributes the pigments and/or anti-microbial or other additives uniformly within a fabric, generating the finished fabrics and/or fabrics having anti-microbial properties.
  • Since the natural fibers used to blend with PETG are not changed physically after heat activation of PETG, they contain the same characteristics as natural fibers. The PETG may be used together with or without anti-microbial agents to form a fabric having excellent color fastness even in the presence of sunlight, and will withstand many washings without deterioration. The fabric is made by blending PETG used as a carrier for pigments and/or anti-microbial additives, with cotton or any other fibers of synthetic material such as from polyester and rayon, and activating PETG from 110° to 140° C. The color is thus provided to the yarn and fabric without the need of going through a dye bath. This fabric remains color-fast for in excess of 50 commercial launderings.
  • The excellent wetting characteristics of PETG can be used to distribute the pigments and/or anti-microbial additive uniformly within a yarn or fabric. While many anti-microbial agents may be used, such as those, which use copper, zinc, or tin, the preferred agent is zeolite of silver. In addition to the anti-microbial component and the pigment added to the PETG, the PETG may be used as a carrier to add other properties to yarn and fabric, such as fire retardants.
  • Other objects, features and advantages will be apparent from the following detailed description of preferred embodiments taken in conjunction with the accompanying drawings in which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A, 1B, 1B′, 1B″ and 1C are cross-sectional views of various fiber configurations used in practice of the various embodiments of the invention.
  • FIG. 2. is a sketch of a fibrous mass using one or more of the fibers of FIGS. 1A-1C.
  • FIG. 3 is a schematic view of the feed hopper, screw and extruder.
  • FIG. 4 is a sectional view through the exit of the extruder showing the formation of coaxial bi-component fibers of the present invention.
  • FIGS. 5 and 6 are photomicrographs of fibers showing the particles of zeolite of silver.
  • FIG. 7 shows a garment made from the fibers of the present invention for a person who is incontinent.
  • FIG. 8 is a cross section of one type of filter using the fibers of the present invention.
  • FIGS. 9A, 9B, 9C, 9D are diagrams of air flow systems utilizing the fibers of the invention.
  • FIG. 10 is a cross section of one type of wound care or burn dressing.
  • FIG. 11 is a flow chart showing the preparation of the fibers and yarn for use in making a woven or nonwoven fabric.
  • FIG. 12 is a flow chart showing the preparation of fibers and yarn and then of a fabric.
  • FIG. 13 is a flow chart showing another manner of preparing fibers in accordance with the present invention.
  • FIG. 14 is a schematic isometric view of a first type of insole using latex.
  • FIG. 15 is a schematic isometric view of a second type of insole using a layer of anti-microbial fibers.
  • FIG. 16 is a side view of a sheet material having an anti-microbial film layer co-extruded thereon.
  • FIG. 17 is a side view of a sheet material having two anti-microbial films extruded thereon, one on each side.
  • FIG. 18 is a side view of a further arrangement in which a double sheet material is complete surrounded by an anti-microbial film.
  • FIG. 19 is a side view of a shaped sheet material having two anti-microbial films extruded thereon.
  • FIG. 20 is an isometric view of a food tray constructed in accordance with the present invention.
  • FIG. 21 is a partial sectional view of apparatus for making a multi-layer co-extruded sheet.
  • FIG. 22 is a sectional view through the apparatus shown in FIG. 21.
  • FIG. 23 is an isometric view of apparatus for making a side-by-side co-extruded sheet.
  • FIG. 24 is a cross section through an insole made in accordance with the present invention.
  • FIG. 25 is a plan view of the insole of FIG. 24.
  • FIG. 26 is a cross section through a laminate for footwear components.
  • FIG. 27 is a cross-sectional exploded view through an office partition.
  • FIG. 28 is a schematic view of a humidifier evaporation surface media used to humidify air.
  • FIG. 29 is a schematic view of a humidifier pad or filter in a system.
  • FIG. 30 is a pad or filter for a circulation/aeration system.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following non-limiting examples illustrate practice of the invention for fabrics and other articles including the making of the fibers therefor.
  • EXAMPLE 1
  • The anti-microbial fiber of the present invention was used in the making of a mattress pad. In this example, 15% of a 6.7 denier 76 mm cut length natural white fiber was used as a homofilament with zeolite of silver as the anti-microbial agent and 15% of a bi-component fiber was used together with 70% PET 6x3 T295 in a blend in which the zeolite of silver comprised 0.9% of the fiber. The blend of this fiber was made into a batt of about 1-1½″ thickness of nonwoven material which was then placed between two layers of woven fabric to form a mattress pad. When tested using the shake flask test this provided a 99.99% microbial kill ratio.
  • There are other examples in which all of the parameters of Example 1 were used and in each of which there was 15% of a bi-component fiber used. Again the zeolite of silver comprised 0.9% of the fiber. The percentage of the anti-microbial fiber ranged from 20% to 40% and the PET ranged from 45% to 65%. In all examples the microbial kill ratio was 99.99% using the shake flask test.
  • EXAMPLE 1A
  • In this example, 35% of a 6.7 denier 51 mm cut length natural white fiber was used in a sheath/core bi-component configuration with zeolite of silver as the anti-microbial agent and 15% of another bi-component fiber was used together with 50% PET 6x3 T295 in a blend in which the zeolite of silver comprised 1.8% of the fiber. The blend was then prepared as in example 1 and when tested using the shake flask test, there was a 99.9% microbial kill ratio.
  • A second group similar to the first one was prepared in which the sheath/core bi-component fiber with zeolite of silver as the anti-microbial agent comprised from 10 to 35% of the fiber blend, 15% of another bi-component fiber was used and from 50 to 75% of PET 6×3 T295 was used. The zeolite of silver comprised 0.75% of the fiber. In the shake flask test, there was a 99.99% microbial kill ratio.
  • EXAMPLE 2
  • In this example, 15% of a 3.5 denier 38 mm cut length PETG fiber was used as a homofilament with zeolite of silver as the anti-microbial agent. 85% PET fiber was blended with the PETG anti-microbial fiber to form a blend in which the zeolite of silver comprised 1.8% of the fiber. The fiber was made into a wall covering and was tested by the shake flask test, which provided a microbial kill rate of 99.99%.
  • A modified version was prepared the same way except that there was only 10% fiber with zeolite of silver in the blend and 90% PET fiber was used. After the fiber was made into a wall covering, this too provided a 99.99% microbial kill rate using the shake flask method of testing.
  • A further modified version was used in which there was only 5% fiber having zeolite of silver in the blend and 95% PET fiber in the blend. The testing, after the fiber was used in a wall covering, again provided a 99.99% microbial kill rate for bacteria.
  • The fibers described above can be used to make both woven and nonwoven fabrics as well as knitted fabrics. Such fabrics are useful for various types of articles, some of which are listed below:
  • Incontinent garments, including disposable diapers, underwear, pajamas, and linens, some of which may be knitted. This is disclosed, for example, in pending provisional application Ser. No. 60/173,207 filed Dec. 27, 1999, the contents of which are physically incorporated herein below, in which garments and other articles for incontinent persons made of an anti-microbial fiber comprises various thermoplastic polymers and additives in a mono-component or bi-component form in either a core-sheath or side-by-side configurations. The anti-microbial synthetic fibers can comprise inorganic anti-microbial additives, distributed only in certain areas in order to reduce the amount of the anti-microbial agents being used, and therefore the cost of such fibers. The anti-microbial additives used in the synthetic fibers do not wash off over time because they are integrally incorporated into these fibers, thus their effectiveness is increased and prolonged. The anti-microbial synthetic fibers comprise high tenacity polymers (e.g. PET) in one component and hydrolysis resistance polymers (e.g. PCT) in another component. The hydrophilic and anti-microbial additives provide a hydrolysis-resistant surface with good wrinkle resistance that results in long-term protection against washings in boiling water and strong soaps. The anti-microbial synthetic fibers can further be blended with non-anti-microbial fibers such as cotton, wool, polyester, acrylic, nylon etc. to provide anti-microbial finished fabrics that are able to withstand significant wear and washings and while maintaining their effectiveness. The invention further comprises a method for making a fiber blend which includes mixing a polyester polymer, characterized by a low melting temperature and having binder qualities, with an additive for providing desired characteristics to a finished fiber. The mixture is heated and extruded to form a continuous filament. The continuous filament fiber is cut to form a cut filament fiber. The cut filament fiber is blended with a natural fiber to form a fiber blend. The fiber blend is heated to a temperature in the melting temperature range of said polyester polymer for a sufficient period of time to melt the low melting temperature polyester polymer and wet the natural fiber and provide such natural fiber with the additive firmly attached thereto. The polyester polymer may be PETG. After the fiber is prepared it may be spun to make a yarn and the yarn may be made into a fabric. The heating step can take place after the yarn is made into a fabric. The additive may be a colorant, an anti-microbial agent, a fire retarding agent, or another agent which adds properties to the fiber or yarn or fabric. There is another method for making a fiber, which includes mixing a polyester polymer, characterized by a low melting temperature and having binder qualities, with an additive for providing desired characteristics to a finished fiber, heating the mixture and extruding it to form a continuous filament. Another polymer is heated and extruded to form a continuous filament. The extruding steps form a bi-component fiber with the mixture forming the sheath and the other polymer forming the core. The sheath is heated to a temperature in the melting temperature range of the polyester polymer for a sufficient period of time to melt the low melting temperature polyester polymer and wet the core fiber and provide the core fiber with the additive firmly attached thereto. Office partition and office component fabrics can be made in accordance with the present invention. An example is shown in FIG. 27 which is a cross section through an office partition in which there is a multi-layer partition having a filling layer 240, a fabric layer 242 on one side and a third layer 244 which may also be of fabric or can be of a solid material. Office type partitions walls can be portable or semi-portable dividers of open area for personnel work stations and other assigned work and waiting areas for employees and clients. The fiber can be wholly or partly synthetic fibers which is mono-or multi-component and can be used with other synthetic or natural fibers to form a variety of fabrics uses as wall covering and/or wall fillers. Partitions of this type are used in office factory, storage and customer service areas. They are provided with fabric surfaces (woven, knits, or non-woven) for aesthetic reasons, sound absorption and/or to cushion impacts. They may also be divided with internal fabric or loose fiber fills for cushioning, wall covering substrate support and sound and/or thermal insulation purposes. The anti-microbial agent is incorporated into the fibers in one or both of the outer layers 240 and 244. This can include fabrics for office, hospital, waiting area, classrooms, busses, cars, and the like and also curtains, upholstery, carpets and bedspreads. In addition to the anti-microbial agent, other materials can be added to the fibers such as pigments, fire retardants, color fixing agents, and UV resistant agents. Partitions are assembled, disassembled, moved and reassembled with some frequency. This and traffic around such partitions creates an environment for spread of airborne or contact transmitted disease, and partitions are frequently touched. This invention provides partition systems and other articles of the type described. An anti-static agent can be added to assist in dissipating static charges which create problems, for example, when computers are being used. The product remains intact when subjected to normal cleaning and can be assembled by being needle punched, resin bonded wet laid, thermo-bonded, and spun bond. In office environments there is the spillage of food and spills from office supply and janitorial materials and simple hand contact on wall surfaces. These and other environmental insults have the potential to leave residues that can be good substrates for the growth of bacteria, mold and other microbes. They can be in moist environments and the partitions are site for growth, and also from airborne microbes. Athletic wear clothing and liners, including athletic wear liners made from a wholly or partly synthetic fiber that can be wither mono-or multi-component in nature, and binder fibers both staple and filament, with anti-microbial properties and which can be used with other synthetic or natural fibers to form a variety of fabrics and materials. Athletic wear is subject to the accumulation of bacteria, fungi, and associated odors that can proliferate in the presence of sweat and other bodily secretions that result from strenuous exercise in this type of clothing. This type of product may be made using anti-microbial fibers, and which for some applications are provided with a layer which touches the skin and wicks away the sweat to make a more comfortable garment (or liner) and this type of article benefits from the use of anti-microbial fibers in at least one layer. They can include T-shirts, crotch liners, bicycle pants and shirts, sweat suits, athletic supporters, stretch pants, long underwear, and athletic socks. Because this type of clothing is constantly and intermittently being soaked with sweat and brought into contact with dirt and associated materials, they are subject to bacterial and fungal growth as well as to the development of associated odors. By manufacturing this clothing with lining materials made, at least partially, of the anti-microbial fibers of this invention, growth of microbes could be reduced. In addition, the exacerbation of microbial growth and resultant odor production upon storage of this type of clothing in bags over time could be reduced. These anti-microbial fiber-containing clothing is useful in reducing the growth of bacteria, fungi, and other microbes once soaked with sweat, thus reducing associated odors and the discomfort of the individual. Specifically, the anti-microbial-fiber containing fabrics may be used in the interior linings of shirts and pants or shorts, such as those used in running and bicycling. These anti-microbial fibers may also be used in the manufacture of athletic clothing that does not have linings. This type of athletic clothing is then able to be used for long periods of time while maintaining its anti-microbial and anti-odor properties because of its resistance to multiple washings. In addition, the methods described above could also be used to produce clothing dyed in a variety of colors that would possesses the characteristics of inhibiting microbial growth and its associated odors, thus increasing its versatility. Anti-microbial fibers can be used to make materials for a variety of applications in which it is necessary or desirable to reduce bacterial and fungal growth and the resultant odor. Specifically, in personal hygiene situations, these materials can be used in reusable or re-wearable incontinent garments and other articles such as linens and bed pads, mattress pads or absorbent pads to prevent bed sores on persons confined to bed for extended periods of time. Diapers and other clothing and articles for incontinent individuals are constantly and intermittently being soaked with urine and these items as now manufactured are not effective at killing odor and infection-causing bacteria. By making these items disposable, the growth of bacteria and fungi is reduced depending upon how often they are changed, but there are environmental and other considerations to disposables. However, the use of the anti-microbial fibers in such garments and articles that maintain their effectiveness during washings, results in reusable garments and articles of the type described with odor reducing and anti-microbial properties which last for the life of such garments and articles.
  • As a result of the above, the use of anti-microbial fibers in the manufacture of incontinent garments is desirable. These anti-microbial fiber-containing garments are useful in reducing the growth of bacteria, fungi, and other microbes once soaked with urine, thus reducing the discomfort of the individual and preventing infections generally. Specifically, the anti-microbial fiber-containing fabrics may be used in both the covering fabric and the water absorbent interior material. In this way, both surface and interior protection is achieved. In addition, these materials may also be made to be reusable because the anti-microbial effect of the fibers of these garments and articles are resistant to multiple washings. Thus, a significant cost savings is realized in the laundry operations of hospitals and nursing homes as well as in the economics of individual households.
  • In manufacturing these materials, any of the fiber embodiments described below could be used. Both the strength and resiliency of these materials is important since they must stand up to multiple wettings and subsequent cleanings. Thus, both bi-component fibers and mixed fiber fabrics are useful embodiments for incontinent garments. Also, other modifications of the characteristics of these fibers and fabrics beyond that of adding anti-microbial agents, including the addition of agents to increase or decrease hydrophobicity, are useful in view of the repeated wettings and the need for frequent cleanings and washings. In addition, anti-odor additives may be particularly useful in this application in light of this frequency of cleaning, as well as the wetting with urine. Thus, these anti-microbial materials, garments and articles significantly reduce the growth of mold, mildew, and bacteria in home and institutional environments.
  • Garments for incontinent persons are made of anti-microbial fibers designed to use inorganic silver-containing compounds that are integrated into the polymers that are used to make these anti-microbial fibers. However, other metals (such as copper, potassium, magnesium, and calcium) can be used as anti-microbial agents. In addition, mixtures of different metal-containing anti-microbial agents in differing concentrations can be used that result in hybrid agents tailored for specific tasks.
  • Such garments may be knitted or woven and include underwear, pajamas, linens, disposable diapers, and the like.
  • One type of such garment of the present invention is shown in FIG. 7 in which there is a garment 34 which carries a removable liner assembly 36 which is detachably secured within the garment. The liner assembly includes an outer layer 33 which contacts the skin of a wearer 44 around the buttocks and crotch area. This layer is made to be smooth and soft so as to be comfortable for the wearer even when fluids such as urine contact this layer and pass therethrough. There is a wick layer 35 which changes color when it is wet so that attendants can see from a distance that a wearer is wet and needs to receive some attention, such as the changing of the liner assembly. Beyond the layer 35 is an absorbent layer 31 formed of a mass of fibers. There is an inner layer 37 which is impervious to fluids so that the fluids such as urine do not wet and/or stain the outer layer of clothing. The liner assembly 36 is held together by soft fiber connectors, 38. The liner itself may be removably attached to the basic garment with Velcro so that it is easily removable and changed.
  • The liners 36 may be constructed to be washable so that they can be reused, or can be made to be disposable. The garment has a belt 42 for holding the garment in place.
  • The outer layer 33 is made of anti-microbial fiber of the type described in further detail below so that there is protection from microbes and fungus which causes infection and odors.
  • Layer 33 is made to be a porous fiber material which will draw any moisture from the wearer by wick action away from the wearer's skin and into the absorbent liner. Since the layer 33 is always against the wearer's skin and at least at times is wet from urine, there is the risk of infection which, with the present invention is prevented, due to the layer 33 being constructed of anti-microbial fibers, the construction of which is described in more detail above.
  • The absorbent material 31 of the liner 36 may also be made of non-woven fibrous material which is also anti-microbial if desired.
  • Anti-microbial fibers may be made into other products intended for incontinent persons, such as bed linens, and bed pads, mattress pads or absorbent pads which are used to prevent bed sores in persons who are confined to bed for extended periods of time. Such products provide a first line of attack against problems caused by microbes especially when used in all areas of the products which come into contact with a person's skin.
  • Higher loading of the anti-microbial agents (up to 5 times) is used to more effectively act against fungi. This higher loading may be achieved by using various zeolites followed by heating the fiber polymer, e.g. PET, to between 180 and 230 degrees Fahrenheit in hot water which allows further metal loading or ion exchange to replace resident metal ions with another ion or mixture of ions. In addition, this would allow the zeolite at or near the surface of the fiber to be preferentially loaded with the metal ion or mixtures thereof that has the desired biological effect. These methods are particularly useful in reducing costs when expensive metal ions, such as silver, are used in these processes. Also, by adding certain metals, e.g. silver, at this point in the process and not having it present during the high temperature fiber extrusion process, any yellowing or discoloration due to oxidation of the metal ion or its exposure to sulfur and halogens would be greatly reduced.
  • Nautical fabrics can be made at least in part using the anti-microbial fibers of the present invention and are particularly useful for this type of application in which the fabrics are constantly wet and subject to mildew.
  • It will now be apparent to those skilled in the art that other embodiments, improvements, details, and uses can be made consistent with the letter and spirit of the foregoing disclosure and within the scope of this patent, which is limited only by the following claims, construed in accordance with the patent law, including the doctrine of equivalents.

Claims (18)

1-84. (canceled)
85. An anti-microbial fabric, comprising:
a textile article including at least one layer being made at least in part of a multi-component fiber of thermoplastic polymers, the fiber including
a core of thermoplastic polymer being at least 20 and less than 70% of the fiber by weight, and
a sheath being more than 30% of the fiber by weight and including (i) a thermoplastic polymer and (ii) an anti-microbial/anti-fungal inorganic additive being from 0.1% to 20% by weight of fiber, the thickness of the sheath in microns being approximately two times the nominal particle size in microns of the additive.
86. An anti-microbial fabric, comprising:
a textile article including at least one layer being made at least in part of a bi-component fiber comprising
a core of a high tenacity polymer being at least 20 and less than 70% of the fiber by weight, and
a sheath of a hydrolysis resistant polymer being at least 30% of the fiber by weight, and including an additive ranging from 0.1% to 20% by weight of the fiber and being selected from the group consisting of pigments, compounds creating a hydrophilic surface, and anti-microbial, anti-fungal and anti-odor materials.
87. An anti-microbial fabric, comprising:
a textile article including at least one layer comprising
a binder fiber made from low temperature polymer with a melting or softening temperature below 200 degrees C.,
an anti-microbial additive of an inorganic compound made from a metal chosen from the group consisting of copper, zinc, tin and silver added to the binder fiber, the additive ranging from 0.1 to 20% by weight of the fiber, and
fibers which are free of anti-microbial additive being blended with said binder fiber, said blend of fibers having been heated to its melting temperature, thereby providing a fiber blend which can be used to produce an anti-microbial finished fabric able to withstand significant wear and washings and maintain its effectiveness.
88. The fabric of any of claims 85-87, wherein the textile article is prepared of woven fabric, non-woven fabric, or knitted fabric.
89. The fabric of any of claims 85-87, wherein the textile article is a diaper.
90. The fabric of any of claims 85-87, wherein the textile article includes an absorbent pad.
91. The fabric of any of claims 85-87, wherein the textile article further includes a wick layer and an absorbent layer.
92. The fabric of claim 91, wherein the layer which is intended to be against a wearer's skin is made of anti-microbial fibers.
93. The fabric of any of claims 85-87, wherein in at least part of the textile article PETG is used as the carrier for color pigments.
94. The fabric of claim 93, wherein the PETG has been melted as a low temperature and has had an anti-microbial and/or a colorant added thereto prior to melting.
95. The fabric of any of claims 85-87, forming at least part of a multi-layer partition or as a fabric for office, hospital, waiting area, classrooms, busses, cars, and the like and also curtains, upholstery, carpets and bedspreads.
96. The fabric of any of claims 85-87, forming at least in part institutional and home furnishings, including bed sheets, pillow cases, bed pad, bed linens, absorbent pads, mattress pads, blankets, towels, drapes, bedspreads, pillow shams, carpets, walk-off mats, napkins, linens, wall coverings, upholstered furniture, liners, mattress ticking, mattress filling, pillow filling, carpet pads, and upholstery fabric.
97. The fabric of any of claims 85-87, forming at least in part athletic clothing, athletic wear liners and component fabrics.
98. The fabric of any of claims 85-87, forming at least in part a laundry bag.
99. The fabric of any of claims 85-87, forming at least in part a nautical fabric.
100. The fabric of any of claims 85-87, forming at least a part of a piece of apparel.
101. The fabric of claim 100, wherein the apparel is at least one of underwear, pajamas, athletic clothing, clothing liners, T-shirts, bicycle pants and shirts, crotch liners, sweat suits, athletic supporters, stretch pants, long underwear, and socks.
US10/655,330 1999-05-27 2003-09-04 Anti-microbial fabrics, garments and articles Abandoned US20050101213A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/655,330 US20050101213A1 (en) 1999-05-27 2003-09-04 Anti-microbial fabrics, garments and articles
US10/762,920 US20040214495A1 (en) 1999-05-27 2004-01-22 Anti-microbial products
US10/768,840 US6946196B2 (en) 1999-05-27 2004-01-30 Anti-microbial fiber and fibrous products

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US13626199P 1999-05-27 1999-05-27
US17228599P 1999-12-17 1999-12-17
US17253399P 1999-12-17 1999-12-17
US17320799P 1999-12-27 1999-12-27
US18024000P 2000-02-04 2000-02-04
US18053600P 2000-02-07 2000-02-07
US18125100P 2000-02-09 2000-02-09
US09/565,138 US6723428B1 (en) 1999-05-27 2000-05-05 Anti-microbial fiber and fibrous products
US10/655,330 US20050101213A1 (en) 1999-05-27 2003-09-04 Anti-microbial fabrics, garments and articles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/565,138 Division US6723428B1 (en) 1999-05-27 2000-05-05 Anti-microbial fiber and fibrous products

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/762,920 Continuation-In-Part US20040214495A1 (en) 1999-05-27 2004-01-22 Anti-microbial products
US10/768,840 Division US6946196B2 (en) 1999-05-27 2004-01-30 Anti-microbial fiber and fibrous products

Publications (1)

Publication Number Publication Date
US20050101213A1 true US20050101213A1 (en) 2005-05-12

Family

ID=27574916

Family Applications (11)

Application Number Title Priority Date Filing Date
US09/565,138 Expired - Lifetime US6723428B1 (en) 1999-05-27 2000-05-05 Anti-microbial fiber and fibrous products
US10/406,720 Abandoned US20030170453A1 (en) 1999-05-27 2003-04-02 Anti-microbial fiber and fibrous products
US10/655,330 Abandoned US20050101213A1 (en) 1999-05-27 2003-09-04 Anti-microbial fabrics, garments and articles
US10/762,920 Abandoned US20040214495A1 (en) 1999-05-27 2004-01-22 Anti-microbial products
US10/765,414 Abandoned US20040202860A1 (en) 1999-05-27 2004-01-27 Anti-microbial fiber and fibrous products
US10/765,255 Abandoned US20050019568A1 (en) 1999-05-27 2004-01-27 Anti-microbial fiber and fibrous products
US10/768,840 Expired - Lifetime US6946196B2 (en) 1999-05-27 2004-01-30 Anti-microbial fiber and fibrous products
US10/770,306 Expired - Lifetime US6841244B2 (en) 1999-05-27 2004-02-02 Anti-microbial fiber and fibrous products
US10/772,127 Abandoned US20050003728A1 (en) 1999-05-27 2004-02-04 Anti-microbial fiber and fibrous products
US10/785,850 Abandoned US20040191500A1 (en) 1999-05-27 2004-02-24 Anti-microbial fiber and fibrous products
US11/010,546 Abandoned US20050106390A1 (en) 1999-05-27 2004-12-13 Anti-microbial fiber and fibrous products

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/565,138 Expired - Lifetime US6723428B1 (en) 1999-05-27 2000-05-05 Anti-microbial fiber and fibrous products
US10/406,720 Abandoned US20030170453A1 (en) 1999-05-27 2003-04-02 Anti-microbial fiber and fibrous products

Family Applications After (8)

Application Number Title Priority Date Filing Date
US10/762,920 Abandoned US20040214495A1 (en) 1999-05-27 2004-01-22 Anti-microbial products
US10/765,414 Abandoned US20040202860A1 (en) 1999-05-27 2004-01-27 Anti-microbial fiber and fibrous products
US10/765,255 Abandoned US20050019568A1 (en) 1999-05-27 2004-01-27 Anti-microbial fiber and fibrous products
US10/768,840 Expired - Lifetime US6946196B2 (en) 1999-05-27 2004-01-30 Anti-microbial fiber and fibrous products
US10/770,306 Expired - Lifetime US6841244B2 (en) 1999-05-27 2004-02-02 Anti-microbial fiber and fibrous products
US10/772,127 Abandoned US20050003728A1 (en) 1999-05-27 2004-02-04 Anti-microbial fiber and fibrous products
US10/785,850 Abandoned US20040191500A1 (en) 1999-05-27 2004-02-24 Anti-microbial fiber and fibrous products
US11/010,546 Abandoned US20050106390A1 (en) 1999-05-27 2004-12-13 Anti-microbial fiber and fibrous products

Country Status (6)

Country Link
US (11) US6723428B1 (en)
EP (1) EP1212478A4 (en)
AU (1) AU5162800A (en)
CA (1) CA2375567C (en)
MX (1) MXPA01012196A (en)
WO (1) WO2000073552A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257616A1 (en) * 2005-05-12 2006-11-16 Stowe-Pharr Mills, Inc. (D/B/A Pharr Yarns, Inc.) Renewable nonwoven carpet
US20100021512A1 (en) * 2008-07-24 2010-01-28 Stanley Arron Incontinence garments with a silver lining infection stopper
CN103194855A (en) * 2013-03-18 2013-07-10 河南舒莱卫生用品有限公司 Preparation method for nano-silver antibacterial non-woven fabric and application of nano-silver antibacterial non-woven fabric to diapers
US9440001B2 (en) 2013-03-06 2016-09-13 Specialty Fibres and Materials Limited Absorbent materials
WO2023043998A1 (en) * 2021-09-16 2023-03-23 Ascend Performance Materials Operations Llc Antiodor and antimicrobial layers in absorbent materials

Families Citing this family (427)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034330A1 (en) * 1996-11-12 2005-02-17 Baychar Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US20040200094A1 (en) * 1996-11-12 2004-10-14 Baychar Softboots and waterproof /breathable moisture transfer composite and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like
US6723428B1 (en) * 1999-05-27 2004-04-20 Foss Manufacturing Co., Inc. Anti-microbial fiber and fibrous products
DE10085395T1 (en) * 1999-12-27 2002-12-05 Kimberly Clark Co Fibers that provide controlled release of an active agent
US8301550B2 (en) 2000-05-08 2012-10-30 Smart Options, Llc Method and system for reserving future purchases of goods or services
US8620771B2 (en) 2000-05-08 2013-12-31 Smart Options, Llc Method and system for reserving future purchases of goods and services
US8930260B2 (en) 2000-05-08 2015-01-06 Smart Options, Llc Method and system for reserving future purchases of goods and services
US9070150B2 (en) 2000-05-08 2015-06-30 Smart Options, Llc Method and system for providing social and environmental performance based sustainable financial instruments
US7313539B1 (en) 2000-05-08 2007-12-25 Pappas Christian S Method and system for reserving future purchases of goods or services
US8650114B2 (en) 2000-05-08 2014-02-11 Smart Options, Llc Method and system for reserving future purchases of goods or services
US9047634B2 (en) 2000-05-08 2015-06-02 Smart Options, Llc Method and system for reserving future purchases of goods and services
US7962375B2 (en) 2000-05-08 2011-06-14 Option It, Inc. Method and system for reserving future purchases of goods and services
US9064258B2 (en) 2000-05-08 2015-06-23 Smart Options, Llc Method and system for reserving future purchases of goods and services
US9092813B2 (en) 2000-05-08 2015-07-28 Smart Options, Llc Method and system for reserving future purchases of goods and services
US9026472B2 (en) 2000-05-08 2015-05-05 Smart Options, Llc Method and system for reserving future purchases of goods and services
US7996292B2 (en) 2000-05-08 2011-08-09 Option It, Inc. Method and system for reserving future purchases of goods and services
US9026471B2 (en) 2000-05-08 2015-05-05 Smart Options, Llc Method and system for reserving future purchases of goods and services
US8192765B2 (en) 2000-06-21 2012-06-05 Icet, Inc. Material compositions for microbial and chemical protection
US7445799B1 (en) * 2000-06-21 2008-11-04 Icet, Inc. Compositions for microbial and chemical protection
US6926862B2 (en) * 2001-06-01 2005-08-09 Kimberly-Clark Worldwide, Inc. Container, shelf and drawer liners providing absorbency and odor control
US20030124941A1 (en) * 2001-11-06 2003-07-03 Hwo Charles Chiu-Hsiung Poly (trimethylene terephthalate) based spunbonded nonwovens
CN1620502A (en) * 2001-11-09 2005-05-25 陶氏环球技术公司 Enzyme-based system and sensor for measuring acetone
US7794994B2 (en) * 2001-11-09 2010-09-14 Kemeta, Llc Enzyme-based system and sensor for measuring acetone
ITMI20012521A1 (en) * 2001-11-30 2003-05-30 Orlandi Spa BARRIER-EFFECT MATTRESS COVER FABRIC
GB2384985A (en) * 2002-02-12 2003-08-13 Barry Siberry Cures and preventions for fungal infections in humans and animals
DE10208066A1 (en) 2002-02-25 2003-09-04 Bsh Bosch Siemens Hausgeraete Inner part for a refrigerator
JP2003245304A (en) * 2002-02-25 2003-09-02 Toray Ind Inc Diaper
EP2228018B1 (en) 2002-06-17 2012-05-09 Tyco Healthcare Group LP Annular support structures
US20080131648A1 (en) * 2003-06-23 2008-06-05 Solid Water Holdings Waterproof/breathable, moisture transfer, soft shell alpine boots and snowboard boots, insert liners and footbeds
KR20050044885A (en) * 2002-07-03 2005-05-13 하이볼테이지그래픽스인코오포레이티드 Process for printing and molding a flocked article
KR20110055576A (en) * 2002-09-16 2011-05-25 트리오신 홀딩 아이엔씨 Electrostatically charged filter media incorporating an active agent
US20050217037A1 (en) * 2002-10-08 2005-10-06 Negola Edward J Dyed polyolefin yarn and textile fabrics using such yarns
US20040076792A1 (en) * 2002-10-22 2004-04-22 Green David E. Topically applied antimicrobial carpet treatment
US8100872B2 (en) 2002-10-23 2012-01-24 Tyco Healthcare Group Lp Medical dressing containing antimicrobial agent
WO2004043162A2 (en) 2002-11-12 2004-05-27 Safe Foods Corporation Application system with recycle and related use of antimicrobial quaternary ammonium compound
US20040106342A1 (en) * 2002-11-29 2004-06-03 Sturm Raymond C. Nonwoven roll towels having antimicrobial characteristics
US20060182812A1 (en) * 2003-01-20 2006-08-17 Yasuharu Ono Antibacterial compositions and antibacterial products
US6990688B2 (en) * 2003-06-02 2006-01-31 Aperfine Lauren M Thermochromic water proof apparel
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20120251597A1 (en) * 2003-06-19 2012-10-04 Eastman Chemical Company End products incorporating short-cut microfibers
US7842306B2 (en) 2003-08-14 2010-11-30 Milliken & Company Wound care device having fluid transfer properties
WO2005017240A1 (en) * 2003-08-15 2005-02-24 Foss Manufacturing Co., Inc. Synthetic fibers modified with ptfe to improve performance
US20050085567A1 (en) * 2003-08-15 2005-04-21 Foss Manufacturing Co., Inc. Flame retardant spiral crimp polyester staple fiber
CN100442034C (en) * 2003-08-25 2008-12-10 高安株式会社 Sound absorbing material
US20050053644A1 (en) * 2003-09-10 2005-03-10 Salemi Anthony S. Indented antimicrobial paper and a process for making and using the same
US20050113771A1 (en) * 2003-11-26 2005-05-26 Kimberly-Clark Worldwide, Inc. Odor control in personal care products
US20050142966A1 (en) * 2003-12-31 2005-06-30 Kimberly-Clark Worldwide, Inc. Odor control materials and face masks including odor control materials
US20050200595A1 (en) * 2004-03-12 2005-09-15 Fors Steven L. Input device for an information system
US20080226908A1 (en) * 2004-03-23 2008-09-18 John Greg Hancock Bi-Component Electrically Conductive Drawn Polyester Fiber and Method For Making Same
AU2005227888A1 (en) * 2004-03-23 2005-10-13 The Clorox Company Method for diluting hypochlorite
ES2245875B1 (en) * 2004-03-26 2006-11-16 Joaquin Espuelas Peñalva MANUFACTURING AND FILTER PROCESS OF NON-WOVEN FABRIC AND / OR FILTERING INJECTED SHEETS OR STRUCTURES OBTAINED BY SUCH PROCESS FOR FILTRATION AND ELIMINATION OF THE PNEUMOFILA LEGIONELLA.
US20070294920A1 (en) * 2005-10-28 2007-12-27 Soft shell boots and waterproof /breathable moisture transfer composites and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like
US20070141940A1 (en) * 2005-10-28 2007-06-21 Lightweight, breathable, waterproof, soft shell composite apparel and technical alpine apparel
US20070281567A1 (en) * 2004-04-05 2007-12-06 Solid Water Holding Waterproof/breathable technical apparel
US20060004273A1 (en) * 2004-05-24 2006-01-05 Lobodzinski S S Biological signal sensor on a body surface
SI1766126T1 (en) * 2004-05-26 2014-02-28 Bonar B.V. Cushioned vinyl floor covering
MXPA06013970A (en) * 2004-06-03 2007-10-23 Biokidz Usa Biohazard mask suitable for civilians.
AU2005265096A1 (en) * 2004-06-17 2006-01-26 Microban Products Company Antimicrobial refrigerator air filter
BRPI0512222A (en) * 2004-06-18 2008-02-19 Boc Group Inc antimicrobial coating for gas cylinders and coupling components
US9668488B2 (en) 2004-06-22 2017-06-06 Healthy Fiber, LLC Calorie reduction-taste retention food products
US7975404B2 (en) * 2004-07-01 2011-07-12 Stanbee Company, Inc. Stiffeners for use in footwear
US7407701B2 (en) * 2004-07-30 2008-08-05 Kx Technologies Llc Lofted composite with enhanced air permeability
US8372094B2 (en) 2004-10-15 2013-02-12 Covidien Lp Seal element for anastomosis
WO2006044490A2 (en) 2004-10-18 2006-04-27 Tyco Healthcare Group, Lp Annular adhesive structure
US7938307B2 (en) 2004-10-18 2011-05-10 Tyco Healthcare Group Lp Support structures and methods of using the same
US7845536B2 (en) 2004-10-18 2010-12-07 Tyco Healthcare Group Lp Annular adhesive structure
US20060085886A1 (en) * 2004-10-25 2006-04-27 Cole Williams Perspiration shield and method of making same
EP1815049A1 (en) * 2004-11-15 2007-08-08 Textronics, Inc. Functional elastic composite yarn, methods for making the same, and articles incorporating the same
WO2006051384A1 (en) * 2004-11-15 2006-05-18 Textronics, Inc. Elastic composite yarn, methods for making the same, and articles incorporating the same
US9364229B2 (en) 2005-03-15 2016-06-14 Covidien Lp Circular anastomosis structures
US7942890B2 (en) 2005-03-15 2011-05-17 Tyco Healthcare Group Lp Anastomosis composite gasket
US7757340B2 (en) 2005-03-25 2010-07-20 S.C. Johnson & Son, Inc. Soft-surface remediation device and method of using same
US20060238436A1 (en) * 2005-04-23 2006-10-26 Applied Radar Method for constructing microwave antennas and circuits incorporated within nonwoven fabric
WO2006116706A2 (en) 2005-04-28 2006-11-02 High Voltage Graphics, Inc. Flocked multi-colored adhesive article with bright lustered flock and methods for making the same
US20070277849A1 (en) * 2006-06-06 2007-12-06 Shah Ketan N Method of neutralizing a stain on a surface
US7727289B2 (en) * 2005-06-07 2010-06-01 S.C. Johnson & Son, Inc. Composition for application to a surface
US8061269B2 (en) 2008-05-14 2011-11-22 S.C. Johnson & Son, Inc. Multilayer stencils for applying a design to a surface
US8557758B2 (en) 2005-06-07 2013-10-15 S.C. Johnson & Son, Inc. Devices for applying a colorant to a surface
US7776108B2 (en) 2005-06-07 2010-08-17 S.C. Johnson & Son, Inc. Composition for application to a surface
US8846154B2 (en) 2005-06-07 2014-09-30 S.C. Johnson & Son, Inc. Carpet décor and setting solution compositions
MX2007015450A (en) * 2005-06-07 2008-02-19 Johnson & Son Inc S C Design devices for applying a design to a surface.
US20080282642A1 (en) * 2005-06-07 2008-11-20 Shah Ketan N Method of affixing a design to a surface
US20060281382A1 (en) * 2005-06-10 2006-12-14 Eleni Karayianni Surface functional electro-textile with functionality modulation capability, methods for making the same, and applications incorporating the same
CA2613854A1 (en) * 2005-06-30 2007-01-11 Kyowa Chemical Industry Co., Ltd. Antibacterial agent composed of silver-containing aluminum sulfate hydroxide particles and use thereof
DE602006000082T2 (en) * 2005-07-07 2008-05-15 Rohm And Haas Co. Fiber with antimicrobial composition
DE602006004754D1 (en) * 2005-07-29 2009-02-26 Fiberweb Inc LIQUID, NON-FLUID LUBRICANT FROM BICOMPONENT FILAMENTS
JP4704466B2 (en) * 2005-07-29 2011-06-15 ファイバーウェブ,インコーポレイテッド Antibacterial multi-component filter media
US7655829B2 (en) 2005-07-29 2010-02-02 Kimberly-Clark Worldwide, Inc. Absorbent pad with activated carbon ink for odor control
US7413802B2 (en) 2005-08-16 2008-08-19 Textronics, Inc. Energy active composite yarn, methods for making the same, and articles incorporating the same
FR2891116B1 (en) * 2005-09-29 2007-12-14 Olivier Lefebvre SOLE FOR SHOE
WO2007073525A2 (en) * 2005-11-28 2007-06-28 Yvonne Daily Hot-flash wipes and clothing
US8771831B2 (en) * 2005-12-23 2014-07-08 The United States Of America As Represented By The Secretary Of The Army Multi-functional yarns and fabrics having anti-microbial, anti-static and anti-odor characterisitics
WO2007078203A1 (en) * 2006-01-03 2007-07-12 Norwex Holding As Anti-bacterial micro-fibre and production thereof
US9629626B2 (en) 2006-02-02 2017-04-25 Covidien Lp Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue
WO2007101062A1 (en) * 2006-02-22 2007-09-07 Microban Products Company Antimicrobial insert device for water-bearing appliance
US7827704B2 (en) 2006-02-28 2010-11-09 Polyworks, Incorporated Methods of making polymeric articles and polymeric articles formed thereby
US7793813B2 (en) 2006-02-28 2010-09-14 Tyco Healthcare Group Lp Hub for positioning annular structure on a surgical device
DE202007000668U1 (en) 2006-03-03 2007-03-29 W.L. Gore & Associates Gmbh Shoe sole stabilizing material
US20070204402A1 (en) * 2006-03-06 2007-09-06 Emily Harris Infant support and development pillow
US7661204B2 (en) * 2006-03-30 2010-02-16 Maxson Floyd S Insole
US20070243781A1 (en) * 2006-04-12 2007-10-18 Ming-Tzu Chou Antimicrobial cloth
US7914611B2 (en) * 2006-05-11 2011-03-29 Kci Licensing, Inc. Multi-layered support system
US20070269643A1 (en) * 2006-05-16 2007-11-22 James Calvin Bennett Antimicrobial pool filter
US20070281154A1 (en) * 2006-05-31 2007-12-06 Lace Lastics Company, Inc. Fabrics with Silver-Containing Yarn for Health Care Facility Rooms
US20070286878A1 (en) * 2006-06-07 2007-12-13 Harruna Issifu I Removable films for sanitizing substrates and methods of use thereof
US7849542B2 (en) * 2006-06-21 2010-12-14 Dreamwell, Ltd. Mattresses having flame resistant panel
EP1870914A2 (en) * 2006-06-22 2007-12-26 ZIMM Maschinenelemente GmbH + Co Limit switch with a switching part
US20080003430A1 (en) * 2006-06-28 2008-01-03 3M Innovative Properties Company Particulate-loaded polymer fibers and extrusion methods
US7635415B2 (en) * 2006-06-29 2009-12-22 The Clorox Company Regenerable cleaning implement for sanitizing a surface
US7322966B1 (en) * 2006-07-13 2008-01-29 Deerin Robert F Absorbent garment
US20080023385A1 (en) * 2006-07-27 2008-01-31 Baker Jr John Frank Antimicrobial multicomponent filtration medium
US7908772B2 (en) * 2006-08-15 2011-03-22 Columbia Insurance Company Footwear with additives and a plurality of removable footbeds
IL177979A (en) * 2006-09-10 2015-05-31 Cupron Inc Multi-layered material
EP1905338A1 (en) * 2006-09-29 2008-04-02 Electrolux Home Products Corporation N.V. Antibacterial element and household dishwasher featuring such an element
WO2008127287A2 (en) * 2006-10-11 2008-10-23 Biolife, L.L.C. Materials and methods for wound treatment
US7845533B2 (en) 2007-06-22 2010-12-07 Tyco Healthcare Group Lp Detachable buttress material retention systems for use with a surgical stapling device
WO2008057281A2 (en) 2006-10-26 2008-05-15 Tyco Healthcare Group Lp Methods of using shape memory alloys for buttress attachment
US8778817B2 (en) * 2006-10-30 2014-07-15 Mcneil-Ppc, Inc. Method of making a cover material including a skin care composition
AU2013206359A1 (en) * 2006-10-30 2013-07-04 Mcneil-Ppc, Inc. Cover material for an absorbent article including a skin care composition and an absorbent article having a cover material including a skin care composition
US8092814B2 (en) * 2006-10-30 2012-01-10 Mcneil-Ppc, Inc. Cover material for an absorbent article including a skin care composition and an absorbent article having a cover material including a skin care composition
TWI324196B (en) * 2006-12-06 2010-05-01 Taiwan Textile Res Inst Spunbond non-woven containing bamboo charcoal and method for fabricating the same
US7754625B2 (en) * 2006-12-22 2010-07-13 Aglon Technologies, Inc. Wash-durable and color stable antimicrobial treated textiles
US9254591B2 (en) 2008-04-14 2016-02-09 Polyworks, Inc. Deep draw method of making impact and vibration absorbing articles and the articles formed thereby
US20110277923A1 (en) * 2006-12-23 2011-11-17 Polyworks, Inc. molding system, method and articles formed thereby
US8183167B1 (en) * 2007-01-19 2012-05-22 NanoHorizons, Inc. Wash-durable, antimicrobial and antifungal textile substrates
WO2008097776A1 (en) * 2007-02-09 2008-08-14 United Feather & Down, Inc. Blended fiber containing silver, blended filling containing silver fibers, and method for making same
AU2008223389B2 (en) 2007-03-06 2013-07-11 Covidien Lp Surgical stapling apparatus
US8011555B2 (en) 2007-03-06 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US8011550B2 (en) 2009-03-31 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
WO2008128214A1 (en) 2007-04-13 2008-10-23 Polyworks, Inc. Impact and vibration absorbing body-contacting medallions, methods of use and methods of making
US8038045B2 (en) 2007-05-25 2011-10-18 Tyco Healthcare Group Lp Staple buttress retention system
US20080295843A1 (en) * 2007-06-01 2008-12-04 Haas Marci B Self sanitizing face masks and method of manufacture
US7665646B2 (en) 2007-06-18 2010-02-23 Tyco Healthcare Group Lp Interlocking buttress material retention system
US7950561B2 (en) 2007-06-18 2011-05-31 Tyco Healthcare Group Lp Structure for attachment of buttress material to anvils and cartridges of surgical staplers
US8062330B2 (en) 2007-06-27 2011-11-22 Tyco Healthcare Group Lp Buttress and surgical stapling apparatus
CN100593424C (en) * 2007-07-18 2010-03-10 北京万生药业有限责任公司 Apparatus for humidifying and conveying oxygen
US20090031679A1 (en) * 2007-07-30 2009-02-05 Kirsten Braden Disposable saddle pad
US7626062B2 (en) 2007-07-31 2009-12-01 Carner William E System and method for recycling plastics
WO2009018574A2 (en) * 2007-08-02 2009-02-05 Brant Buchanan Multi-utility footwear device
US20090107925A1 (en) * 2007-10-31 2009-04-30 Chevron U.S.A. Inc. Apparatus and process for treating an aqueous solution containing biological contaminants
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US8560369B2 (en) * 2007-11-01 2013-10-15 Red Hat, Inc. Systems and methods for technical support based on a flock structure
US8974814B2 (en) * 2007-11-12 2015-03-10 California Institute Of Technology Layered drug delivery polymer monofilament fibers
DE102007054132A1 (en) * 2007-11-14 2009-05-20 Mitsubishi Polyester Film Gmbh Antimicrobially finished, biaxially oriented polyester film
DE102007054133A1 (en) * 2007-11-14 2009-05-20 Mitsubishi Polyester Film Gmbh Antimicrobially finished, coated, biaxially oriented polyester film
US20090130160A1 (en) * 2007-11-21 2009-05-21 Fiber Innovation Technology, Inc. Fiber for wound dressing
US20090170421A1 (en) 2008-01-02 2009-07-02 Adrian John R Grille
US8007904B2 (en) * 2008-01-11 2011-08-30 Fiber Innovation Technology, Inc. Metal-coated fiber
WO2009101642A1 (en) * 2008-02-12 2009-08-20 Akkua S.R.L. Fitness sock
WO2009115217A1 (en) * 2008-03-19 2009-09-24 Carl Freudenberg Kg Nonwoven fabric provided with antibacterial finishing and having conjugate fibers
EP2103724B1 (en) * 2008-03-19 2011-06-08 Carl Freudenberg KG Wiping cloth with an antibacterial non-woven fabric
DE102008015053A1 (en) * 2008-03-19 2009-09-24 Carl Freudenberg Kg Antibacterial textile with bicomponent fibers, e.g. for clothing, has fiber body incorporating at least one doping substance for antimicrobial effect
JP2009226380A (en) * 2008-03-25 2009-10-08 Nichias Corp Chemical filter and method for producing the same
US10646370B2 (en) * 2008-04-01 2020-05-12 Donaldson Company, Inc. Enclosure ventilation filter and assembly method
US8226452B2 (en) * 2008-04-24 2012-07-24 Destination Maternity Corporation Pull up nursing undergarment
US8469769B2 (en) * 2008-04-24 2013-06-25 Destination Maternity Corporation Nursing garment and method of making
US7958668B2 (en) * 2008-06-13 2011-06-14 Eleven Llc Animal trap having timed release door
JP2011528610A (en) * 2008-06-30 2011-11-24 スリーエム イノベイティブ プロパティズ カンパニー Method for in situ formation of metal nanoclusters in a porous substrate field
US7882688B2 (en) * 2008-07-02 2011-02-08 AG Technologies, Inc. Process for manufacturing yarn made from a blend of polyester fibers and silver fibers
US7886515B2 (en) * 2008-07-02 2011-02-15 AG Technologies, Inc. Process for manufacturing yarn made from a blend of fibers of cotton, nylon and silver
US20100030170A1 (en) * 2008-08-01 2010-02-04 Keith Alan Keller Absorptive Pad
CN102177016B (en) * 2008-08-28 2015-11-25 泰科保健集团有限合伙公司 Antimicrobial fibre and correlated product and method
CA2735391A1 (en) * 2008-08-28 2010-03-04 Andover Healthcare, Inc. Silver based antimicrobial compositions and articles
JP2010063959A (en) * 2008-09-09 2010-03-25 Nichias Corp Chemical filter and method of manufacturing the same
US10188103B2 (en) * 2008-09-15 2019-01-29 The Boeing Company Antimicrobial coating fabrication method and structure
US10537915B2 (en) 2008-09-15 2020-01-21 The Boeing Company Contaminant resistant coating fabrication structure and method
DK2352403T3 (en) * 2008-11-19 2014-04-14 Huntleigh Technology Ltd Multilayer Support System
MX2011005333A (en) 2008-11-20 2011-08-15 Water Visions International Inc Antimicrobial device and materials for fluid treatment.
US8069587B2 (en) * 2008-11-20 2011-12-06 3M Innovative Properties Company Molded insulated shoe footbed and method of making an insulated footbed
GB0821345D0 (en) * 2008-11-21 2008-12-31 P Q Silicas Uk Ltd Composition and dressing with nitric oxide
WO2010066142A1 (en) * 2008-12-09 2010-06-17 Sun Xianlin Anti-counterfeit fiber and anti-counterfeit paper containing the same
US20100147921A1 (en) 2008-12-16 2010-06-17 Lee Olson Surgical Apparatus Including Surgical Buttress
US20100213002A1 (en) * 2009-02-26 2010-08-26 Honeywell International Inc. Fibrous materials, noise suppression materials, and methods of manufacturing noise suppression materials
US9486215B2 (en) 2009-03-31 2016-11-08 Covidien Lp Surgical stapling apparatus
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
US7988027B2 (en) 2009-03-31 2011-08-02 Tyco Healthcare Group Lp Crimp and release of suture holding buttress material
US8016178B2 (en) 2009-03-31 2011-09-13 Tyco Healthcare Group Lp Surgical stapling apparatus
US8365972B2 (en) 2009-03-31 2013-02-05 Covidien Lp Surgical stapling apparatus
US8348126B2 (en) 2009-03-31 2013-01-08 Covidien Lp Crimp and release of suture holding buttress material
US20100275467A1 (en) * 2009-04-29 2010-11-04 Kuan-Min Tsai Insole
WO2010138090A2 (en) * 2009-05-29 2010-12-02 Oztek Tekstil Terbiye Tesisleri Sanayi Ve Ticaret Anonim Sirketi A protective fabric embodiment for military purposes and a cloth produced by use of this fabric embodiment
US20100324516A1 (en) * 2009-06-18 2010-12-23 Tyco Healthcare Group Lp Apparatus for Vacuum Bridging and/or Exudate Collection
KR20120094896A (en) * 2009-07-06 2012-08-27 몰리코프 미네랄스, 엘엘씨 Ceria for use as an antimicrobial barrier and disinfectant in a wound dressing
US20120124862A1 (en) * 2009-07-23 2012-05-24 Harold Kalde Bi-component/binder fiber insole
US20110079235A1 (en) * 2009-08-26 2011-04-07 Reed Gladys B System, apparatus, and method for hair weaving thread
WO2011034952A1 (en) * 2009-09-15 2011-03-24 Montel Media Group Sanitary systems
US20110086078A1 (en) * 2009-10-14 2011-04-14 Water Visions International, Inc. Fibrous antimicrobial materials, structures, and barrier applications
US9693772B2 (en) 2009-10-15 2017-07-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US10842485B2 (en) 2009-10-15 2020-11-24 Covidien Lp Brachytherapy buttress
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
US10293553B2 (en) 2009-10-15 2019-05-21 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US20150231409A1 (en) 2009-10-15 2015-08-20 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US9610080B2 (en) 2009-10-15 2017-04-04 Covidien Lp Staple line reinforcement for anvil and cartridge
WO2011066391A2 (en) 2009-11-25 2011-06-03 Difusion Technologies, Inc. Post-charging of zeolite doped plastics with antimicrobial metal ions
CN102834122B (en) 2009-12-11 2015-03-11 扩散技术公司 Method of manufacturing antimicrobial implants of polyetheretherketone
US9901128B2 (en) * 2009-12-24 2018-02-27 David A. Gray Antimicrobial apparel and fabric and coverings
US20110250450A1 (en) * 2010-01-15 2011-10-13 Noble Fiber Technologies, Llc Extruded component with antimicrobial glass particles
US20110214226A1 (en) * 2010-03-05 2011-09-08 Dundas Lisa A Disposable toilet seat lift apparatus
SG184837A1 (en) * 2010-04-19 2012-11-29 Elizabeth Lizhi Lin Washable, antimicrobial, breathable, multi-layered, absorbent sheet and articles.
EP2561125A1 (en) * 2010-04-21 2013-02-27 Battelle Memorial Institute Fibers containing ferrates and methods
US20110262704A1 (en) * 2010-04-21 2011-10-27 Moshe Rock Flame resistant composite fabrics
BR112012026636B1 (en) 2010-05-07 2019-01-15 Difusion Technologies, Inc. Increased hydrophilicity medical implants and method to minimize biofilm formation in a patient
CN103025192A (en) * 2010-06-25 2013-04-03 安泰国际公司 Shoe with conforming upper
CN101862573B (en) * 2010-06-29 2012-05-30 广东志高空调有限公司 Automatic dedusting and cleaning device for filter screen of air conditioner
US20120029458A1 (en) * 2010-07-27 2012-02-02 Joshua James Norman Bag
US8424118B2 (en) * 2010-07-30 2013-04-23 Longworth Industries, Inc. Undergarment
US8959666B2 (en) * 2010-07-30 2015-02-24 Longworth Industries, Inc. Undergarment
EP2601546A4 (en) * 2010-08-05 2014-11-12 3M Innovative Properties Co Multilayer film comprising matte surface layer and articles
US20120094120A1 (en) 2010-10-18 2012-04-19 PurThread Technologies, Inc. Enhancing and preserving anti-microbial performance in fibers with pigments
US20120183861A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Sulfopolyester binders
US9961943B2 (en) 2010-11-03 2018-05-08 F3 Tech, Llc Athletic sock
US8348130B2 (en) 2010-12-10 2013-01-08 Covidien Lp Surgical apparatus including surgical buttress
US8651062B2 (en) 2010-12-10 2014-02-18 Marc H. Arsenault Easy to insert pet carrier
US8918930B2 (en) 2011-01-04 2014-12-30 Huntleigh Technology Limited Methods and apparatuses for low-air-loss (LAL) coverlets and airflow units for coverlets
US8360765B2 (en) 2011-01-07 2013-01-29 Covidien Lp Systems and method for forming a coaxial implant
US9084602B2 (en) 2011-01-26 2015-07-21 Covidien Lp Buttress film with hemostatic action for surgical stapling apparatus
US8641967B2 (en) 2011-02-23 2014-02-04 Applied Silver, Inc. Anti-microbial device
US8479968B2 (en) 2011-03-10 2013-07-09 Covidien Lp Surgical instrument buttress attachment
US8789737B2 (en) 2011-04-27 2014-07-29 Covidien Lp Circular stapler and staple line reinforcement material
CA2836312C (en) 2011-06-01 2017-03-14 Saint-Gobain Adfors Canada, Ltd. Multi-directional reinforcing drywall tape
CN103906494B (en) 2011-07-28 2016-11-09 亨特来夫工业技术有限公司 Multi-layered support system
US9326903B2 (en) 2011-10-03 2016-05-03 Huntleigh Technology Limited Multi-layered support system
US9675351B2 (en) 2011-10-26 2017-06-13 Covidien Lp Buttress release from surgical stapler by knife pushing
US8584920B2 (en) 2011-11-04 2013-11-19 Covidien Lp Surgical stapling apparatus including releasable buttress
WO2013067155A1 (en) * 2011-11-04 2013-05-10 Ronner David E Fabric material
US9611086B2 (en) * 2011-11-11 2017-04-04 Hinson & Hale Medical Technologies, Inc. Reusable surgical wrappers
US9351732B2 (en) 2011-12-14 2016-05-31 Covidien Lp Buttress attachment to degradable polymer zones
US9010608B2 (en) 2011-12-14 2015-04-21 Covidien Lp Releasable buttress retention on a surgical stapler
US8967448B2 (en) 2011-12-14 2015-03-03 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US9237892B2 (en) 2011-12-14 2016-01-19 Covidien Lp Buttress attachment to the cartridge surface
US9351731B2 (en) 2011-12-14 2016-05-31 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US9113885B2 (en) 2011-12-14 2015-08-25 Covidien Lp Buttress assembly for use with surgical stapling device
WO2013106410A2 (en) 2012-01-10 2013-07-18 Duda Marcus Improved sock for treatment of foot and leg wounds, methods of use and manufacture
BR112014017924A8 (en) 2012-01-20 2017-07-11 Huntleigh Technology Ltd THERMAL SUPPORT AND CONTROL SYSTEM
US9010609B2 (en) 2012-01-26 2015-04-21 Covidien Lp Circular stapler including buttress
US9010612B2 (en) 2012-01-26 2015-04-21 Covidien Lp Buttress support design for EEA anvil
US9326773B2 (en) 2012-01-26 2016-05-03 Covidien Lp Surgical device including buttress material
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US9931116B2 (en) 2012-02-10 2018-04-03 Covidien Lp Buttress composition
US20130212808A1 (en) * 2012-02-21 2013-08-22 Charles A. Lachenbruch Topper with Targeted Fluid Flow Distribution
US8820606B2 (en) 2012-02-24 2014-09-02 Covidien Lp Buttress retention system for linear endostaplers
US20170175310A1 (en) * 2012-02-29 2017-06-22 Levana Textiles Limited Fabrics, compression garments and compression garment systems
US20150051352A1 (en) * 2012-03-09 2015-02-19 Isp Investments Inc. Multi-functional grafted polymers
CN102605530A (en) * 2012-03-20 2012-07-25 福建凤竹纺织科技股份有限公司 Production process for elastic knitted fabric
US9513088B2 (en) 2012-04-02 2016-12-06 W. L. Gore & Associates, Inc. Protective undergarment
US9572576B2 (en) 2012-07-18 2017-02-21 Covidien Lp Surgical apparatus including surgical buttress
US20140048580A1 (en) 2012-08-20 2014-02-20 Covidien Lp Buttress attachment features for surgical stapling apparatus
US9161753B2 (en) 2012-10-10 2015-10-20 Covidien Lp Buttress fixation for a circular stapler
US20140131418A1 (en) 2012-11-09 2014-05-15 Covidien Lp Surgical Stapling Apparatus Including Buttress Attachment
US9192384B2 (en) 2012-11-09 2015-11-24 Covidien Lp Recessed groove for better suture retention
US9681936B2 (en) 2012-11-30 2017-06-20 Covidien Lp Multi-layer porous film material
US20140150291A1 (en) * 2012-11-30 2014-06-05 Scot K LARSEN Impact Resistant Running Shoe Insert
US9295466B2 (en) 2012-11-30 2016-03-29 Covidien Lp Surgical apparatus including surgical buttress
US9522002B2 (en) 2012-12-13 2016-12-20 Covidien Lp Surgical instrument with pressure distribution device
US9402627B2 (en) 2012-12-13 2016-08-02 Covidien Lp Folded buttress for use with a surgical apparatus
US9204881B2 (en) 2013-01-11 2015-12-08 Covidien Lp Buttress retainer for EEA anvil
US9433420B2 (en) 2013-01-23 2016-09-06 Covidien Lp Surgical apparatus including surgical buttress
US9414839B2 (en) 2013-02-04 2016-08-16 Covidien Lp Buttress attachment for circular stapling device
US9192383B2 (en) 2013-02-04 2015-11-24 Covidien Lp Circular stapling device including buttress material
WO2014130940A1 (en) 2013-02-22 2014-08-28 Eastern Maine Healthcare Services Antimicrobial blood pressure cuff cover
US9504470B2 (en) 2013-02-25 2016-11-29 Covidien Lp Circular stapling device with buttress
US20140239047A1 (en) 2013-02-28 2014-08-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
US8558008B2 (en) 2013-02-28 2013-10-15 Dermira, Inc. Crystalline glycopyrrolate tosylate
US9006462B2 (en) 2013-02-28 2015-04-14 Dermira, Inc. Glycopyrrolate salts
AU2014223172B2 (en) 2013-02-28 2016-09-08 Journey Medical Corporation Glycopyrrolate salts
US9782173B2 (en) 2013-03-07 2017-10-10 Covidien Lp Circular stapling device including buttress release mechanism
US20140263033A1 (en) * 2013-03-13 2014-09-18 2266170 Ontario Inc. Process For Forming A Three-Dimensional Non-Woven Structure
US20140259721A1 (en) * 2013-03-13 2014-09-18 Biovation, Llc Biodegradable polymer non-woven field boot dryer insert with absorbency and antimicrobial chemistry
US20140306154A1 (en) * 2013-04-10 2014-10-16 Texanne Holloway Freezer/Fridge Mats
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US20160032501A1 (en) * 2013-04-29 2016-02-04 Solid Water Holdings Moisture transfer yarn and fabric
USD743520S1 (en) 2013-06-20 2015-11-17 Broan-Nutone Llc Range hood
US9256302B2 (en) * 2013-07-22 2016-02-09 No Touch Technologies, Llc Stylus pen
US9908987B2 (en) 2013-08-12 2018-03-06 PurThread Technologies, Inc. Antimicrobial and antifungal polymer fibers, fabrics, and methods of manufacture thereof
US10640403B2 (en) 2013-08-15 2020-05-05 Applied Silver, Inc. Antimicrobial batch dilution system
US11618696B2 (en) 2013-08-15 2023-04-04 Applied Silver, Inc. Antimicrobial batch dilution system
US9204749B1 (en) * 2013-08-28 2015-12-08 Vincent Trapani Quick release antimicrobial hospital curtain
CN103590139B (en) * 2013-10-16 2016-08-17 扬州广泰化纤有限公司 A kind of powerful three-dimensional crimp memory fiber and manufacture method thereof
US9655620B2 (en) 2013-10-28 2017-05-23 Covidien Lp Circular surgical stapling device including buttress material
US10654075B2 (en) * 2013-11-13 2020-05-19 Zoran Lesic Apparatus and methods for treating a medical device and hand disinfection
US10000881B2 (en) 2013-12-06 2018-06-19 Applied Silver, Inc. Method for antimicrobial fabric application
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9560896B1 (en) 2014-02-12 2017-02-07 Soxsols, Llc Insole for footwear
KR102381804B1 (en) * 2014-03-10 2022-03-31 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 Dishwasher insulation blanket
US9332855B2 (en) 2014-03-13 2016-05-10 John Robert BAXTER Personal cellular tissue repair, recovery and regeneration enhancement sleep system
US9844378B2 (en) 2014-04-29 2017-12-19 Covidien Lp Surgical stapling apparatus and methods of adhering a surgical buttress thereto
USD736903S1 (en) 2014-05-01 2015-08-18 Broan-Nutone Llc Down draft grill
US20150360159A1 (en) * 2014-06-11 2015-12-17 Fibervisions, L.P. Blended Fiber Filters
US9878480B1 (en) 2014-06-24 2018-01-30 PurThread Technologies, Inc. Method for making polymer feedstock usable for generation of fiber having anti-microbial properties
FR3022785B1 (en) * 2014-06-25 2017-10-13 Pylote USE OF MATERIALS INCORPORATING MICROPARTICLES TO PREVENT THE PROLIFERATION OF CONTAMINANTS.
US20160015844A1 (en) * 2014-07-21 2016-01-21 Juliana Collins Sanitizing Floor Mat
MX2017000530A (en) 2014-07-31 2017-05-01 Kimberly Clark Co Anti-adherent composition.
MX2017001057A (en) 2014-07-31 2017-05-09 Kimberly Clark Co Anti-adherent composition.
US10028899B2 (en) 2014-07-31 2018-07-24 Kimberly-Clark Worldwide, Inc. Anti-adherent alcohol-based composition
US10028760B2 (en) * 2014-08-21 2018-07-24 Robert T. Bock Consultancy Llc High intensity ultrasonic tongue cleaner
WO2016029242A1 (en) * 2014-08-25 2016-03-03 Ansell Limited Wound care foot wrap
US9533630B2 (en) * 2014-10-29 2017-01-03 Nonwoven Network LLC High performance moldable composite
US10072366B2 (en) 2014-10-29 2018-09-11 Nonwoven Network LLC Moldable automotive fibrous products with enhanced heat deformation
US10835216B2 (en) 2014-12-24 2020-11-17 Covidien Lp Spinneret for manufacture of melt blown nonwoven fabric
USD778425S1 (en) * 2015-01-08 2017-02-07 Broan-Nutone Llc Ventilator grill
US10470767B2 (en) 2015-02-10 2019-11-12 Covidien Lp Surgical stapling instrument having ultrasonic energy delivery
JP3197820U (en) * 2015-03-20 2015-06-04 帝人株式会社 Side
AU2015390078B2 (en) 2015-04-01 2020-11-26 Kimberly-Clark Worldwide, Inc. Fibrous substrate for capture of Gram negative bacteria
US11020578B2 (en) 2015-04-10 2021-06-01 Covidien Lp Surgical stapler with integrated bladder
CN104878460A (en) * 2015-04-29 2015-09-02 浙江海利得新材料股份有限公司 Production method of anti-wicking ultralow-shrinkage industrial polyester filaments
USD804627S1 (en) 2015-05-19 2017-12-05 Broan-Nutone Llc Vent hood
USD826391S1 (en) 2015-05-19 2018-08-21 Broan-Nutone Llc Vent hood
CA165306S (en) 2015-05-19 2017-01-23 Broan Nu Tone Llc Vent hood
USD814009S1 (en) 2015-05-19 2018-03-27 Broan-Nutone, Llc Vent hood
US9938659B2 (en) 2015-06-27 2018-04-10 Nonwoven Network LLC Apparatus and method of making a nonwoven ceiling tile and wall panel
US10918110B2 (en) 2015-07-08 2021-02-16 Corning Incorporated Antimicrobial phase-separating glass and glass ceramic articles and laminates
US20170050870A1 (en) 2015-08-21 2017-02-23 Applied Silver, Inc. Systems And Processes For Treating Textiles With An Antimicrobial Agent
USD785777S1 (en) 2015-08-31 2017-05-02 Broan-Nutone Llc Vent hood
USD799679S1 (en) 2015-09-14 2017-10-10 Broan-Nutone Llc Ventilation grill
USD800294S1 (en) 2015-09-14 2017-10-17 Broan-Nutone Llc Ventilation grill
USD815724S1 (en) 2015-09-14 2018-04-17 Broan-Nutone Llc Ventilation grill
USD822821S1 (en) 2015-09-14 2018-07-10 Broan-Nutone, Llc Ventilation grill
USD816206S1 (en) 2015-09-14 2018-04-24 Broan-Nutone Llc Ventilation grill
USD799677S1 (en) 2015-09-14 2017-10-10 Broan-Nutone Llc Ventilation grill
USD799678S1 (en) 2015-09-14 2017-10-10 Broan-Nutone Llc Ventilation grill
USD800295S1 (en) 2015-09-14 2017-10-17 Broan-Nutone Llc Ventilation grill
CH711581A2 (en) * 2015-09-25 2017-03-31 Dratva Christian Clothing, in particular for a human body.
USD774018S1 (en) 2015-10-06 2016-12-13 Broan-Nutone Llc Wireless speaker
US9387125B1 (en) 2016-01-26 2016-07-12 Vive Wear Llc Sock for treatment of foot and leg wounds, methods of use and manufacture
KR102627187B1 (en) 2016-05-26 2024-01-22 킴벌리-클라크 월드와이드, 인크. Anti-adhesion compositions and methods for inhibiting adhesion of microorganisms to surfaces
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
KR101968686B1 (en) * 2016-07-08 2019-04-12 건국대학교 산학협력단 Manufacturing methods of antibiotic shoes insole using bioplastic and antibiotic shoes manufactured by them
US11357937B2 (en) * 2016-08-02 2022-06-14 Altria Client Services Llc Collapsible fiber matrix reservoir for an e-vaping device
US10189729B2 (en) 2016-08-24 2019-01-29 Whirlpool Corporation Method and apparatus for preventing mold growth in the reservoir of a food waste recycling appliance
KR101817935B1 (en) 2016-09-02 2018-02-21 주식회사 지클로 Antibacterial Multi-layered Insole Containing Natural Substance
JP6892727B2 (en) * 2016-09-26 2021-06-23 カンタツ株式会社 Pattern manufacturing equipment, pattern manufacturing method and pattern manufacturing program
USD897521S1 (en) 2016-10-14 2020-09-29 Broan-Nutone Llc Vent hood
US11026686B2 (en) 2016-11-08 2021-06-08 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US10874768B2 (en) 2017-01-20 2020-12-29 Covidien Lp Drug eluting medical device
US10925607B2 (en) 2017-02-28 2021-02-23 Covidien Lp Surgical stapling apparatus with staple sheath
CA3092627A1 (en) 2017-03-01 2018-09-07 Applied Silver, Inc. Systems and processes for treating textiles with an antimicrobial agent
US10368868B2 (en) 2017-03-09 2019-08-06 Covidien Lp Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument
DE102017002957A1 (en) 2017-03-28 2018-10-04 Mann+Hummel Gmbh Spunbonded fabric, filter medium, filter element and its use and filter arrangement
US11096610B2 (en) 2017-03-28 2021-08-24 Covidien Lp Surgical implants including sensing fibers
EP3601656B1 (en) 2017-03-28 2023-06-28 MANN+HUMMEL GmbH Spun-bonded fabric material, object comprising a spun-bonded fabric material, filter medium, filter element, and use thereof
WO2018191386A1 (en) * 2017-04-14 2018-10-18 Ladiez Must Have Llc Protective sock preventing fungal type infections
US10602884B2 (en) * 2017-05-05 2020-03-31 Katlien Gargano Multi-functional towel
WO2018231960A1 (en) * 2017-06-13 2018-12-20 Veterinary Diagnostics Institute, Inc. System and procedure for stabilizing, storing and recovering blood samples
CN107158803A (en) * 2017-06-28 2017-09-15 台州市天湖网业有限公司 A kind of PET screen packs and its processing technology
US10849625B2 (en) 2017-08-07 2020-12-01 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US10945733B2 (en) 2017-08-23 2021-03-16 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US20200188835A1 (en) * 2017-08-24 2020-06-18 Purafil, Inc. Method For Removing Gaseous Contaminants From A Fluid Stream
US20190107301A1 (en) * 2017-10-08 2019-04-11 Massood Kamalpour Fibrous dispersion and filtration air outlet system
JP7158840B2 (en) * 2017-10-24 2022-10-24 ロレアル A sheet-like substrate having the function of restricting movement of a formulation applied to a target zone, and a sheet-like cosmetic product manufactured using the same
US11141151B2 (en) 2017-12-08 2021-10-12 Covidien Lp Surgical buttress for circular stapling
US11925226B2 (en) 2018-02-05 2024-03-12 The Board Of Trustees Of The Leland Stanford Junior University Spectrally selective textile for passive radiative outdoor personal cooling
US11065000B2 (en) 2018-02-22 2021-07-20 Covidien Lp Surgical buttresses for surgical stapling apparatus
US10758237B2 (en) 2018-04-30 2020-09-01 Covidien Lp Circular stapling apparatus with pinned buttress
US11432818B2 (en) 2018-05-09 2022-09-06 Covidien Lp Surgical buttress assemblies
US11284896B2 (en) 2018-05-09 2022-03-29 Covidien Lp Surgical buttress loading and attaching/detaching assemblies
US11426163B2 (en) 2018-05-09 2022-08-30 Covidien Lp Universal linear surgical stapling buttress
USD895783S1 (en) 2018-05-22 2020-09-08 Broan-Nutone Llc Grille assembly for a bathroom ventilation fan
CN108619556B (en) * 2018-06-21 2021-07-06 江西省科学院应用化学研究所 Preparation method of porous fiber composite hemostatic material
US11219460B2 (en) 2018-07-02 2022-01-11 Covidien Lp Surgical stapling apparatus with anvil buttress
US10806459B2 (en) 2018-09-14 2020-10-20 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US10952729B2 (en) 2018-10-03 2021-03-23 Covidien Lp Universal linear buttress retention/release assemblies and methods
US20210310162A1 (en) * 2018-10-18 2021-10-07 Massachusetts Institute Of Technology Active Textile Tailoring
CN111109963B (en) * 2018-10-30 2021-09-24 绿能奈米科技有限公司 Bedding structure with non-power energy layer and far infrared fiber
USD946136S1 (en) 2018-11-28 2022-03-15 Broan-Nutone Llc Ventilation grille
USD908861S1 (en) 2018-11-28 2021-01-26 Broan-Nutone Llc Ventilation grille
USD909560S1 (en) 2018-11-28 2021-02-02 Broan-Nutone Llc Ventilation grille
USD902372S1 (en) 2018-11-28 2020-11-17 Broan-Nutone Llc Ventilation grille
USD943730S1 (en) 2018-11-28 2022-02-15 Broan-Nutone Llc Ventilation grille
US11758909B2 (en) * 2018-12-18 2023-09-19 Ascend Performance Materials Operations Llc Antimicrobial nonwoven polyamides with zinc content
US11559151B2 (en) 2019-01-07 2023-01-24 Tempur World, Llc Antimicrobial washable pillow
TWI680880B (en) * 2019-01-11 2020-01-01 可成科技股份有限公司 Antimicrobial structure and manufacturing method thereof
DE102019200410A1 (en) * 2019-01-15 2020-07-16 Coin Consulting GmbH DIFFERENTIAL DETERGENT WIPE WITH DUAL SUSTAINABILITY CHARACTERISTICS
USD899582S1 (en) 2019-01-22 2020-10-20 Broan-Nutone Llc Ventilation grille
USD898896S1 (en) 2019-01-22 2020-10-13 Broan-Nutone Llc Ventilation grille
DE102019103123A1 (en) * 2019-02-08 2020-08-13 Tesa Se Thermally softenable adhesive tape and method for sheathing elongated goods, in particular cables
US11300305B2 (en) 2019-02-15 2022-04-12 Broan-Nutone Llc Grille attachment feature for a ventilation system
US11326792B2 (en) 2019-02-15 2022-05-10 Broan-Nutone Llc Grille attachment system for a ventilation system
WO2020188325A1 (en) * 2019-03-15 2020-09-24 Vikram Goel Surface cleaning wipes
US11730472B2 (en) 2019-04-25 2023-08-22 Covidien Lp Surgical system and surgical loading units thereof
CN110205820B (en) * 2019-04-30 2020-06-12 东华大学 Functional fiber and preparation method thereof
USD946137S1 (en) 2019-05-01 2022-03-15 Broan-Nutone Llc Ventilation grille
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
US11617411B2 (en) 2019-06-11 2023-04-04 Karnali Innovations LLC Anti-infective shoe soles
CN110528142B (en) * 2019-08-21 2021-08-10 江苏大毛牛新材料有限公司 Natural mosquito-repellent fabric product
US11571208B2 (en) 2019-10-11 2023-02-07 Covidien Lp Surgical buttress loading units
KR102354177B1 (en) * 2019-10-16 2022-01-24 주식회사 휴비스 Nonwoven fabric for cabin air filter comprising low melting polyester fiber
US11523824B2 (en) 2019-12-12 2022-12-13 Covidien Lp Anvil buttress loading for a surgical stapling apparatus
CN111041701A (en) * 2019-12-28 2020-04-21 宁波大军长毛绒有限公司 Preparation process of fox fur-imitated fabric
CN111020724A (en) * 2019-12-31 2020-04-17 深圳市宏翔新材料发展有限公司 Preparation method of textilene cloth
US11547407B2 (en) 2020-03-19 2023-01-10 Covidien Lp Staple line reinforcement for surgical stapling apparatus
WO2021222311A1 (en) * 2020-04-27 2021-11-04 Patrick Kelly Method of preparing antimicrobial sheets for articles of manufacture having antimicrobial properties
US11337699B2 (en) 2020-04-28 2022-05-24 Covidien Lp Magnesium infused surgical buttress for surgical stapler
US20210360928A1 (en) * 2020-05-21 2021-11-25 Piana Nonwovens, LLC. Antimicrobial/antiviral nonwoven and applications of the same
KR102148226B1 (en) 2020-06-05 2020-08-26 주식회사 일송글로벌 Antibacterial and antifungal compositions and uses thereof
KR102152232B1 (en) 2020-07-06 2020-09-04 주식회사 성신양행 Eco-friendly antibacterial fiber with improved deodorizing ability and its manufacturing method
DE202020005541U1 (en) 2020-07-21 2021-07-26 Dr. Schumacher Gmbh Disposable wipes for cleaning and / or disinfecting surfaces
DE202020005540U1 (en) 2020-07-21 2021-08-12 Dr. Schumacher Gmbh Multi-layer wipe with improved reach for cleaning and / or disinfecting surfaces
KR102163253B1 (en) 2020-08-14 2020-10-08 주식회사 일송글로벌 Fiber molded products with semi-permanent antibacterial and deodorizing properties
KR102163245B1 (en) 2020-08-14 2020-10-08 주식회사 일송글로벌 Synthetic fiber with semi-permanent antibacterial and anti-fungal properties and uses thereof
KR102163232B1 (en) 2020-08-14 2020-10-08 주식회사 일송글로벌 Masterbatch having antibacterial and anti-fungal properties and its manufacturing method
US20220061429A1 (en) * 2020-08-27 2022-03-03 The Fix Marketing, LLC Gaming gloves
US11707276B2 (en) 2020-09-08 2023-07-25 Covidien Lp Surgical buttress assemblies and techniques for surgical stapling
CN112226871B (en) * 2020-09-29 2021-11-19 东华大学 Ligament regeneration scaffold with gradient induction activity and preparation method thereof
US11399833B2 (en) 2020-10-19 2022-08-02 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11534170B2 (en) 2021-01-04 2022-12-27 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
CN113062028A (en) * 2021-03-22 2021-07-02 上海宝鸟服饰有限公司 Antibacterial suit fabric and preparation method thereof
US11344082B1 (en) * 2021-06-21 2022-05-31 SoleScreens LLC Shoe sole cover
US11596399B2 (en) 2021-06-23 2023-03-07 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11510670B1 (en) 2021-06-23 2022-11-29 Covidien Lp Buttress attachment for surgical stapling apparatus
US11672538B2 (en) 2021-06-24 2023-06-13 Covidien Lp Surgical stapling device including a buttress retention assembly
US11678879B2 (en) 2021-07-01 2023-06-20 Covidien Lp Buttress attachment for surgical stapling apparatus
US11684368B2 (en) 2021-07-14 2023-06-27 Covidien Lp Surgical stapling device including a buttress retention assembly
DE102021122041B3 (en) 2021-08-25 2022-11-03 Dr. Schumacher Gmbh Multi-ply disposable floor wipe with an abrasive strip
US11801052B2 (en) 2021-08-30 2023-10-31 Covidien Lp Assemblies for surgical stapling instruments
US11751875B2 (en) 2021-10-13 2023-09-12 Coviden Lp Surgical buttress attachment assemblies for surgical stapling apparatus
US11806017B2 (en) 2021-11-23 2023-11-07 Covidien Lp Anvil buttress loading system for surgical stapling apparatus
CN114277493B (en) * 2021-12-29 2022-08-30 浙江珊琪服饰有限公司 Nano crease-resistant fabric and preparation method thereof
CN114454586A (en) * 2022-02-11 2022-05-10 杭州睿典布艺有限公司 High-strength wear-resistant flame-retardant decorative cloth
CN114589971B (en) * 2022-03-09 2024-02-27 浙江泰铨家居用品有限公司 Antibacterial washing mop sponge
CN114959997B (en) * 2022-06-10 2023-12-26 丹阳市丹祈纺织有限公司 Preparation method of woven multifunctional unidirectional moisture-conducting synthetic fiber fabric
WO2024037967A1 (en) 2022-08-17 2024-02-22 Dr. Schumacher Gmbh Method for producing a multi-layered cloth product
GR1010533B (en) * 2022-09-13 2023-08-29 Ελληνικος Χαλκος Ι.Κ.Ε., Antimicrobial use of a composite fiber material of polyethylene terephtalate and copper ions in air handling units
CN117211008B (en) * 2023-11-09 2024-01-30 龙帛生物科技有限公司 Degradable non-woven fabric material and preparation method thereof

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959556A (en) * 1973-04-10 1976-05-25 Morrison Willard L Antimicrobial blended yarns and fabrics comprised of naturally occurring fibers
US3983061A (en) * 1971-02-16 1976-09-28 Ciba-Geigy Corporation Process for the permanent finishing of fiber materials
US4226232A (en) * 1979-04-09 1980-10-07 Spenco Medical Corporation Wound dressing
US4350732A (en) * 1976-10-26 1982-09-21 Foss Manufacturing Company, Inc. Reinforcing laminate
US4371577A (en) * 1981-05-22 1983-02-01 Mitsubishi Burlington Co., Ltd. Antimicrobial carpet containing amino acid type surfactant
US4401770A (en) * 1982-04-01 1983-08-30 Olin Corporation Shoe insole having antibacterial and antifungal properties
US4624679A (en) * 1985-01-03 1986-11-25 Morton Thiokol, Inc. Compositions containing antimicorbial agents in combination with stabilizers
US4864740A (en) * 1986-12-22 1989-09-12 Kimberly-Clark Corporation Disposable hygienic shoe insole and method for making the same
US4911898A (en) * 1983-01-21 1990-03-27 Kanebo Limited Zeolite particles retaining silver ions having antibacterial properties
US4919998A (en) * 1988-03-04 1990-04-24 Precision Fabrics Group Woven medical fabric
US4923914A (en) * 1988-04-14 1990-05-08 Kimberly-Clark Corporation Surface-segregatable, melt-extrudable thermoplastic composition
US4938958A (en) * 1986-12-05 1990-07-03 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
US5047448A (en) * 1988-09-27 1991-09-10 Kuraray Company Limited Antimicrobial-shaped article and a process for producing the same
US5071551A (en) * 1988-09-20 1991-12-10 Kabushiki Kaisha Aiaishi Water purifier
US5094847A (en) * 1989-10-20 1992-03-10 Mitsubishi Petrochemical Co., Ltd. Method for producing an antibacterial molded article of polyolefin resin composition comprising a zeolite containing silver and subjecting the surface of the molded article to corona discharge
US5098417A (en) * 1990-04-12 1992-03-24 Ricoh Kyosan, Inc. Cellulosic wound dressing with an active agent ionically absorbed thereon
US5104934A (en) * 1989-12-15 1992-04-14 Monsanto Company Polymer blends of polycarbonate, PETG and ABS
US5106897A (en) * 1990-02-20 1992-04-21 Monsanto Company Method for improving the low temperature impact strength of polyblends of thermoplastic copolyesters and styrene acrylonitrile copolymers
US5134201A (en) * 1991-10-28 1992-07-28 The Dow Chemical Company Miscible polyester blends
US5147339A (en) * 1987-09-22 1992-09-15 Coloplast A/S Dressing material for the treatment of wounds, and corpuscles for use in the production thereof
US5180585A (en) * 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
US5187230A (en) * 1989-12-15 1993-02-16 Monsanto Company Rubber-modified polymer blends of polycarbonate and PETG
US5219325A (en) * 1990-03-02 1993-06-15 Duphar International, Research B.V. Wound dressing and method of preparing the same
US5244667A (en) * 1990-02-28 1993-09-14 Hagiwara Research Corp. Silica-gel based antimicrobial composition having an antimicrobial coat of aluminosilicate on the surface of silica gel
US5268203A (en) * 1989-10-30 1993-12-07 H. B. Fuller Company Method of introducing an integral thermo-bonded layer into the surface of a thermoformed substrate
US5300167A (en) * 1992-01-03 1994-04-05 Kimberly-Clark Method of preparing a nonwoven web having delayed antimicrobial activity
US5405644A (en) * 1992-11-17 1995-04-11 Toagosei Chemical Industry Co., Ltd. Process for producing antimicrobial fiber
US5408022A (en) * 1991-10-18 1995-04-18 Kuraray Co., Ltd. Antimicrobial polymerizable composition, the polymer and article obtained from the same
US5525651A (en) * 1993-10-20 1996-06-11 The Dow Chemical Company Blends of polycarbonate and chlorinated polyethylene
US5709870A (en) * 1994-10-18 1998-01-20 Rengo Co., Ltd. Antimicrobial agent
US5733949A (en) * 1994-10-07 1998-03-31 Kuraray Co., Ltd. Antimicrobial adhesive composition for dental uses
US5756578A (en) * 1995-01-11 1998-05-26 Phillips Petroleum Company Blends of poly (ethylene terephthalate) and monovinylarene/conjugated diene block copolymers
US5762650A (en) * 1996-08-23 1998-06-09 Olin Corporation Biocide plus surfactant for protecting carpets
US5783570A (en) * 1995-12-26 1998-07-21 Toyo Boseki Kabushiki Kaisha Organic solvent-soluble mucopolysaccharide, antibacterial antithrombogenic composition and medical material
US5876489A (en) * 1995-03-06 1999-03-02 Suntory Limited Germ-removing filter and apparatus for maintaining sterile room under sterile condition
US5900258A (en) * 1996-02-01 1999-05-04 Zeolitics Inc. Anti-bacterial compositions
US5958539A (en) * 1997-08-26 1999-09-28 Eastman Chemical Company Thermoplastic article having textile fiber fabric embedded therein
US5985079A (en) * 1996-03-28 1999-11-16 Rexam Industries Corp. Flexible composite surfacing film and method for producing same
US6037057A (en) * 1998-02-13 2000-03-14 E. I. Du Pont De Nemours And Company Sheath-core polyester fiber including an antimicrobial agent

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3501369A (en) * 1965-11-17 1970-03-17 Johnson & Johnson Nonwoven fabric and method of making the same
US3531368A (en) 1966-01-07 1970-09-29 Toray Industries Synthetic filaments and the like
US3589956A (en) * 1966-09-29 1971-06-29 Du Pont Process for making a thermally self-bonded low density nonwoven product
US4019844A (en) 1973-02-26 1977-04-26 Toray Industries, Inc. Apparatus for producing multiple layers conjugate fibers
US4357476A (en) * 1974-02-22 1982-11-02 Ciba Geigy Corporation, N.Y. Nonylamines
JPS5937956A (en) * 1982-08-24 1984-03-01 カネボウ株式会社 Particle filled fiber structure
US4551378A (en) * 1984-07-11 1985-11-05 Minnesota Mining And Manufacturing Company Nonwoven thermal insulating stretch fabric and method for producing same
US4784909A (en) * 1986-09-16 1988-11-15 Teijin Limited Anti-fungus, deodorant fiber material
US4904523A (en) * 1987-01-06 1990-02-27 Pellon Company Polyester heat bonded product
JPS63175117A (en) * 1987-01-08 1988-07-19 Kanebo Ltd Antimicrobial fibrous structural material
JPH0618899B2 (en) * 1987-06-30 1994-03-16 品川燃料株式会社 Film containing antibacterial zeolite
JPH0830287B2 (en) 1987-07-01 1996-03-27 東レ株式会社 Polyester 3-component composite yarn
CH674843A5 (en) * 1988-01-26 1990-07-31 Lonza Ag
JPH01246204A (en) 1988-03-25 1989-10-02 Kuraray Co Ltd Antimicrobial formed products and their production
JPH0299606A (en) 1988-09-29 1990-04-11 Kuraray Co Ltd Fiber having deodorant and antimicrobial performance and production thereof
JPH02169740A (en) 1988-12-16 1990-06-29 Kuraray Co Ltd Bacteriostatic deodorizing cloth
KR920006382B1 (en) * 1989-12-13 1992-08-03 주식회사 선경인더스트리 A process for the preparation of antibiotic polyester fibers
US5005679A (en) * 1990-02-06 1991-04-09 Hjelle Kurt R Tote bags equipped with a cooling chamber
US5244687A (en) * 1992-04-28 1993-09-14 Kraft General Foods, Inc. Product and process of producing a no-fat cheese analog containing rennet casein
JP3131614B2 (en) 1992-06-29 2001-02-05 京セラミタ株式会社 Electrophotographic photoreceptor
JP3159408B2 (en) 1992-09-30 2001-04-23 株式会社クラレ Antibacterial suede-like artificial leather
JPH0754208A (en) * 1993-08-13 1995-02-28 Teijin Ltd Sheath-core type composite binder fiber
JPH07145514A (en) 1993-11-19 1995-06-06 Toray Ind Inc Polyester-based ternary conjugate fiber
US5605739A (en) * 1994-02-25 1997-02-25 Kimberly-Clark Corporation Nonwoven laminates with improved peel strength
US5491186A (en) * 1995-01-18 1996-02-13 Kean; James H. Bonded insulating batt
FR2735418B1 (en) * 1995-06-19 1997-08-22 Heidelberg Harris Sa DEVICE FOR EXCHANGING PLATES OF PRINTING UNITS OF PRINTING MACHINES
US5617903A (en) * 1996-03-04 1997-04-08 Bowen, Jr.; David Papermaker's fabric containing multipolymeric filaments
US5856005A (en) * 1996-06-06 1999-01-05 Design Tex, Inc. Permanently anti-microbial and flame-retardant yarn and fabric made therefrom
JPH1060740A (en) 1996-08-15 1998-03-03 Unitika Ltd Polyester-based self-extensible splittable conjugated fiber and combined filament yarn containing the same and fabric
US5829171A (en) * 1996-10-01 1998-11-03 Perfect Impression Footwear Company Custom-fitting footwear
JPH10198608A (en) * 1997-01-08 1998-07-31 Mitsubishi Electric Corp Memory card
JP2001522947A (en) * 1997-11-06 2001-11-20 イーストマン ケミカル カンパニー Copolyester binder fiber
US6436422B1 (en) * 1998-11-23 2002-08-20 Agion Technologies L.L.C. Antibiotic hydrophilic polymer coating
US6194332B1 (en) * 1998-12-23 2001-02-27 Malden Mills Industries, Inc. Anti-microbial enhanced knit fabric
US6723428B1 (en) * 1999-05-27 2004-04-20 Foss Manufacturing Co., Inc. Anti-microbial fiber and fibrous products
US6218009B1 (en) * 1999-11-30 2001-04-17 Kimberly-Clark Worldwide, Inc. Hydrophilic binder fibers

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983061A (en) * 1971-02-16 1976-09-28 Ciba-Geigy Corporation Process for the permanent finishing of fiber materials
US3959556A (en) * 1973-04-10 1976-05-25 Morrison Willard L Antimicrobial blended yarns and fabrics comprised of naturally occurring fibers
US4350732A (en) * 1976-10-26 1982-09-21 Foss Manufacturing Company, Inc. Reinforcing laminate
US4226232A (en) * 1979-04-09 1980-10-07 Spenco Medical Corporation Wound dressing
US4371577A (en) * 1981-05-22 1983-02-01 Mitsubishi Burlington Co., Ltd. Antimicrobial carpet containing amino acid type surfactant
US4401770A (en) * 1982-04-01 1983-08-30 Olin Corporation Shoe insole having antibacterial and antifungal properties
US4911898A (en) * 1983-01-21 1990-03-27 Kanebo Limited Zeolite particles retaining silver ions having antibacterial properties
US4624679A (en) * 1985-01-03 1986-11-25 Morton Thiokol, Inc. Compositions containing antimicorbial agents in combination with stabilizers
US4938958A (en) * 1986-12-05 1990-07-03 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
US4864740A (en) * 1986-12-22 1989-09-12 Kimberly-Clark Corporation Disposable hygienic shoe insole and method for making the same
US5147339A (en) * 1987-09-22 1992-09-15 Coloplast A/S Dressing material for the treatment of wounds, and corpuscles for use in the production thereof
US4919998A (en) * 1988-03-04 1990-04-24 Precision Fabrics Group Woven medical fabric
US4923914A (en) * 1988-04-14 1990-05-08 Kimberly-Clark Corporation Surface-segregatable, melt-extrudable thermoplastic composition
US5071551A (en) * 1988-09-20 1991-12-10 Kabushiki Kaisha Aiaishi Water purifier
US5047448A (en) * 1988-09-27 1991-09-10 Kuraray Company Limited Antimicrobial-shaped article and a process for producing the same
US5094847A (en) * 1989-10-20 1992-03-10 Mitsubishi Petrochemical Co., Ltd. Method for producing an antibacterial molded article of polyolefin resin composition comprising a zeolite containing silver and subjecting the surface of the molded article to corona discharge
US5268203A (en) * 1989-10-30 1993-12-07 H. B. Fuller Company Method of introducing an integral thermo-bonded layer into the surface of a thermoformed substrate
US5104934A (en) * 1989-12-15 1992-04-14 Monsanto Company Polymer blends of polycarbonate, PETG and ABS
US5187230A (en) * 1989-12-15 1993-02-16 Monsanto Company Rubber-modified polymer blends of polycarbonate and PETG
US5106897A (en) * 1990-02-20 1992-04-21 Monsanto Company Method for improving the low temperature impact strength of polyblends of thermoplastic copolyesters and styrene acrylonitrile copolymers
US5244667A (en) * 1990-02-28 1993-09-14 Hagiwara Research Corp. Silica-gel based antimicrobial composition having an antimicrobial coat of aluminosilicate on the surface of silica gel
US5219325A (en) * 1990-03-02 1993-06-15 Duphar International, Research B.V. Wound dressing and method of preparing the same
US5098417A (en) * 1990-04-12 1992-03-24 Ricoh Kyosan, Inc. Cellulosic wound dressing with an active agent ionically absorbed thereon
US5494987A (en) * 1991-01-18 1996-02-27 Kuraray Co., Ltd. Antimicrobial polmerizable composition, the polymer and article obtained from the same
US5180585A (en) * 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
US5408022A (en) * 1991-10-18 1995-04-18 Kuraray Co., Ltd. Antimicrobial polymerizable composition, the polymer and article obtained from the same
US5134201A (en) * 1991-10-28 1992-07-28 The Dow Chemical Company Miscible polyester blends
US5300167A (en) * 1992-01-03 1994-04-05 Kimberly-Clark Method of preparing a nonwoven web having delayed antimicrobial activity
US5405644A (en) * 1992-11-17 1995-04-11 Toagosei Chemical Industry Co., Ltd. Process for producing antimicrobial fiber
US5525651A (en) * 1993-10-20 1996-06-11 The Dow Chemical Company Blends of polycarbonate and chlorinated polyethylene
US5733949A (en) * 1994-10-07 1998-03-31 Kuraray Co., Ltd. Antimicrobial adhesive composition for dental uses
US5709870A (en) * 1994-10-18 1998-01-20 Rengo Co., Ltd. Antimicrobial agent
US5756578A (en) * 1995-01-11 1998-05-26 Phillips Petroleum Company Blends of poly (ethylene terephthalate) and monovinylarene/conjugated diene block copolymers
US5876489A (en) * 1995-03-06 1999-03-02 Suntory Limited Germ-removing filter and apparatus for maintaining sterile room under sterile condition
US5783570A (en) * 1995-12-26 1998-07-21 Toyo Boseki Kabushiki Kaisha Organic solvent-soluble mucopolysaccharide, antibacterial antithrombogenic composition and medical material
US5900258A (en) * 1996-02-01 1999-05-04 Zeolitics Inc. Anti-bacterial compositions
US5985079A (en) * 1996-03-28 1999-11-16 Rexam Industries Corp. Flexible composite surfacing film and method for producing same
US5762650A (en) * 1996-08-23 1998-06-09 Olin Corporation Biocide plus surfactant for protecting carpets
US5958539A (en) * 1997-08-26 1999-09-28 Eastman Chemical Company Thermoplastic article having textile fiber fabric embedded therein
US6037057A (en) * 1998-02-13 2000-03-14 E. I. Du Pont De Nemours And Company Sheath-core polyester fiber including an antimicrobial agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257616A1 (en) * 2005-05-12 2006-11-16 Stowe-Pharr Mills, Inc. (D/B/A Pharr Yarns, Inc.) Renewable nonwoven carpet
US20100021512A1 (en) * 2008-07-24 2010-01-28 Stanley Arron Incontinence garments with a silver lining infection stopper
US9440001B2 (en) 2013-03-06 2016-09-13 Specialty Fibres and Materials Limited Absorbent materials
CN103194855A (en) * 2013-03-18 2013-07-10 河南舒莱卫生用品有限公司 Preparation method for nano-silver antibacterial non-woven fabric and application of nano-silver antibacterial non-woven fabric to diapers
WO2023043998A1 (en) * 2021-09-16 2023-03-23 Ascend Performance Materials Operations Llc Antiodor and antimicrobial layers in absorbent materials

Also Published As

Publication number Publication date
US6723428B1 (en) 2004-04-20
US20040197553A1 (en) 2004-10-07
US20030170453A1 (en) 2003-09-11
CA2375567A1 (en) 2000-12-07
EP1212478A4 (en) 2005-08-17
WO2000073552A1 (en) 2000-12-07
US20040214495A1 (en) 2004-10-28
US20050019568A1 (en) 2005-01-27
MXPA01012196A (en) 2002-06-21
US6946196B2 (en) 2005-09-20
AU5162800A (en) 2000-12-18
US20040202860A1 (en) 2004-10-14
US6841244B2 (en) 2005-01-11
EP1212478A1 (en) 2002-06-12
US20040191500A1 (en) 2004-09-30
US20050106390A1 (en) 2005-05-19
US20050003728A1 (en) 2005-01-06
US20040209059A1 (en) 2004-10-21
CA2375567C (en) 2010-11-02

Similar Documents

Publication Publication Date Title
US20050101213A1 (en) Anti-microbial fabrics, garments and articles
US20050136100A1 (en) Hollow anti-microbial fibers and fibrous products
US4041203A (en) Nonwoven thermoplastic fabric
AU782720B2 (en) Launderable, leak-proof, breathable fabric and articles made therefrom
WO2004089614A2 (en) Wicking, breathable fabrics
CN1093148C (en) Microporous elastomeric film/nonwoven breathable laminate and method for making same
US20050159721A1 (en) Body fluid absorbing product and diaper
KR102148226B1 (en) Antibacterial and antifungal compositions and uses thereof
USH1989H1 (en) Microporous films having zoned breathability
KR102163253B1 (en) Fiber molded products with semi-permanent antibacterial and deodorizing properties
CN211835009U (en) Disposable absorption product and preparation device thereof
WO2021224832A1 (en) Absorbent structure for items of clothing, operating method and uses thereof
JPH08117271A (en) Sanitary napkin
KR100714618B1 (en) Bed sheet having an excellent washfastness
JP2003342862A (en) Water-absorbing material and method for producing the same
CN110916902A (en) Disposable absorbent article and apparatus and method for making same
JPH08117270A (en) Sanitary napkin
CN216365572U (en) Composite core structure and absorption article
CN209794758U (en) Multilayer composite nonwoven household article
JP2023004740A (en) Laminated structure knitted product
JPH1142732A (en) Thermal adhesive biodegradable fiber composite
TW202231207A (en) Air-permeable multi-layer insulative construct
KR200290631Y1 (en) Gauze clothes used in mat
TW202025930A (en) Antimicrobial Diaper
KR200292826Y1 (en) Carpet

Legal Events

Date Code Title Description
AS Assignment

Owner name: FOSS MANUFACTURING CO., INC., NEW HAMPSHIRE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOSS, STEPHEN W.;REEL/FRAME:016402/0295

Effective date: 20050323

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION