US20040049202A1 - Spinal grooved director with built in balloon and method of using same - Google Patents

Spinal grooved director with built in balloon and method of using same Download PDF

Info

Publication number
US20040049202A1
US20040049202A1 US10/640,647 US64064703A US2004049202A1 US 20040049202 A1 US20040049202 A1 US 20040049202A1 US 64064703 A US64064703 A US 64064703A US 2004049202 A1 US2004049202 A1 US 2004049202A1
Authority
US
United States
Prior art keywords
balloon
grooved director
grooved
director
vertebra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/640,647
Inventor
J. Berger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEE BERGER 2004 TRUST
Original Assignee
Berger J. Lee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berger J. Lee filed Critical Berger J. Lee
Priority to US10/640,647 priority Critical patent/US20040049202A1/en
Publication of US20040049202A1 publication Critical patent/US20040049202A1/en
Assigned to LB, LLC reassignment LB, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERGER, J. LEE
Assigned to LEE BERGER 2004 TRUST reassignment LEE BERGER 2004 TRUST ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LB, INC.
Assigned to LB NV, LLC reassignment LB NV, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE SPELLING OF THE STREET ADDRESS OF THE RECEIVING PARTY PREVIOUSLY RECORDED AT REEL 015530 FRAME 0922 Assignors: BERGER, J. LEE
Assigned to LEE BERGER 2004 TRUST reassignment LEE BERGER 2004 TRUST CORRECTIVE TO CORRECT THE ASSIGNOR'S NAME ON A DOCUMENT PREVIOUSLY RECORDED AT REEL 015571 FRAME 0970. (ASSIGNMENT OF ASSIGNOR'S INTEREST) Assignors: LB NV, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/885Tools for expanding or compacting bones or discs or cavities therein
    • A61B17/8852Tools for expanding or compacting bones or discs or cavities therein capable of being assembled or enlarged, or changing shape, inside the bone or disc
    • A61B17/8855Tools for expanding or compacting bones or discs or cavities therein capable of being assembled or enlarged, or changing shape, inside the bone or disc inflatable, e.g. kyphoplasty balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/441Joints for the spine, e.g. vertebrae, spinal discs made of inflatable pockets or chambers filled with fluid, e.g. with hydrogel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00544Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated pneumatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4601Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for introducing bone substitute, for implanting bone graft implants or for compacting them in the bone cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30581Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid
    • A61F2002/30583Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid filled with hardenable fluid, e.g. curable in-situ
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • A61F2002/467Measuring instruments used for implanting artificial joints for measuring fluid pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0085Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof hardenable in situ, e.g. epoxy resins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00353Bone cement, e.g. polymethylmethacrylate or PMMA

Definitions

  • the invention relates to expandable structures, which in use, are deployed in interior body regions of humans and other animals. More particularly, the present invention is directed to an apparatus and method for extending a balloon in an crushed vertebra by sequentially inflating a balloon in a groove director and filling the open chamber of the vertebrae with osteogenic material.
  • expandable structures to reconstitute the structure of the bone.
  • the deployment of expandable structures into interior body regions for various medical purposes is well known in the medical art.
  • expandable structures generically called “balloons,” are deployed during angioplasty to open occluded blood vessels.
  • U.S. Pat. Nos. 4,969,888 and 5,108,404 disclose apparatus and methods the use of expandable structures for the fixation of fractures or other osteoporotic and non-osteoporotic conditions of human and animal bones.
  • U.S. Pat. No. 4,313,434 to Segal describes a method for fixation of fracture of long bones using a flexible, inflatable bladder inside the intramedullar cavity. A small opening is drilled in the bone, and the bladder is inserted through the hole into the intramedullar cavity. The bladder is then inflated with sterile air and sealed, to fixate the bone. After the fracture has healed, the bladder is deflated and removed.
  • the catheter with the deflated balloon at its distal end, is inserted into the intramedullar cavity, past the fracture site.
  • the balloon is inserted by guiding it along guide wires that are fed through the cavity, before introducing the catheter.
  • the balloon is inflated to anchor it in place, and the catheter is tightened against the balloon to provide compression to the fracture.
  • Various medical apparatus currently used include balloon expandable devices where an expandable balloon is used to change the shape of an implant or a collapsed or fracture vertebrae.
  • Such balloon devices use hydraulic pressure by the insertion of fluid into the balloon's interior, thereby enlarging the balloon's diameter. The pressure of the fluid within the sealed balloon provides the energy to support the balloon in its expanded shape.
  • These types of vertebral balloons inflate spherically in all directions and it is difficult to guide and control the force of expansion in the vertebrae resulting in uneven application of force with portions of a crushed vertebra not being expanded to the original configuration.
  • U.S. Pat. No. 5,972,015 is directed toward a device intended for deployment into interior body regions employing a catheter tube which carries an expandable structure.
  • the structure can include spaced apart end regions which provide a non-conical diameter transition between the diameter of the catheter tube and the larger diameter of the expanded structure.
  • the non-conical diameter transition mitigates the tradeoff, present in other balloon structures between achieving a desired maximum expanded diameter without undesired reduction in the effective length of the structure.
  • U.S. Pat. No. 6,241,734 discloses a system and method for delivering material into a bone deploying a cannula through soft tissue to establish a subcutaneous path into the bone.
  • a material is introduced into the bone through the cannula.
  • the apparatus and method advance a tamping instrument having a body including markings located along the length in increments from the terminus which allow the physician to gauge the position of the instrument in the subcutaneous path as material is being tamped into the bone.
  • the tamping instrument is deployed through the cannula to urge material residing in the cannula into the bone and deliver a material at a pressure which is no greater no greater than about 360 psi.
  • U.S. Pat. No. 6,248,110 is a system and method for treating fractured or diseased bone by deploying several therapeutic tools into the bone.
  • An expandable balloon body is deployed in association with a bone cement nozzle into the bone such that both occupy the bone interior at the same time. Expansion of the balloon body forms cavities in the cancerous bone in the interior bone volume.
  • Vertebroplasty is a recent surgical technique which uses the injection of a cement material into a collapsing vertebral body. Osteoporosis is the leading cause of vertebral fracture. Approximately 700,00 vertebral fractures occur annually in the United States. The procedure is performed to reinforce the fractured bone, alleviate chronic back and prevent further vertebral collapse. Vertebroplasty was developed in France in the 1980's but is relatively new in the United States and is presently available in only a few hospitals.
  • Percutaneous vertebroplasty with methyl-methacrylate technique, method, results [abstract].”
  • Percutaneous vertebroplasty is desirable from the standpoint that it is minimally invasive, compared to the alternative of surgically exposing the hard tissue site to be supplemented with PMMA or other filler.
  • the general procedure for performing percutaneous vertebroplasty includes the percutaneous injection of PMMA or other bone implant material into the damaged or fractured bone tissue of a vertebra During injection of the bone implant material, fluoroscopic imaging or another imaging technique is used to track the path that the bone implant material takes as well as its final position upon implantation. Contrast agents such as barium sulfate powder are often used to aid the visibility of the bone implant material by imaging. This type of contrast agent is fairly effective once a given mass of the mixture of it with the bone implant material has accumulated at an implant site. However, for purposes of tracking the flow and leading edge surfaces of a bone implant material during injection, or for viewing small volumes of the implant material, the contrast agents presently used are inadequate.
  • a material which solidifies is inserted into a balloon, forming a solid which has a new shape.
  • This material can have two-component cement properties, and can be formed of epoxy or polymer. The material is compressed into the balloon and solidifies by change in temperature or humidity.
  • One aspect of the invention provides a device for deployment into an interior body region comprising a grooved director tube, which carries an expandable structure.
  • the structure preferably a balloon is adapted to assume a collapsed geometry for deployment into the vertebra and an expanded geometry for use within the vertebra.
  • the grooved director extends along a first axis and the geometry of the balloon extends outward from that axis against the vertebra walls restoring the same to their original configuration. This permits sequential deployment of the balloon in a symmetric fashion with respect to the natural axis of a targeted interior body region, even when the groove director is not aligned with the natural axis.
  • the hard tissue implant material may be mixed with the radio paque particles and include hydroxy apatite, various formulations of biocompatible calcium phosphates, biocompatible calcium sulfates, demineralized and/or mineralized bone particles, polymer based implants including polyglycolic acid and/or polylactic acid compounds, collagen and/or collagen derivative preparations alone or in combination with other biomaterials, chitin and/or chitosan preparations, bioglasses including oxides of silicon, sodium, calcium and phosphorous and combinations thereof, and other known materials which are acceptable for use as hard tissue implant materials including osteogenic and osteoinductive compositions, and combinations thereof.
  • FIG. 1 is a perspective view of the inventive apparatus inserted into a sectional view of the damaged vertebra
  • FIG. 2 is an enlarged perspective view of the grooved director in a vertebral body prior to expansion of the balloon;
  • FIG. 3 is a sectional view of an injection of the grooved director into the interior volume of the vertebra and the balloon expanded against a wall of the damaged vertebra;
  • FIG. 4 is a cross sectional view of a restored vertebra filled with implant material with the grooved director still inserted in the vertebra.
  • FIGS. 1 - 4 The best mode and the preferred embodiment of the inventive grooved director and balloon apparatus is shown generally in FIGS. 1 - 4 .
  • the invention is primarily directed toward the treatment of vertebrae of the spine 10 .
  • the geometry of the vertebral body 20 generally includes an exterior formed from compact cortical bone 30 and an interior volume 32 of reticulated cancellous, or spongy, bone 34 (also called medullary bone or trabecular bone).
  • the vertebrae are separated from each other by discs 22 .
  • the spinal canal 36 (see FIG. 4), is located on the posterior (i.e., back) side of each vertebra 20 .
  • the spinal cord (not shown) passes through the spinal canal 36 .
  • the vertebral arch 38 surrounds the spinal canal 36 .
  • the spinous process 37 extends from the rear of the vertebral arch 38 .
  • Left and right pedicles 39 of the vertebral arch 38 adjoin the vertebral body 21 .
  • the grooved director 40 can be inserted into bone in accordance with the teachings of the above described U.S. Pat. Nos. 4,969,888 and 5,108,404 which are incorporated herein by reference.
  • access into the interior volume 32 can be accomplished, for example, by drilling an access portal through either pedicle. This is called a transpedicular approach and the access portal aligns the axis of the grooved director tube 40 obliquely with respect to all natural axes of the vertebral body 21 .
  • the grooved director 40 is constructed of a single piece of stainless steel or plastic tube 42 with a disal threaded end 43 which can be screwed into connector member 54 and a proximal cutout end 44 having a blunt rounded edged tip 45 .
  • the cutout end 44 defines a groove 46 which forms the seat for the balloon.
  • the groove 46 runs along the upper surface of the end 44 and leads to a lumen 48 which is formed by and extends through the tube 42 .
  • the intersection of the groove 46 and lumen 48 is marked by a beveled cut away section 47 .
  • a balloon 50 is moveably mounted within the lumen 48 of the groove director for expansion within the interior volume 32 of the vertebra 20 away from the axis of the grooved director 50 compressing cancerous bone 34 and pushing the cortical walls outward to form an internal cavity approximating the original shape.
  • the material of the balloon 50 can be selected according to the therapeutic objectives of its use. For example, materials including vinyl, nylon, polyethylenes, ionomer, polyurethane, and polyethylenetetraphthalate (PET) can be used.
  • PET polyethylenetetraphthalate
  • the thickness of the structure is typically in the range of 1 micron to 20 microns of thicknesses that can withstand pressures of up to 250-750 psi.
  • the thickness of the structure is typically in the range of 1 micron to 20 microns of thicknesses that can withstand pressures of up to 250-750 psi.
  • the material for the balloon structure can be selected to exhibit elastic properties, like latex or less elastic properties, like silicone.
  • the physician monitors the expansion to assure that over-expansion and wall failure do not occur.
  • the asymmetric compaction of cancellous bone 34 in the interior volume 32 may also exert unequal or nonuniform interior forces upon cortical bone 30 , making it difficult to elevate or push broken and compressed bone.
  • the grooved director is rotated 90° or a lesser or greater amount and the process is repeated until the walls of the vertebrae are reestablished to its essentially original form.
  • the grooved director is kept in a fixed position with respect to the vertebrae being operated on by locking mechanism 60 which can be attached via a frame to the operating table.
  • locking mechanism 60 which can be attached via a frame to the operating table.
  • the locking mechanism is constructed with a housing 62 provided with a through going bore 64 into which the tubular shaped grooved director member 40 is inserted until the connector housing 54 located on the distal end of the grooved director member 40 abuts the locking mechanism housing 62 .
  • a partially threaded bore 65 (not shown) is cut into the housing 62 transverse to and intersecting the through going bore 64 .
  • a locking handle member 66 with a threaded distal end 67 (not shown) is mounted in the partially threaded bore 65 and upon rotation by a handle portion 68 engages the tubular body of the grooved director holding the same in a locked position within the locking mechanism housing 62 so that the same cannot move. This allows direction of the balloon away from its seat on the upper surface of end 44 and groove 46 of the grooved director 40 in a predetermined selected direction toward a particular segment of the vertebrae wall.
  • a pump assembly 70 is connected to the distal end of the tubular groove body to supply fluid to the balloon to inflate the balloon inside the vertebrae.
  • the pump assembly 70 is constructed with a syringe body 72 having a handle 73 with a plunger 74 mounted therein, a pressure gauge 76 mounted at the distal end of the syringe body, flexible tubing 78 leading from the distal tip of the syringe body and a connector tip 80 located on the distal end of the flexible tubing which can be snap fit by a bayonet or screw thread means into the connector member 54 .
  • the plunger 74 can be a standard straight cylindrical wall type or can have external threads which provide a screw in pressure on the fluid container in the body of the syringe. Thus the surgeon is able to determine the pressure being applied to the inside of the vertebrae by viewing the reading on the gauge 76 .
  • the grooved director with the built-in balloon is inserted into the body of the compressed vertebra through a pedicular or extrapedicular approach.
  • the balloon is filled with non-compressible fluid.
  • the balloon has a valve to prevent fluid from escaping (while also allowing fluid to be released, once desired).
  • Upon filling the balloon with fluid it expands so that it substantially fills the portion of the intramedullar cavity which is to be expanded.
  • an X-ray or fluoroscopy or other imaging technique is taken of the bone with the balloon inside (preferably while the balloon is still in a partially or non-expanded state).
  • the balloon's internal structure is then observed in the image to ascertain that the balloon is properly positioned, before fully inflating the balloon with the hydraulic fluid.
  • the grooved director will show up on the image so that proper positioning can be verified.
  • the grooved director 40 is positioned and aimed in a direction under the compressed superior end plate of the vertebral body.
  • the balloon 50 inside of the grooved director is extended and inflated or if it is fixed to lie on the face 44 it is inflated so that the force and direction of balloon inflation reduces and restores the height of the fractured vertebra.
  • the balloon is deflated and the grooved director is circumferentially rotated intermittently inflating the balloon at the same pressure or varying pressures if such is deemed necessary.
  • the balloon is deflated and the grooved director device with balloon is removed from the trochar insertion sheath. A grooved director without balloon is then inserted through the trochar insertion sheath into the space within the center of the vertebral body.
  • a syringe filled with bone graft substitute pellets of demineralized bone pellets such as those manufactured by Musculoskeletal Transplant Foundation, Osteotech Inc. or non allograft bone graft substitute material such as the material OSTEOSET, a surgical grade calcium sulfate manufactured by Wright Medical Inc. are inserted through the grooved director and packed into the space within the center of the vertebral body followed by an injection of ALLOMATRIX putty manufactured by Wright Medical, Inc., DBX putty or gel, Manufactured by Musculoskeletal Transplant Foundation or GRAFTON putty or gel manufactured by Osteotech Inc. to seal the graft in place.
  • a trochar insertion sheath which has previously been inserted in the initial drilled opening is removed and a cap or bone cement is used to fill the insertion entrance.
  • hard tissue implant materials that may be used include hydroxyapatite, various formulations of biocompatible calcium phosphates, biocompatible calcium sulfates, demineralized and/or mineralized bone particles, polymer based implants including polyglycolic acid and/or polylactic acid compounds, collagen and/or collagen derivative preparations alone or in combination with other biomaterials, chitin and/or chitosan preparations, bioglasses including oxides of silicon, sodium, calcium and phosphorous and combinations thereof.
  • a percutaneous injection of polymethyl methacrylate (PMMA) in a slurry state can be percutaneously injected.
  • the slurry is prepared just prior to the injection by mixing a powder component, e.g., methyl methacrylate polymer, with a liquid component, e.g., methylmethacrylate monomer.
  • Additional components such as copolymers (e.g., styrene,), accelerators (e.g., N,N-imethyl paratoluidene), initiators (e.g., benzoyl peroxide), stabilizers (e.g., hydroquinone) and/or antibiotics (e.g., Tobramycin) may be included in the slurry.
  • copolymers e.g., styrene
  • accelerators e.g., N,N-imethyl paratoluidene
  • initiators e.g., benzoyl peroxide
  • stabilizers e.g., hydroquino
  • the balloon future is also preferably inserted using a grooved director.
  • a sleeve can be inserted therein, through which the balloon is inserted.
  • the balloon is positioned and inflated to fixated with a biocompatible solidifying fluid under pressure from an external source, causing the balloon to expand radially outward to expand and fixate the walls of the vertebra.
  • the grooved director is removed, the balloon is then sealed, and the external fluid source is disconnected and detached from the inflating device leaving the implanted filled balloon.

Abstract

The present invention is directed toward a grooved director with a built in balloon which is inflated by a pump to a predetermined pressure to expand the walls of a collapsed vertebra. The device is inserted into the body of the compressed vertebra and the grooved director is positioned and aimed in a direction under the compressed superior end plate of the vertebral body. The balloon inside of the grooved director is inflated and the force and direction of balloon inflation restores the height of the fractured vertebrae. The balloon is deflated and the grooved director is circumferentially rotated while intermittently inflating and deflating the balloon to creates a symmetrical space within the center of the vertebral body. The balloon is deflated and the grooved director device with balloon is removed leaving a rebuilt vertebra which may be filled with a biocompatible material.

Description

    FIELD OF THE INVENTION
  • The invention relates to expandable structures, which in use, are deployed in interior body regions of humans and other animals. More particularly, the present invention is directed to an apparatus and method for extending a balloon in an crushed vertebra by sequentially inflating a balloon in a groove director and filling the open chamber of the vertebrae with osteogenic material. [0001]
  • BACKGROUND OF THE INVENTION
  • When cancerous bone becomes diseased for various reasons such as a result of osteoporosis, avascular necrosis, cancer or other diseases, the surrounding cortical bone becomes prone to compression fracture or collapse because the cancerous bone does not provide the necessary interior support for the surrounding cortical bone. The treatment of such collapsed or fractured bone has utilized a number of medical devices. [0002]
  • One type of medical devices used in the treatment of collapsed or fractured bone utilizes expandable structures to reconstitute the structure of the bone. The deployment of expandable structures into interior body regions for various medical purposes is well known in the medical art. For example, expandable structures, generically called “balloons,” are deployed during angioplasty to open occluded blood vessels. As another example, U.S. Pat. Nos. 4,969,888 and 5,108,404 disclose apparatus and methods the use of expandable structures for the fixation of fractures or other osteoporotic and non-osteoporotic conditions of human and animal bones. [0003]
  • U.S. Pat. No. 4,313,434 to Segal describes a method for fixation of fracture of long bones using a flexible, inflatable bladder inside the intramedullar cavity. A small opening is drilled in the bone, and the bladder is inserted through the hole into the intramedullar cavity. The bladder is then inflated with sterile air and sealed, to fixate the bone. After the fracture has healed, the bladder is deflated and removed. [0004]
  • U.S. Pat. Nos. 5,423,850 and 5,480,400 both to Berger, the inventor of the present application, describe methods and devices of bone fixation using a balloon catheter. The catheter, with the deflated balloon at its distal end, is inserted into the intramedullar cavity, past the fracture site. In the '850 patent, the balloon is inserted by guiding it along guide wires that are fed through the cavity, before introducing the catheter. Once fully inserted in the cavity, the balloon is inflated to anchor it in place, and the catheter is tightened against the balloon to provide compression to the fracture. [0005]
  • These patents provide only a joining effect as in the pulling of one broken bone towards the other. [0006]
  • Various medical apparatus currently used, include balloon expandable devices where an expandable balloon is used to change the shape of an implant or a collapsed or fracture vertebrae. Such balloon devices use hydraulic pressure by the insertion of fluid into the balloon's interior, thereby enlarging the balloon's diameter. The pressure of the fluid within the sealed balloon provides the energy to support the balloon in its expanded shape. These types of vertebral balloons inflate spherically in all directions and it is difficult to guide and control the force of expansion in the vertebrae resulting in uneven application of force with portions of a crushed vertebra not being expanded to the original configuration. [0007]
  • U.S. Pat. No. 5,972,015 is directed toward a device intended for deployment into interior body regions employing a catheter tube which carries an expandable structure. The structure can include spaced apart end regions which provide a non-conical diameter transition between the diameter of the catheter tube and the larger diameter of the expanded structure. The non-conical diameter transition mitigates the tradeoff, present in other balloon structures between achieving a desired maximum expanded diameter without undesired reduction in the effective length of the structure. [0008]
  • U.S. Pat. No. 6,241,734 discloses a system and method for delivering material into a bone deploying a cannula through soft tissue to establish a subcutaneous path into the bone. A material is introduced into the bone through the cannula. The apparatus and method advance a tamping instrument having a body including markings located along the length in increments from the terminus which allow the physician to gauge the position of the instrument in the subcutaneous path as material is being tamped into the bone. The tamping instrument is deployed through the cannula to urge material residing in the cannula into the bone and deliver a material at a pressure which is no greater no greater than about 360 psi. [0009]
  • U.S. Pat. No. 6,248,110 is a system and method for treating fractured or diseased bone by deploying several therapeutic tools into the bone. An expandable balloon body is deployed in association with a bone cement nozzle into the bone such that both occupy the bone interior at the same time. Expansion of the balloon body forms cavities in the cancerous bone in the interior bone volume. [0010]
  • It is important to maximize the size and surface area of an expandable structure when deployed in an interior body region. Current medical balloons manufactured by molding techniques are designed to be guided into a narrow channel, such as a blood vessel or the fallopian tube, where they are then inflated. In this environment, the diameter of the balloon is critical to its success, but the length is less so. Such balloons only need to be long enough to cross the area of intended use, with few constraints past the effective portion of the inflated balloon. This allows conventional balloons to be constructed in three molded pieces, comprising a cylindrical middle section and two conical ends, bonded to a catheter shaft. As a practical matter, neither the length of the conical end, nor the length of the bond of the balloon to the catheter shaft, affect the function of conventional balloons, and these regions on conventional balloons are often 1 cm in length or more. Indeed, the larger the balloon diameter, the longer the end cone, which creates a trade off between maximum effective length and maximum effective diameter. This trade off makes optimization of conventional structures problematic in interior structures with defined lengths, such as bone. [0011]
  • Vertebroplasty is a recent surgical technique which uses the injection of a cement material into a collapsing vertebral body. Osteoporosis is the leading cause of vertebral fracture. Approximately 700,00 vertebral fractures occur annually in the United States. The procedure is performed to reinforce the fractured bone, alleviate chronic back and prevent further vertebral collapse. Vertebroplasty was developed in France in the 1980's but is relatively new in the United States and is presently available in only a few hospitals. [0012]
  • Deramond et al., “Percutaneous vertebroplasty with methyl-methacrylate: technique, method, results [abstract].” Radiology [0013] 1990;117 (suppl):352; among others, have described the percutaneous injection of PMMA into vertebral compression fractures by the transpedicular or paravertebral approach under CT and/or fluoroscopic guidance. Percutaneous vertebroplasty is desirable from the standpoint that it is minimally invasive, compared to the alternative of surgically exposing the hard tissue site to be supplemented with PMMA or other filler.
  • The general procedure for performing percutaneous vertebroplasty includes the percutaneous injection of PMMA or other bone implant material into the damaged or fractured bone tissue of a vertebra During injection of the bone implant material, fluoroscopic imaging or another imaging technique is used to track the path that the bone implant material takes as well as its final position upon implantation. Contrast agents such as barium sulfate powder are often used to aid the visibility of the bone implant material by imaging. This type of contrast agent is fairly effective once a given mass of the mixture of it with the bone implant material has accumulated at an implant site. However, for purposes of tracking the flow and leading edge surfaces of a bone implant material during injection, or for viewing small volumes of the implant material, the contrast agents presently used are inadequate. [0014]
  • As an adjunct to the balloon devices, a material which solidifies (e.g. by polymerization) is inserted into a balloon, forming a solid which has a new shape. This material can have two-component cement properties, and can be formed of epoxy or polymer. The material is compressed into the balloon and solidifies by change in temperature or humidity. [0015]
  • SUMMARY OF THE INVENTION
  • One aspect of the invention provides a device for deployment into an interior body region comprising a grooved director tube, which carries an expandable structure. The structure preferably a balloon is adapted to assume a collapsed geometry for deployment into the vertebra and an expanded geometry for use within the vertebra. The grooved director extends along a first axis and the geometry of the balloon extends outward from that axis against the vertebra walls restoring the same to their original configuration. This permits sequential deployment of the balloon in a symmetric fashion with respect to the natural axis of a targeted interior body region, even when the groove director is not aligned with the natural axis. [0016]
  • After the vertebra walls have been expanded by the balloon, a slurry or paste of biocompatible filler material is placed inside the vertebra. The hard tissue implant material may be mixed with the radio paque particles and include hydroxy apatite, various formulations of biocompatible calcium phosphates, biocompatible calcium sulfates, demineralized and/or mineralized bone particles, polymer based implants including polyglycolic acid and/or polylactic acid compounds, collagen and/or collagen derivative preparations alone or in combination with other biomaterials, chitin and/or chitosan preparations, bioglasses including oxides of silicon, sodium, calcium and phosphorous and combinations thereof, and other known materials which are acceptable for use as hard tissue implant materials including osteogenic and osteoinductive compositions, and combinations thereof. [0017]
  • It is an object of the present invention to provide a device which is able to guide, concentrate, control and improve the force of balloon compression in a collapsed vertebral body. [0018]
  • It is another object of the invention to provide a device which can be rotated in the vertebral body to provide selected areas of force against cancellous bone and cortical bone of the vertebral body. [0019]
  • It is yet another object of the invention to provide a device to deliver bone graft material or cement into a vertebral body after expansion of same. [0020]
  • In the accompanying drawings, there is shown an illustrative embodiment of the invention from which these and other objectives, novel features and advantages will be readily apparent.[0021]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of the inventive apparatus inserted into a sectional view of the damaged vertebra; [0022]
  • FIG. 2 is an enlarged perspective view of the grooved director in a vertebral body prior to expansion of the balloon; [0023]
  • FIG. 3 is a sectional view of an injection of the grooved director into the interior volume of the vertebra and the balloon expanded against a wall of the damaged vertebra; and [0024]
  • FIG. 4 is a cross sectional view of a restored vertebra filled with implant material with the grooved director still inserted in the vertebra. [0025]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The best mode and the preferred embodiment of the inventive grooved director and balloon apparatus is shown generally in FIGS. [0026] 1-4.
  • The invention is primarily directed toward the treatment of vertebrae of the [0027] spine 10. The geometry of the vertebral body 20 generally includes an exterior formed from compact cortical bone 30 and an interior volume 32 of reticulated cancellous, or spongy, bone 34 (also called medullary bone or trabecular bone). The vertebrae are separated from each other by discs 22.
  • The spinal canal [0028] 36 (see FIG. 4), is located on the posterior (i.e., back) side of each vertebra 20. The spinal cord (not shown) passes through the spinal canal 36. The vertebral arch 38 surrounds the spinal canal 36. The spinous process 37 extends from the rear of the vertebral arch 38. Left and right pedicles 39 of the vertebral arch 38 adjoin the vertebral body 21.
  • The grooved [0029] director 40 can be inserted into bone in accordance with the teachings of the above described U.S. Pat. Nos. 4,969,888 and 5,108,404 which are incorporated herein by reference. For a vertebral body 21, access into the interior volume 32 can be accomplished, for example, by drilling an access portal through either pedicle. This is called a transpedicular approach and the access portal aligns the axis of the grooved director tube 40 obliquely with respect to all natural axes of the vertebral body 21.
  • The grooved [0030] director 40 is constructed of a single piece of stainless steel or plastic tube 42 with a disal threaded end 43 which can be screwed into connector member 54 and a proximal cutout end 44 having a blunt rounded edged tip 45. The cutout end 44 defines a groove 46 which forms the seat for the balloon. The groove 46 runs along the upper surface of the end 44 and leads to a lumen 48 which is formed by and extends through the tube 42. The intersection of the groove 46 and lumen 48 is marked by a beveled cut away section 47.
  • A balloon [0031] 50 is moveably mounted within the lumen 48 of the groove director for expansion within the interior volume 32 of the vertebra 20 away from the axis of the grooved director 50 compressing cancerous bone 34 and pushing the cortical walls outward to form an internal cavity approximating the original shape. The material of the balloon 50 can be selected according to the therapeutic objectives of its use. For example, materials including vinyl, nylon, polyethylenes, ionomer, polyurethane, and polyethylenetetraphthalate (PET) can be used. The thickness of the structure is typically in the range of 1 micron to 20 microns of thicknesses that can withstand pressures of up to 250-750 psi. The thickness of the structure is typically in the range of 1 micron to 20 microns of thicknesses that can withstand pressures of up to 250-750 psi.
  • If desired, the material for the balloon structure can be selected to exhibit elastic properties, like latex or less elastic properties, like silicone. Using expandable bodies with generally elastic or generally semi-elastic properties, the physician monitors the expansion to assure that over-expansion and wall failure do not occur. [0032]
  • The asymmetric compaction of [0033] cancellous bone 34 in the interior volume 32 may also exert unequal or nonuniform interior forces upon cortical bone 30, making it difficult to elevate or push broken and compressed bone. The grooved director is rotated 90° or a lesser or greater amount and the process is repeated until the walls of the vertebrae are reestablished to its essentially original form.
  • The grooved director is kept in a fixed position with respect to the vertebrae being operated on by locking mechanism [0034] 60 which can be attached via a frame to the operating table. When the balloon is inflated the anti-torque locating mechanism will inhibit downward displacement of the grooved director and protect the pedicle. The locking mechanism is constructed with a housing 62 provided with a through going bore 64 into which the tubular shaped grooved director member 40 is inserted until the connector housing 54 located on the distal end of the grooved director member 40 abuts the locking mechanism housing 62. A partially threaded bore 65 (not shown) is cut into the housing 62 transverse to and intersecting the through going bore 64. A locking handle member 66 with a threaded distal end 67 (not shown) is mounted in the partially threaded bore 65 and upon rotation by a handle portion 68 engages the tubular body of the grooved director holding the same in a locked position within the locking mechanism housing 62 so that the same cannot move. This allows direction of the balloon away from its seat on the upper surface of end 44 and groove 46 of the grooved director 40 in a predetermined selected direction toward a particular segment of the vertebrae wall. A pump assembly 70 is connected to the distal end of the tubular groove body to supply fluid to the balloon to inflate the balloon inside the vertebrae. The pump assembly 70 is constructed with a syringe body 72 having a handle 73 with a plunger 74 mounted therein, a pressure gauge 76 mounted at the distal end of the syringe body, flexible tubing 78 leading from the distal tip of the syringe body and a connector tip 80 located on the distal end of the flexible tubing which can be snap fit by a bayonet or screw thread means into the connector member 54. The plunger 74 can be a standard straight cylindrical wall type or can have external threads which provide a screw in pressure on the fluid container in the body of the syringe. Thus the surgeon is able to determine the pressure being applied to the inside of the vertebrae by viewing the reading on the gauge 76.
  • In operation, the grooved director with the built-in balloon is inserted into the body of the compressed vertebra through a pedicular or extrapedicular approach. Preferably, after the balloon is inserted into the bone, the balloon is filled with non-compressible fluid. In the preferred embodiments, the balloon has a valve to prevent fluid from escaping (while also allowing fluid to be released, once desired). Upon filling the balloon with fluid, it expands so that it substantially fills the portion of the intramedullar cavity which is to be expanded. Preferably, an X-ray or fluoroscopy or other imaging technique is taken of the bone with the balloon inside (preferably while the balloon is still in a partially or non-expanded state). The balloon's internal structure is then observed in the image to ascertain that the balloon is properly positioned, before fully inflating the balloon with the hydraulic fluid. In particular, the grooved director will show up on the image so that proper positioning can be verified. The grooved [0035] director 40 is positioned and aimed in a direction under the compressed superior end plate of the vertebral body. The balloon 50 inside of the grooved director is extended and inflated or if it is fixed to lie on the face 44 it is inflated so that the force and direction of balloon inflation reduces and restores the height of the fractured vertebra. The balloon is deflated and the grooved director is circumferentially rotated intermittently inflating the balloon at the same pressure or varying pressures if such is deemed necessary. This creates a symmetrical space within the center of the vertebral body. The balloon is deflated and the grooved director device with balloon is removed from the trochar insertion sheath. A grooved director without balloon is then inserted through the trochar insertion sheath into the space within the center of the vertebral body.
  • A syringe filled with bone graft substitute pellets of demineralized bone pellets such as those manufactured by Musculoskeletal Transplant Foundation, Osteotech Inc. or non allograft bone graft substitute material such as the material OSTEOSET, a surgical grade calcium sulfate manufactured by Wright Medical Inc. are inserted through the grooved director and packed into the space within the center of the vertebral body followed by an injection of ALLOMATRIX putty manufactured by Wright Medical, Inc., DBX putty or gel, Manufactured by Musculoskeletal Transplant Foundation or GRAFTON putty or gel manufactured by Osteotech Inc. to seal the graft in place. A trochar insertion sheath which has previously been inserted in the initial drilled opening is removed and a cap or bone cement is used to fill the insertion entrance. [0036]
  • In addition to the materials listed above, hard tissue implant materials that may be used include hydroxyapatite, various formulations of biocompatible calcium phosphates, biocompatible calcium sulfates, demineralized and/or mineralized bone particles, polymer based implants including polyglycolic acid and/or polylactic acid compounds, collagen and/or collagen derivative preparations alone or in combination with other biomaterials, chitin and/or chitosan preparations, bioglasses including oxides of silicon, sodium, calcium and phosphorous and combinations thereof. [0037]
  • If desired a percutaneous injection of polymethyl methacrylate (PMMA) in a slurry state can be percutaneously injected. The slurry is prepared just prior to the injection by mixing a powder component, e.g., methyl methacrylate polymer, with a liquid component, e.g., methylmethacrylate monomer. Additional components such as copolymers (e.g., styrene,), accelerators (e.g., N,N-imethyl paratoluidene), initiators (e.g., benzoyl peroxide), stabilizers (e.g., hydroquinone) and/or antibiotics (e.g., Tobramycin) may be included in the slurry. The above are only examples of the many additives that are currently used in for implantation, and the other known additives are acceptable for the purposes of the present invention. [0038]
  • In another embodiment of the present invention, the balloon future is also preferably inserted using a grooved director. After the placement of the grooved director in the intramedullary space, a sleeve can be inserted therein, through which the balloon is inserted. The balloon is positioned and inflated to fixated with a biocompatible solidifying fluid under pressure from an external source, causing the balloon to expand radially outward to expand and fixate the walls of the vertebra. The grooved director is removed, the balloon is then sealed, and the external fluid source is disconnected and detached from the inflating device leaving the implanted filled balloon. [0039]
  • The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention should not be construed as limited to the particular embodiments which have been described above. Instead, the embodiments described here should be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the scope of the present invention as defined by the following claims: [0040]

Claims (25)

What I claim is:
1. A grooved director apparatus to aid in the insertion of a balloon catheter into a vertebra comprising an elongated substantially rigid tubular member defining a longitudinal axis with a closed distal tip and an open proximal end portion, an inflatable balloon mounted in said tubular member, said tubular member being cut away from a point along the longitudinal axis to said closed distal tip forming a balloon seat allowing directed expansion of said balloon away from said longitudinal axis toward an area to which compression is to be applied allowing guidance and control of the force of expansion in the vertebra, anchor means mounted to said tubular member keeping said tubular member in a fixed position when said balloon is inflated while allowing selective circumferential rotation of said tubular member when said balloon is deflated and pump means fluidly connected to said rigid tubular member to apply selected fluid pressure to said balloon.
2. A grooved director apparatus as claimed in claim 1 wherein said tubular member is stainless steel.
3. A grooved director apparatus as claimed in claim 1 wherein said pump means comprises a syringe body, a plunger mounted in said syringe body, a pressure gauge mounted at the distal end of said syringe body and a connector conduit leading from a tip at the end of said syringe body to allow fluid communication with said balloon.
4. A grooved director apparatus as claimed in claim 1 wherein said anchor means comprises a housing defining a through going bore for receiving said rigid tubular member, a second bore intersecting said through going bore and a locking member mounted in said second bore adapted to engage said rigid tubular member and hold the same in a locked position.
5. A grooved director apparatus as claimed in claim 3 wherein said syringe body has a cylindrical housing and said plunger has a cylindrical body, said syringe body being provided with locking means to lock said plunger in a fixed position within said body.
6. A grooved director apparatus as claimed in claim 3 wherein said syringe body has a cylindrical housing with internal threading, and said plunger has a cylindrical body with external threading.
7. A grooved director apparatus as claimed in claim 1 wherein said syringe housing includes a handle mechanism comprising at least two wing members extending outward from the syringe housing to provide easy grasping of the syringe housing.
8. A grooved director apparatus as claimed in claim 1 wherein said pump means includes a flexible tubing connected to the distal end of a syringe to transport flowable material from said syringe and a locking tip secured to the distal end of said flexible tubing, said locking tip being a adapted to be locked in a fixed position relative to said rigid groove director.
9. A grooved director apparatus as claimed in claim 8 wherein said locking tip comprises a bayonet type tip.
10 A grooved director apparatus as claimed in claim 8 wherein said locking tip comprises a tip member with external threads.
11. A grooved director apparatus to aid in the insertion of a balloon catheter into a vertebra comprising an elongated substantially rigid tubular member defining a longitudinal axis with a closed distal tip and an open proximal end portion, an inflatable balloon moveably mounted in said tubular member, said tubular member being cut away from a point along the longitudinal axis to said closed distal tip forming a balloon seat allowing directed expansion of said balloon away from said longitudinal axis toward an area to which compression is to be applied allowing guidance and control of the force of expansion in the vertebra, anchor means mounted to said tubular member keeping said tubular member in a fixed position when said balloon is inflated while allowing selective circumferential rotation of said tubular member when said balloon is deflated and pump means fluidly connected to said rigid tubular member to apply selected fluid pressure to said balloon, said pump means comprising a syringe body, a plunger mounted in said syringe body, a pressure gauge mounted at the distal end of said syringe body and a connector conduit leading from a tip at the end of said syringe body to provide fluid communication with said balloon.
12. A grooved director apparatus as claimed in claim 11 wherein said balloon includes a guide wire
13. A grooved director apparatus as claimed in claim 11 wherein said connector conduit comprises a flexible tubing mounted to said tip of said syringe to transport flowable material from said syringe and a locking tip mounted to a distal end of said flexible tubing, said locking tip being a adapted to be locked in a fixed position relative to said rigid groove director.
14. A grooved director apparatus as claimed in claim 11 including a connector member mounted to a distal end of said grooved director and adapted to hold a locking tip of said connector conduit.
15. A grooved director apparatus as claimed in claim 11 wherein said anchor means comprises a housing defining a through going bore for receiving said rigid tubular member, a second bore intersecting said through going bore and a locking member mounted in said second bore adapted to engage said rigid tubular member and hold the same in a locked position.
16. A method of expanding a compressed vertebra to substantially its original natural configuration comprising the steps of:
a) inserting a grooved director with a built in balloon into the body of a compressed vertebra through a hole cut through said vertebra;
b) positioning said grooved director in a direction under a compressed superior end plate of said vertebra;
c) inflating said balloon carried by said grooved director away from the axis of the grooved director so that the force and direction of balloon inflation reduces and restores the height of the fractured compressed vertebra;
d) deflating said balloon and rotating said grooved director so that said balloon seat faces a direction different from the initial placement direction;
e) inflating said balloon to create a symmetrical space within the center of the vertebral body;
f) deflating said balloon and removing said grooved director device with built in balloon;
g) reinserting said grooved director into the space withing the center of the vertebral body;
h) inserting osteogenic material through the grooved director into a space within the center of the vertebral body; and
i) removing said grooved director from said vertebral body and sealing the osteogenic bone material within said vertebral body.
17. A method as claimed in claim 16 wherein said osteogenic material is demineralized bone.
18. A method of expanding a compressed vertebra to approximately it's original natural shape comprising the steps of:
a) inserting a grooved director with the built-in balloon into the body of the compressed vertebrae through a trochar insertion sheath;
b) positioning a grooved director with a built in balloon in a direct ion under a compressed superior end plate of the vertebral body;
c) inflating said balloon so that the force and direction of balloon inflation reduces and restores the height of the fractured vertebra;
d) deflating said balloon and rotating said grooved director to a new position within said factured vertebra and inflating said balloon to create a symmetrical space within the center of the vertebral body; and
e) deflating said balloon and removing the grooved director device with balloon from the trochar insertion sheath.
19. The method of claim 18 including the additional steps of inserting a grooved director without balloon through the trochar insertion sheath into the space within the center of the vertebral body depositing a biocompatible material into the vertebrae body.
20. The method of claim 19 wherein said biocompatible material consists of a group selected from hydroxyapatite, various formulations of biocompatible calcium phosphates, biocompatible calcium sulfates, demineralized and/or mineralized bone particles, polymer based implants including polyglycolic acid and/or polylactic acid compounds, collagen and/or collagen derivative preparations alone or in combination with other biomaterials, chitin and/or chitosan preparations, bioglasses including oxides of silicon, sodium, calcium and phosphorous and combinations thereof.
21. The method of claim 18 wherein step d) is repeated a plurality of times
22. The method of claim 18 wherein said grooved director with built in balloon is inserted into the body of the compressed vertebrae through a pedicular approach
23. The method of claim 18 wherein said grooved director with built in balloon is inserted into the body of the compressed vertebra through an extrapedicular approach.
24. A method of expanding a compressed vertebra comprising the steps of:
a) inserting a grooved director with the built-in balloon into the body of the compressed vertebrae through a trochar insertion sheath;
b) positioning a grooved director with a built in balloon in a direction under a compressed superior end plate of the vertebral body;
c) inflating said balloon so that the force and direction of balloon inflation reduces and restores the height of the fractured vertebra;
d) deflating said balloon and rotating said grooved director to a new position within said fractured vertebra and inflating said balloon to create a symmetrical space within the center of the vertebral body;
e) deflating said balloon and removing the grooved director device with balloon is removed from the trochar insertion sheath;
f) inserting a grooved director without balloon through the trochar insertion sheath into the space within the center of the vertebral body' and
g) depositing an osteogenic material into the vertebra body.
25. The method of claim 24 wherein said osteogenic material consists of a group selected from hydroxyapatite, various formulations of biocompatible calcium phosphates, biocompatible calcium sulfates, demineralized and/or mineralized bone particles, collagen and/or collagen derivative preparations alone or in combination with other biomaterials, chitin and/or chitosan preparations.
US10/640,647 2001-09-13 2003-08-14 Spinal grooved director with built in balloon and method of using same Abandoned US20040049202A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/640,647 US20040049202A1 (en) 2001-09-13 2003-08-14 Spinal grooved director with built in balloon and method of using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/950,581 US6706069B2 (en) 2001-09-13 2001-09-13 Spinal grooved director with built in balloon
US10/640,647 US20040049202A1 (en) 2001-09-13 2003-08-14 Spinal grooved director with built in balloon and method of using same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/950,581 Division US6706069B2 (en) 2001-09-13 2001-09-13 Spinal grooved director with built in balloon

Publications (1)

Publication Number Publication Date
US20040049202A1 true US20040049202A1 (en) 2004-03-11

Family

ID=25490633

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/950,581 Expired - Lifetime US6706069B2 (en) 2001-09-13 2001-09-13 Spinal grooved director with built in balloon
US10/640,647 Abandoned US20040049202A1 (en) 2001-09-13 2003-08-14 Spinal grooved director with built in balloon and method of using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/950,581 Expired - Lifetime US6706069B2 (en) 2001-09-13 2001-09-13 Spinal grooved director with built in balloon

Country Status (1)

Country Link
US (2) US6706069B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161858A1 (en) * 2000-04-11 2003-08-28 Lars Lidgren Injectable bone mineral substitute material
US20040048947A1 (en) * 2000-07-17 2004-03-11 Lars Lidgren Composition for an injectable bone mineral substitute material
US20040267269A1 (en) * 2001-06-01 2004-12-30 Middleton Lance M. Tissue cavitation device and method
US20050010297A1 (en) * 2003-05-08 2005-01-13 Kuros Biosurgery Ag Balloon technologies for tissue repair
US20050119746A1 (en) * 2001-12-20 2005-06-02 Lars Lidgren Bone mineral substitute
US20070041906A1 (en) * 2003-03-05 2007-02-22 Lars Lidgren Bone substitute composition
US20070123877A1 (en) * 2005-11-15 2007-05-31 Aoi Medical, Inc. Inflatable Device for Restoring Anatomy of Fractured Bone
US20070161943A1 (en) * 2003-11-11 2007-07-12 Lars Lidgren Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method
US20070217282A1 (en) * 2004-06-22 2007-09-20 Bone Support Ab Device for Producing a Hardenable Mass
US20080071279A1 (en) * 2006-06-07 2008-03-20 Stryker Spine Collet-activated distraction wedge inserter
US20080114364A1 (en) * 2006-11-15 2008-05-15 Aoi Medical, Inc. Tissue cavitation device and method
US20080294167A1 (en) * 2007-05-21 2008-11-27 Brian Schumacher Articulating cavitation device
US20100233235A1 (en) * 2009-02-18 2010-09-16 Matheny Robert G Compositions and methods for preventing cardiac arrhythmia
US20110066237A1 (en) * 2007-12-18 2011-03-17 Matheny Robert G Prosthetic tissue valve
US8142462B2 (en) 2004-05-28 2012-03-27 Cavitech, Llc Instruments and methods for reducing and stabilizing bone fractures
US8147517B2 (en) 2006-05-23 2012-04-03 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
US8221420B2 (en) 2009-02-16 2012-07-17 Aoi Medical, Inc. Trauma nail accumulator
CN102715947A (en) * 2012-07-03 2012-10-10 张春霖 Following type spine self-positioning navigation operation machine hand and positioning method thereof
US8679176B2 (en) 2007-12-18 2014-03-25 Cormatrix Cardiovascular, Inc Prosthetic tissue valve
US8696744B2 (en) 2011-05-27 2014-04-15 Cormatrix Cardiovascular, Inc. Extracellular matrix material valve conduit and methods of making thereof
WO2015153758A1 (en) * 2014-04-03 2015-10-08 Suddaby Loubert S Percutaneous method for aligning a spine using deployable bone anchors
US9180137B2 (en) 2010-02-09 2015-11-10 Bone Support Ab Preparation of bone cement compositions
US9220554B2 (en) 2010-02-18 2015-12-29 Globus Medical, Inc. Methods and apparatus for treating vertebral fractures
US9968379B2 (en) 2012-10-04 2018-05-15 Loubert S. Suddaby Subcutaneous implantable device for gradually aligning a spine and subcutaneous implantable device for gradually lengthening a bone
US10022153B2 (en) 2012-10-04 2018-07-17 Loubert S. Suddaby Percutaneous method for aligning a spine using deployable bone anchors
US10294107B2 (en) 2013-02-20 2019-05-21 Bone Support Ab Setting of hardenable bone substitute
CN112294415A (en) * 2019-07-31 2021-02-02 中央医疗器材股份有限公司 Vertebral fixing device

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248110B1 (en) * 1994-01-26 2001-06-19 Kyphon, Inc. Systems and methods for treating fractured or diseased bone using expandable bodies
US20030229372A1 (en) * 1994-01-26 2003-12-11 Kyphon Inc. Inflatable device for use in surgical protocols relating to treatment of fractured or diseased bone
EP1464293B1 (en) * 1994-01-26 2007-05-02 Kyphon Inc. Improved inflatable device for use in surgical methods relating to fixation of bone
US20060100635A1 (en) * 1994-01-26 2006-05-11 Kyphon, Inc. Inflatable device for use in surgical protocol relating to fixation of bone
CA2594492A1 (en) 1999-03-07 2000-09-14 Active Implants Corporation Method and apparatus for computerized surgery
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
JP4247519B2 (en) 1999-08-18 2009-04-02 イントリンジック セラピューティックス インコーポレイテッド Apparatus and method for nucleus augmentation and retention
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
US7998213B2 (en) 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US7507243B2 (en) * 1999-08-18 2009-03-24 Gregory Lambrecht Devices and method for augmenting a vertebral disc
US7553329B2 (en) * 1999-08-18 2009-06-30 Intrinsic Therapeutics, Inc. Stabilized intervertebral disc barrier
US7094258B2 (en) 1999-08-18 2006-08-22 Intrinsic Therapeutics, Inc. Methods of reinforcing an annulus fibrosis
US6821276B2 (en) * 1999-08-18 2004-11-23 Intrinsic Therapeutics, Inc. Intervertebral diagnostic and manipulation device
EP1624832A4 (en) 1999-08-18 2008-12-24 Intrinsic Therapeutics Inc Devices and method for augmenting a vertebral disc nucleus
US6964674B1 (en) * 1999-09-20 2005-11-15 Nuvasive, Inc. Annulotomy closure device
ES2262642T3 (en) * 2000-04-05 2006-12-01 Kyphon Inc. DEVICE FOR THE TREATMENT OF FRACTURED AND / OR SICK BONES.
AU2001253183B2 (en) * 2000-04-07 2006-07-27 Kyphon Sarl Insertion devices and method of use
US7815649B2 (en) * 2000-04-07 2010-10-19 Kyphon SÀRL Insertion devices and method of use
US10327880B2 (en) 2000-04-14 2019-06-25 Attenuex Technologies, Inc. Attenuation device for use in an anatomical structure
US8574146B2 (en) 2000-04-14 2013-11-05 Attenuex Technologies, Inc. Implant with high vapor pressure medium
KR100972246B1 (en) * 2000-06-27 2010-07-23 키폰 에스에이알엘 Systems and methods for injecting flowable materials into bones
AU2583702A (en) * 2000-10-25 2002-05-06 Kyphon Inc Systems and methods for reducing fractured bone using a fracture reduction cannula
US6632235B2 (en) * 2001-04-19 2003-10-14 Synthes (U.S.A.) Inflatable device and method for reducing fractures in bone and in treating the spine
DE10154163A1 (en) * 2001-11-03 2003-05-22 Advanced Med Tech Device for straightening and stabilizing the spine
US6960215B2 (en) * 2002-05-08 2005-11-01 Boston Scientific Scimed, Inc. Tactical detachable anatomic containment device and therapeutic treatment system
CA2496804A1 (en) * 2002-08-27 2004-03-11 Sdgi Holdings, Inc. Systems and methods for intravertebral reduction
US7488337B2 (en) * 2002-09-30 2009-02-10 Saab Mark A Apparatus and methods for bone, tissue and duct dilatation
US9782572B2 (en) 2002-09-30 2017-10-10 Nordson Corporation Apparatus and methods for treating bone structures, tissues and ducts using a narrow gauge cannula system
WO2004064673A2 (en) * 2003-01-17 2004-08-05 Psinergi Corporation Artificial nucleus pulposus and method of injecting same
DE60335037D1 (en) 2003-03-14 2010-12-30 Depuy Spine Inc HYDRAULIC DEVICE FOR BONE CEMENT INJECTION IN PERCUTANEOUS VERTEBROPLASTY
US7306610B2 (en) * 2003-03-21 2007-12-11 Cana Lab Corporation Method and device for forming a hardened cement in a bone cavity
WO2004084742A1 (en) * 2003-03-24 2004-10-07 Theken Surgical Llc Spinal implant adjustment device
US8066713B2 (en) * 2003-03-31 2011-11-29 Depuy Spine, Inc. Remotely-activated vertebroplasty injection device
TW587932B (en) * 2003-05-21 2004-05-21 Guan-Gu Lin Removable animal tissue filling device
TWI235055B (en) * 2003-05-21 2005-07-01 Guan-Gu Lin Filling device capable of removing animal tissues
US8415407B2 (en) 2004-03-21 2013-04-09 Depuy Spine, Inc. Methods, materials, and apparatus for treating bone and other tissue
ATE499910T1 (en) 2003-06-20 2011-03-15 Intrinsic Therapeutics Inc DEVICE FOR DELIVERING AN IMPLANT THROUGH AN ANNUAL DEFECT IN A DISC
DE112004001370B8 (en) * 2003-07-25 2010-06-10 Impliant Ltd. Elastomeric nucleus replacement
WO2005030034A2 (en) * 2003-09-26 2005-04-07 Depuy Spine, Inc. Device for delivering viscous material
US7632294B2 (en) * 2003-09-29 2009-12-15 Promethean Surgical Devices, Llc Devices and methods for spine repair
TW200511970A (en) * 2003-09-29 2005-04-01 Kwan-Ku Lin A spine wrapping and filling apparatus
US7452351B2 (en) * 2004-04-16 2008-11-18 Kyphon Sarl Spinal diagnostic methods and apparatus
US7824390B2 (en) 2004-04-16 2010-11-02 Kyphon SÀRL Spinal diagnostic methods and apparatus
US20050245938A1 (en) * 2004-04-28 2005-11-03 Kochan Jeffrey P Method and apparatus for minimally invasive repair of intervertebral discs and articular joints
US7749268B2 (en) 2004-05-26 2010-07-06 Warsaw Orthopedic, Inc. Methods for treating the spine
US20060095138A1 (en) * 2004-06-09 2006-05-04 Csaba Truckai Composites and methods for treating bone
FR2871679A1 (en) * 2004-06-18 2005-12-23 Charles Abulker Percutaneous vertebral implant, useful for straightening collapsed disks and consolidating damaged intervertebral spaces, comprises balloon open at one end for threading on a carrier
CN106963464B (en) 2004-07-30 2019-11-05 德普伊新特斯产品有限责任公司 Surgical set
EP1793769A4 (en) 2004-09-02 2009-06-24 Crosstrees Medical Inc Device and method for distraction of the spinal disc space
US20060079838A1 (en) * 2004-10-08 2006-04-13 Walker Steven C Movable Balloon anchor for medical devices
US20060079845A1 (en) * 2004-10-08 2006-04-13 Eben Howard And Pamela A. Howard Movable inflatable anchor for medical devices
US20060085073A1 (en) * 2004-10-18 2006-04-20 Kamshad Raiszadeh Medical device systems for the spine
US7678116B2 (en) * 2004-12-06 2010-03-16 Dfine, Inc. Bone treatment systems and methods
US7559932B2 (en) * 2004-12-06 2009-07-14 Dfine, Inc. Bone treatment systems and methods
US7682378B2 (en) * 2004-11-10 2010-03-23 Dfine, Inc. Bone treatment systems and methods for introducing an abrading structure to abrade bone
US7799078B2 (en) * 2004-11-12 2010-09-21 Warsaw Orthopedic, Inc. Implantable vertebral lift
US8562607B2 (en) * 2004-11-19 2013-10-22 Dfine, Inc. Bone treatment systems and methods
US7717918B2 (en) 2004-12-06 2010-05-18 Dfine, Inc. Bone treatment systems and methods
US7722620B2 (en) 2004-12-06 2010-05-25 Dfine, Inc. Bone treatment systems and methods
US20060122614A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US8070753B2 (en) * 2004-12-06 2011-12-06 Dfine, Inc. Bone treatment systems and methods
PE20060861A1 (en) * 2005-01-07 2006-10-25 Celonova Biosciences Inc IMPLANTABLE THREE-DIMENSIONAL BONE SUPPORT
US20070049849A1 (en) * 2005-05-24 2007-03-01 Schwardt Jeffrey D Bone probe apparatus and method of use
US20070042326A1 (en) * 2005-06-01 2007-02-22 Osseous Technologies Of America Collagen antral membrane expander
US7628800B2 (en) * 2005-06-03 2009-12-08 Warsaw Orthopedic, Inc. Formed in place corpectomy device
US20090254132A1 (en) * 2005-07-07 2009-10-08 Scribner Robert M Devices and methods for the treatment of bone fracture
US20070010846A1 (en) * 2005-07-07 2007-01-11 Leung Andrea Y Method of manufacturing an expandable member with substantially uniform profile
US9381024B2 (en) 2005-07-31 2016-07-05 DePuy Synthes Products, Inc. Marked tools
US9918767B2 (en) 2005-08-01 2018-03-20 DePuy Synthes Products, Inc. Temperature control system
US9066769B2 (en) 2005-08-22 2015-06-30 Dfine, Inc. Bone treatment systems and methods
US8540723B2 (en) 2009-04-14 2013-09-24 Dfine, Inc. Medical system and method of use
US8777479B2 (en) 2008-10-13 2014-07-15 Dfine, Inc. System for use in bone cement preparation and delivery
US20090012525A1 (en) * 2005-09-01 2009-01-08 Eric Buehlmann Devices and systems for delivering bone fill material
WO2007038476A2 (en) 2005-09-26 2007-04-05 Atteneux Technologies, Inc. Pressure attenuation device
US20070093899A1 (en) * 2005-09-28 2007-04-26 Christof Dutoit Apparatus and methods for treating bone
US8360629B2 (en) 2005-11-22 2013-01-29 Depuy Spine, Inc. Mixing apparatus having central and planetary mixing elements
CN101312696B (en) * 2005-11-23 2010-12-22 十字桅杆药品公司 Devices for the treatment of bone fracture
US20070135921A1 (en) * 2005-12-09 2007-06-14 Park Kee B Surgical implant
US20070162132A1 (en) 2005-12-23 2007-07-12 Dominique Messerli Flexible elongated chain implant and method of supporting body tissue with same
US7901409B2 (en) * 2006-01-20 2011-03-08 Canaveral Villegas Living Trust Intramedullar devices and methods to reduce and/or fix damaged bone
US20070233258A1 (en) * 2006-02-28 2007-10-04 Zimmer Spine, Inc. Vertebroplasty- device and method
US20070232905A1 (en) * 2006-04-04 2007-10-04 Francis Tom J Unconstrained Balloon Sizer
AU2007297097A1 (en) 2006-09-14 2008-03-20 Depuy Spine, Inc. Bone cement and methods of use thereof
EP3095511A1 (en) 2006-10-19 2016-11-23 Depuy Spine Inc. Sealed container
US8696679B2 (en) * 2006-12-08 2014-04-15 Dfine, Inc. Bone treatment systems and methods
US20080188858A1 (en) * 2007-02-05 2008-08-07 Robert Luzzi Bone treatment systems and methods
US20080243122A1 (en) * 2007-03-29 2008-10-02 Kohm Andrew C Apparatuses and methods for bone screw augmentation
ES2438999T3 (en) * 2007-04-03 2014-01-21 Dfine, Inc. Bone treatment systems
WO2008137428A2 (en) 2007-04-30 2008-11-13 Dfine, Inc. Bone treatment systems and methods
US9597118B2 (en) 2007-07-20 2017-03-21 Dfine, Inc. Bone anchor apparatus and method
WO2009015238A1 (en) * 2007-07-23 2009-01-29 Kamshad Raiszadeh Drug delivery device and method
US20110196492A1 (en) 2007-09-07 2011-08-11 Intrinsic Therapeutics, Inc. Bone anchoring systems
EP2195087A1 (en) * 2007-09-14 2010-06-16 Crosstrees Medical, Inc. Material control device for inserting material into a targeted anatomical region
US20090088789A1 (en) * 2007-09-28 2009-04-02 O'neil Michael J Balloon With Shape Control For Spinal Procedures
US8597301B2 (en) * 2007-10-19 2013-12-03 David Mitchell Cannula with lateral access and directional exit port
KR101534242B1 (en) * 2007-11-16 2015-07-09 신세스 게엠바하 Porous containment device and associated method for stabilization of vertebral compression fractures
US9445854B2 (en) 2008-02-01 2016-09-20 Dfine, Inc. Bone treatment systems and methods
ES2483996T3 (en) * 2008-02-28 2014-08-08 Dfine, Inc. Bone treatment systems and methods
US9180416B2 (en) 2008-04-21 2015-11-10 Dfine, Inc. System for use in bone cement preparation and delivery
GB0813659D0 (en) 2008-07-25 2008-09-03 Smith & Nephew Fracture putty
US20100100114A1 (en) * 2008-10-20 2010-04-22 Berger J Lee Inflatable tissue elevator and expander
US8216185B2 (en) * 2008-10-20 2012-07-10 Berger J Lee Cannulated apertured grooved director
EP2416721B1 (en) * 2009-04-09 2013-07-10 Synthes GmbH Minimally invasive spine augmentation and stabilization system
US8403988B2 (en) 2009-09-11 2013-03-26 Depuy Spine, Inc. Minimally invasive intervertebral staple distraction devices
US9615933B2 (en) * 2009-09-15 2017-04-11 DePuy Synthes Products, Inc. Expandable ring intervertebral fusion device
US20110112507A1 (en) * 2009-11-10 2011-05-12 Carefusion 207, Inc. Curable material delivery systems and methods
WO2011075745A2 (en) * 2009-12-18 2011-06-23 Palmaz Scientific, Inc. Interosteal and intramedullary implants and method of implanting same
US9358372B2 (en) 2011-03-25 2016-06-07 Vention Medical Advanced Components, Inc. Apparatus and methods for accessing and dilating bone structures using a narrow gauge cannula
CA2845654C (en) * 2011-08-18 2016-09-13 Matthias Militz Expansion device for bone expansion and medical apparatus for bone expansion
US9788938B2 (en) * 2011-10-05 2017-10-17 The Regents Of The University Of Colorado, A Body Corporate Intraocular manipulator and related methods
EP2766076B1 (en) 2011-10-11 2018-12-19 Hospitech Respiration Ltd. Pressure regulating syringe and method therefor
US20130116556A1 (en) * 2011-11-05 2013-05-09 Custom Medical Applications Neural safety injection system and related methods
US8894563B2 (en) 2012-08-10 2014-11-25 Attenuex Technologies, Inc. Methods and systems for performing a medical procedure
US9539041B2 (en) 2013-09-12 2017-01-10 DePuy Synthes Products, Inc. Minimally invasive biomaterial injection system
US9592071B2 (en) 2014-10-27 2017-03-14 J. Lee Berger Grooved director with instrument guide
CN106618714B (en) * 2015-11-02 2020-08-25 山东冠龙医疗用品有限公司 Filling device for injecting bone filling material
CN106618713B (en) * 2015-11-02 2020-08-25 山东冠龙医疗用品有限公司 Filling device for injecting bone filling material
EP3228283B1 (en) 2016-04-07 2023-10-25 Howmedica Osteonics Corp. Surgical insertion instruments
US11213402B2 (en) 2017-01-11 2022-01-04 Loubert S. Suddaby Endoscopically implantable inflatable interbody fusion device
EP3456297B1 (en) * 2017-09-15 2023-10-04 Howmedica Osteonics Corp. Instruments for expandable interbody implants
CN108543110A (en) * 2018-04-19 2018-09-18 宁波诺丁汉新材料研究院有限公司 A kind of bone prosthetic material and preparation method thereof
CN109350266B (en) * 2018-11-11 2024-04-02 上海诚昌生物工程有限公司 Fixable inflatable balloon
WO2020163625A1 (en) 2019-02-07 2020-08-13 Solace Therapeutics, Inc. Pressure attenuation device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217903A (en) * 1977-12-29 1980-08-19 Witherow Ross O Drainage devices
US4313434A (en) * 1980-10-17 1982-02-02 David Segal Fracture fixation
US4969888A (en) * 1989-02-09 1990-11-13 Arie Scholten Surgical protocol for fixation of osteoporotic bone using inflatable device
US5423850A (en) * 1993-10-01 1995-06-13 Berger; J. Lee Balloon compressor for internal fixation of bone fractures
US5449344A (en) * 1992-06-18 1995-09-12 Merit Medical Systems, Inc. Syringe apparatus with pressure gauge and detachable timer
US5480400A (en) * 1993-10-01 1996-01-02 Berger; J. Lee Method and device for internal fixation of bone fractures
US5549679A (en) * 1994-05-20 1996-08-27 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5972015A (en) * 1997-08-15 1999-10-26 Kyphon Inc. Expandable, asymetric structures for deployment in interior body regions
US6167886B1 (en) * 1997-05-28 2001-01-02 Medi-Globe Vertriebs Gmbh Device for treatment of male and female urinary incontinence
US6241734B1 (en) * 1998-08-14 2001-06-05 Kyphon, Inc. Systems and methods for placing materials into bone
US6248110B1 (en) * 1994-01-26 2001-06-19 Kyphon, Inc. Systems and methods for treating fractured or diseased bone using expandable bodies
US6558350B1 (en) * 2000-06-20 2003-05-06 Applied Medical Resources Corp. Drainage catheter
US20030195518A1 (en) * 2000-02-16 2003-10-16 Cragg Andrew H. Methods and apparatus for performing therapeutic procedures in the spine
US6716216B1 (en) * 1998-08-14 2004-04-06 Kyphon Inc. Systems and methods for treating vertebral bodies
US6852095B1 (en) * 1997-07-09 2005-02-08 Charles D. Ray Interbody device and method for treatment of osteoporotic vertebral collapse

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217903A (en) * 1977-12-29 1980-08-19 Witherow Ross O Drainage devices
US4313434A (en) * 1980-10-17 1982-02-02 David Segal Fracture fixation
US4969888A (en) * 1989-02-09 1990-11-13 Arie Scholten Surgical protocol for fixation of osteoporotic bone using inflatable device
US5108404A (en) * 1989-02-09 1992-04-28 Arie Scholten Surgical protocol for fixation of bone using inflatable device
US5449344A (en) * 1992-06-18 1995-09-12 Merit Medical Systems, Inc. Syringe apparatus with pressure gauge and detachable timer
US5423850A (en) * 1993-10-01 1995-06-13 Berger; J. Lee Balloon compressor for internal fixation of bone fractures
US5480400A (en) * 1993-10-01 1996-01-02 Berger; J. Lee Method and device for internal fixation of bone fractures
US6248110B1 (en) * 1994-01-26 2001-06-19 Kyphon, Inc. Systems and methods for treating fractured or diseased bone using expandable bodies
US5549679A (en) * 1994-05-20 1996-08-27 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US6167886B1 (en) * 1997-05-28 2001-01-02 Medi-Globe Vertriebs Gmbh Device for treatment of male and female urinary incontinence
US6852095B1 (en) * 1997-07-09 2005-02-08 Charles D. Ray Interbody device and method for treatment of osteoporotic vertebral collapse
US5972015A (en) * 1997-08-15 1999-10-26 Kyphon Inc. Expandable, asymetric structures for deployment in interior body regions
US6716216B1 (en) * 1998-08-14 2004-04-06 Kyphon Inc. Systems and methods for treating vertebral bodies
US6241734B1 (en) * 1998-08-14 2001-06-05 Kyphon, Inc. Systems and methods for placing materials into bone
US20030195518A1 (en) * 2000-02-16 2003-10-16 Cragg Andrew H. Methods and apparatus for performing therapeutic procedures in the spine
US6558350B1 (en) * 2000-06-20 2003-05-06 Applied Medical Resources Corp. Drainage catheter

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161858A1 (en) * 2000-04-11 2003-08-28 Lars Lidgren Injectable bone mineral substitute material
US7972630B2 (en) 2000-04-11 2011-07-05 Bone Support Ab Injectable bone mineral substitute material
US20040048947A1 (en) * 2000-07-17 2004-03-11 Lars Lidgren Composition for an injectable bone mineral substitute material
US20080286331A1 (en) * 2000-07-17 2008-11-20 Bone Support Ab Composition for an injectable bone mineral substitute material
US7417077B2 (en) 2000-07-17 2008-08-26 Bone Support Ab Composition for an injectable bone mineral substitute material
US20040267269A1 (en) * 2001-06-01 2004-12-30 Middleton Lance M. Tissue cavitation device and method
US20050119746A1 (en) * 2001-12-20 2005-06-02 Lars Lidgren Bone mineral substitute
US8586101B2 (en) * 2001-12-20 2013-11-19 Bone Support Ab Bioresorbable bone mineral substitute comprising water-soluble X-ray contrast agent
US8420127B2 (en) 2003-03-05 2013-04-16 Bone Support Ab Bone substitute composition
US20070041906A1 (en) * 2003-03-05 2007-02-22 Lars Lidgren Bone substitute composition
US20050010297A1 (en) * 2003-05-08 2005-01-13 Kuros Biosurgery Ag Balloon technologies for tissue repair
US20070161943A1 (en) * 2003-11-11 2007-07-12 Lars Lidgren Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method
US20110087161A1 (en) * 2003-11-11 2011-04-14 Bone Support Ab Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method
US7935121B2 (en) 2003-11-11 2011-05-03 Bone Support Ab Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method
US8562634B2 (en) 2004-05-28 2013-10-22 Cavitech, Llc Instruments and methods for reducing and stabilizing bone fractures
US8142462B2 (en) 2004-05-28 2012-03-27 Cavitech, Llc Instruments and methods for reducing and stabilizing bone fractures
US20070217282A1 (en) * 2004-06-22 2007-09-20 Bone Support Ab Device for Producing a Hardenable Mass
US8662737B2 (en) 2004-06-22 2014-03-04 Bone Support Ab Device for producing a hardenable mass
US7938572B2 (en) 2004-06-22 2011-05-10 Bone Support Ab Device for producing a hardenable mass
US8297831B2 (en) 2004-06-22 2012-10-30 Bone Support Ab Device for producing a hardenable mass
US20070123877A1 (en) * 2005-11-15 2007-05-31 Aoi Medical, Inc. Inflatable Device for Restoring Anatomy of Fractured Bone
US8147517B2 (en) 2006-05-23 2012-04-03 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
US20080071279A1 (en) * 2006-06-07 2008-03-20 Stryker Spine Collet-activated distraction wedge inserter
US8303601B2 (en) 2006-06-07 2012-11-06 Stryker Spine Collet-activated distraction wedge inserter
US20080114364A1 (en) * 2006-11-15 2008-05-15 Aoi Medical, Inc. Tissue cavitation device and method
US8353911B2 (en) 2007-05-21 2013-01-15 Aoi Medical, Inc. Extendable cutting member
US20080294167A1 (en) * 2007-05-21 2008-11-27 Brian Schumacher Articulating cavitation device
US20080294166A1 (en) * 2007-05-21 2008-11-27 Mark Goldin Extendable cutting member
US20090131952A1 (en) * 2007-05-21 2009-05-21 Brian Schumacher Delivery system and method for inflatable devices
US8257434B2 (en) 2007-12-18 2012-09-04 Cormatrix Cardiovascular, Inc. Prosthetic tissue valve
US20110066237A1 (en) * 2007-12-18 2011-03-17 Matheny Robert G Prosthetic tissue valve
US8449607B2 (en) 2007-12-18 2013-05-28 Cormatrix Cardiovascular, Inc. Prosthetic tissue valve
US8679176B2 (en) 2007-12-18 2014-03-25 Cormatrix Cardiovascular, Inc Prosthetic tissue valve
US8221420B2 (en) 2009-02-16 2012-07-17 Aoi Medical, Inc. Trauma nail accumulator
US8980296B2 (en) 2009-02-18 2015-03-17 Cormatrix Cardiovascular, Inc. Compositions and methods for preventing cardiac arrhythmia
US20100233235A1 (en) * 2009-02-18 2010-09-16 Matheny Robert G Compositions and methods for preventing cardiac arrhythmia
US9180137B2 (en) 2010-02-09 2015-11-10 Bone Support Ab Preparation of bone cement compositions
US9220554B2 (en) 2010-02-18 2015-12-29 Globus Medical, Inc. Methods and apparatus for treating vertebral fractures
US8845719B2 (en) 2011-05-27 2014-09-30 Cormatrix Cardiovascular, Inc Extracellular matrix material conduits and methods of making and using same
US8696744B2 (en) 2011-05-27 2014-04-15 Cormatrix Cardiovascular, Inc. Extracellular matrix material valve conduit and methods of making thereof
CN102715947A (en) * 2012-07-03 2012-10-10 张春霖 Following type spine self-positioning navigation operation machine hand and positioning method thereof
US9480519B2 (en) 2012-10-04 2016-11-01 Loubert S. Suddaby Apparatus for aligning a spine using deployable bone anchors and method for the same
US9968379B2 (en) 2012-10-04 2018-05-15 Loubert S. Suddaby Subcutaneous implantable device for gradually aligning a spine and subcutaneous implantable device for gradually lengthening a bone
US10022153B2 (en) 2012-10-04 2018-07-17 Loubert S. Suddaby Percutaneous method for aligning a spine using deployable bone anchors
US10294107B2 (en) 2013-02-20 2019-05-21 Bone Support Ab Setting of hardenable bone substitute
US10994998B2 (en) 2013-02-20 2021-05-04 Bone Support Ab Setting of hardenable bone substitute
WO2015153758A1 (en) * 2014-04-03 2015-10-08 Suddaby Loubert S Percutaneous method for aligning a spine using deployable bone anchors
CN112294415A (en) * 2019-07-31 2021-02-02 中央医疗器材股份有限公司 Vertebral fixing device

Also Published As

Publication number Publication date
US20030050702A1 (en) 2003-03-13
US6706069B2 (en) 2004-03-16

Similar Documents

Publication Publication Date Title
US6706069B2 (en) Spinal grooved director with built in balloon
AU2017228724B2 (en) Systems and methods for vertebral or other bone structure height restoration and stabilization
US8157806B2 (en) Apparatus and methods for vertebral augmentation
US20180289407A1 (en) Systems And Methods For Vertebral Or Other Bone Structure Height Restoration And Stabilization
AU2009200263B2 (en) Methods and devices for treating fractured and/or diseased bone
CA2691327C (en) Percutaneous tools and bone pellets for vertebral body reconstruction
US20030050644A1 (en) Systems and methods for accessing and treating diseased or fractured bone employing a guide wire
WO2005048856A1 (en) Expandable implant for treating fractured and/or collapsed bone
WO2005016193A1 (en) Biocompatible wires and systems employing same to fill bone void
CA2625054A1 (en) Apparatus and methods for vertebral augmentation
WO2023076529A1 (en) System and device for performing vertebral augmentation
US20120157832A1 (en) Fracture fragment mobility testing for vertebral body procedures
MXPA06002452A (en) System and kit for delivery of restorative materials

Legal Events

Date Code Title Description
AS Assignment

Owner name: LB, LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BERGER, J. LEE;REEL/FRAME:015469/0633

Effective date: 20041216

AS Assignment

Owner name: LEE BERGER 2004 TRUST, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LB, INC.;REEL/FRAME:015478/0816

Effective date: 20041222

AS Assignment

Owner name: LB NV, LLC, NEVADA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SPELLING OF THE STREET ADDRESS OF THE RECEIVING PARTY PREVIOUSLY RECORDED AT REEL 015530 FRAME 0922;ASSIGNOR:BERGER, J. LEE;REEL/FRAME:015621/0717

Effective date: 20041216

AS Assignment

Owner name: LEE BERGER 2004 TRUST, NEVADA

Free format text: CORRECTIVE TO CORRECT THE ASSIGNOR'S NAME ON A DOCUMENT PREVIOUSLY RECORDED AT REEL 015571 FRAME 0970. (ASSIGNMENT OF ASSIGNOR'S INTEREST);ASSIGNOR:LB NV, LLC;REEL/FRAME:015629/0863

Effective date: 20041222

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION