US20030213572A1 - Very low COD unbleached pulp - Google Patents

Very low COD unbleached pulp Download PDF

Info

Publication number
US20030213572A1
US20030213572A1 US10/209,497 US20949702A US2003213572A1 US 20030213572 A1 US20030213572 A1 US 20030213572A1 US 20949702 A US20949702 A US 20949702A US 2003213572 A1 US2003213572 A1 US 2003213572A1
Authority
US
United States
Prior art keywords
pulp
minutes
unbleached
product
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/209,497
Inventor
Michael Vrbanac
Brian Wester
Brian Dennis
Peter Lau
Julie Reimer
David Bickell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weyerhaeuser Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/209,497 priority Critical patent/US20030213572A1/en
Priority to PCT/US2002/015521 priority patent/WO2003097929A1/en
Assigned to WEYERHAEUSER COMPANY reassignment WEYERHAEUSER COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REIMER, JULIE A., WESTER, BRIAN, VRBANAC, MICHAEL D., BICKELL, DAVID W., DENNIS, BRIAN E., LAU, PETER K.
Priority to US10/330,725 priority patent/US7081184B2/en
Priority to US10/330,529 priority patent/US20030213569A1/en
Publication of US20030213572A1 publication Critical patent/US20030213572A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/24Vegetable refuse, e.g. rice husks, maize-ear refuse; Cellulosic materials, e.g. paper, cork
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • D21C9/004Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives inorganic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/02Washing ; Displacing cooking or pulp-treating liquors contained in the pulp by fluids, e.g. wash water or other pulp-treating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to cellulosic pulps, and more particularly, to unbleached cellulosic pulps having a low COD that are useful in cementitious products.
  • Fiber-cement siding offers several advantages over other types of siding materials, such as wood siding: it is weatherproof, relatively inexpensive to manufacture, fire-resistant, and invulnerable to rotting or insect damage.
  • the present invention provides a pulp product comprising an unbleached pulp that is soaked and washed only in alkaline water, and after soaking and washing, it has a COD less than or equal to 3.0 kg/1000 kg of dry pulp, and preferably 1.7 to 2.8 kg/1000 kg.
  • This pulp is produced by repetitively soaking unbleached pulp in alkaline water that is at an elevated temperature so that organics will diffuse out of the fiber and into the water. Subsequently, the repetitively soaked and washed pulp is then preferably dewatered and dried.
  • FIG. 1 illustrates the steps of the caustic washing process for the present invention.
  • the present invention provides a low chemical oxygen demand (COD) pulp that is particularly useful for reinforcing fiber cement products.
  • COD chemical oxygen demand
  • the low COD cellulosic pulp that is useful in the present invention is most preferably an unbleached pulp from a kraft pulping process.
  • pulped cellulosic fibers can be used, which are derived from wood and non-wood sources. Of all the pulp sources, wood pulp is the most commonly employed because of its availability and price.
  • the sulfate pulping process is the most preferred method.
  • the preferred wood fiber source is long-fibered coniferous wood species. Examples of these species include the following: Southern pine, Douglas fir, spruce, hemlock, and Radiata pine.
  • other chemical pulps can be used that include pulps made from short or long fibered wood species or recycled, wood pulp fibers.
  • Short wood fibers which are typically produced from hardwood species such as eucalyptus, can also be used. The processes to produce these wood pulp fibers are well-known to those skilled in the art of pulp manufacturing.
  • fibers are commercially available from a number of companies, including the Weyerhaeuser Company.
  • wood pulp fiber sources there are other natural cellulosic fiber sources which include straw, flax, kenaf, hemp, or similar materials.
  • these non-wood fibers may also be pulped and subsequently used in fiber cement-based composites.
  • unbleached pulp preferably unbleached kraft pulp
  • a brown stock decker 20 Prior to washing, the unbleached pulp that is used in the present invention must have a relatively low Kappa number.
  • the Kappa number is less than or equal to 30, but it is more preferably less than or equal to 25 ⁇ 3.
  • the unbleached pulp from the decker is at an alkaline condition and must be maintained at an alkaline condition (pH equal to or greater than 7.0) while it is processed in accordance with the present invention.
  • the unbleached pulp from the decker which is at a consistency of approximately 10%, is initially soaked in the first diffusion tower 30 at an alkaline condition for a predetermined length of time and a predetermined elevated temperature.
  • This first soaking step is preferably conducted at a temperature of at least 60° C., and more preferably at approximately 65° C. or higher.
  • the pulp is soaked in tower 30 preferably for at least 120 minutes.
  • the pulp is washed and dewatered in press 40 .
  • this dewatering step is optional, but if it is employed, then the pulp may preferably be dewatered to a consistency of approximately 30%.
  • the pulp in tower 30 After the initial step in which the pulp in tower 30 has been soaked and dewatered, the pulp is again diluted to a 10% consistency it is then sent to a set of successive diffusion and washing steps.
  • the pulp can be placed in a high density storage tank 50 in which it can reside anywhere from 0 to 430 minutes. However, if the high density storage tank is employed during normal operation, the pulp will reside in the tank for approximately 100 minutes.
  • the purpose of the high density storage tank is to prevent diffusion tower flow variations from passing to the downstream processes that are after the storage tank.
  • the pulp is then introduced into the first of a series 60 n of diffusion tanks at a consistency of approximately 10%. Hot water and steam or only steam are added to the pulp in a second of the series 60 n of diffusion tanks to raise the temperature to a value that is preferably equal to or greater than 80° C.
  • the pulp is then repetitively soaked in the remaining series 60 n of diffusion towers. After soaking in each tower 60 n , the pulp is subjected to washing in successive washers 70 n . Preferably the pulp is soaked and washed five times in towers 60 n and washers 70 n before it is forwarded to a storage tank 80 .
  • Each of the successive soaking and diffusion steps may take a minimum of 30 minutes but may take up to 100 or more minutes. These time periods include the washing steps that follow each soaking step. It is preferred that the repetitive soaking steps in diffusion towers 60 n occur for a total of at least 280 minutes but preferably 335 minutes and in either case at the elevated temperature of at least 80° C. It is preferred that the total soaking time in diffusion tower 30 , storage vessel 50 , and diffusion towers 60 n ranges from a minimum of 400 minutes (120 minutes in diffusion tower 30 , 0 minutes in vessel 50 , 280 minutes in diffusion towers 60 n ) to a maximum of approximately 1,050 minutes (120 minutes in diffusion tower 30 , 430 minutes in vessel 50 , 500 minutes in diffusion towers 60 n ). Conventionally, however, the soak will occur for approximately 555 minutes (120 minutes in diffusion tower 30 , 100 minutes in vessel 50 , 335 minutes in diffusion towers 60 n ).
  • the pulp After the pulp has been repetitively soaked and washed, it is forwarded to the storage tank 80 . In this storage tank, the pulp remains at a consistency of about 10%. Thereafter, the pulp is fed in a conventional manner to a conventional pulp machine 100 and dryer 110 . After the pulp is dried into sheets, it is cut to size, sent to storage 120 , and ultimately shipped to a customer.
  • the unbleached and washed pulp produced by the process of the present invention has a COD of less than or equal to 3.0 kg per metric ton (1,000 kg), and preferably less than 1.7 to 2.8 kg/1000 kg. This level of COD is well below that achieved in ordinary pulp mills and particularly in kraft pulp mills.
  • a critical feature of the present invention is that the pulp must be maintained at alkaline conditions from the time it begins the initial soaking in tower 30 until the pulp is dried. It is preferred that the pH be maintained at or above 7.0 throughout the entire process, from the soaking in the initial diffusion tower 30 through the repetitive soaks in towers 60 n . Preferably in these steps, the pH is maintained in the range of from 10.0 to 11.0.
  • the pulp is then run through the pulp machine 100 and the dryer 110 . In these steps, the pH may be reduced, e.g., to 8.0 to 8.5, but can be run lower. Under certain circumstances, it may be necessary to add caustic solution (20% by weight aqueous sodium hydroxide) to the first diffusion tower 30 .
  • caustic at the rate of at least 2 kg per metric ton, and more preferably 3 kg per metric ton, will be sufficient to maintain the alkalinity of the pulp above pH 7.0 throughout the process. It is only necessary to add caustic during the initial portion of the run of the process. For example, at a throughput of about 40 to 50 tons per hour, the caustic needs to be added at the rate of 3 kg per metric ton for the initial 24 to 48 hour period that the pulp is run through the initial tower 30 . This will assure that the alkalinity will be maintained above pH 7.0 throughout the entire process, which includes the drying stage.
  • the present invention is carried out in a converted oxygen delignification and bleaching plant that is normally associated with a Kraft pulp mill, which is used to convert unbleached pulp to bleached pulp.
  • a typical bleach plant comprises an oxygen delignification reactor that is followed by a series, typically five, of bleach reactors, in which various bleaching agents such as chlorine dioxide are added.
  • the bleach plant is converted to use with the present invention by first cutting off the supply of oxygen to the oxygen reactor, and thereafter, the supply of bleaching agents to the bleach reactors is sequentially shut off as the pulp (with no oxygen added) sequentially enters the bleach reactors.
  • the oxygen reactor becomes the first diffusion tower 30 .
  • caustic is introduced into the pulp via line 32 at the rates set forth above.
  • the pulp is resident in the oxygen reactor (tower 30 ) for approximately 120 minutes.
  • the pulp is then run through the press that is typically associated with the oxygen reactor (tower 30 ) to increase the consistency from approximately 10% to approximately 30%.
  • the pulp is then diluted to 10% consistency and introduced into a high density storage vessel (vessel 50 ).
  • the vessel is normally operated at a partial capacity so that the pulp residence time in the storage vessel is approximately 100 minutes.
  • the pulp is then introduced into the first bleach reactor vessel (towers 60 n ) that is one of five total. Steam and hot water are added to the pulp when the pulp enters the second of the series 60 n of reactor vessels to raise the temperature of the pulp to 80° C. or higher.
  • the residence time for the pulp will vary. In one particular plant, the residence time in the five bleach reaction vessels was on the order of 60 minutes, 30 minutes, 45 minutes, 100 minutes, and 100 minutes, respectively. This residence time is dependent on the size of the successive reactors. It is very important in this cycle that the temperature be maintained at or above 80° C. This is accomplished by adding steam to the vessels, as necessary, to maintain temperatures.
  • the pulp After soaking in each bleach reactor vessel, the pulp is run through conventional washing unit (washers 70 n ) that normally following each of the bleach reactors.
  • washers 70 n Preferably, fresh water is used to wash the pulp; however, white water from the associated pulp plant may be used, if necessary.
  • the pulp from the fifth bleach reaction vessel is washed, it is placed into the vessel that is normally used for bleached pulp storage (vessel 80 ). It is thereafter diluted in successive steps to a consistency of about 1.5% and fed into a pulp head box on the pulp machine 100 .
  • the dewatered sheet produced on the pulp machine is then run through the pulp dryer 110 , for example, a Flakt dryer. After drying, the sheet is subsequently cut, stacked, stored, and, thereafter sent to shipping operations.
  • the pulp machine and pulp dryer can be eliminated and the pulp can be introduced directly into a jet dryer.
  • the jet dryer produces a dried singulated fiber, particularly useful in some cementitious products.
  • One suitable jet dryer for use in the present invention is a fluid energy Aljet Model Thermajet, X0870L, manufactured by Fluid Energy Processing and Equipment Company. It is also possible to completely skip the drying stage and use the pulp in a never-dried state.
  • Chemical oxygen demand is determined by the following method. Pulp sheets produced in accordance with the preferred embodiment of the present invention just described are torn or cut into small pieces (approximately 4 cm square). The small pieces are mixed and the moisture is measured in accordance with Tappi procedure T412 om-94. Forty grams of pulp, oven dried weight, are then carefully weighed. A 2,000 ml solution of 0.01 N sodium hydroxide solution is prepared using distilled or deionized water and analytical grade sodium hydroxide.
  • the pulp is placed in 2,000 ml of the 0.01 N sodium hydroxide solution and placed in a disintegrater and disintegrated for 15 minutes at 3,000 rpm in a British Pulp Evaluation Apparatus (or British disintegrater) described in Tappi 505 sp-95.
  • the pulp slurry is then vacuum filtered immediately after disintegration using a Whatman No. 3 filter paper. The filtration time is long enough so that a majority of the filtrate is passed through the filter. Two hundred and fifty ml of filtrate is separated for COD analysis. A sample is preserved with 2.5 ml of 50% sulfuric acid.
  • the COD of the filtrate is measured using the titration method described in Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998, Method #5220C, “Closed Reflux, Titrimetric Method”.
  • the COD content is then calculated as kilograms per metric ton of pulp based on the oven dried weight of the pulp.
  • the pulp produced in accordance with the foregoing example was incorporated into cementitious products at about 8% by weight pulp using the Hatsheck process. (The pulp content may be varied from 6% to 10% by weight if desired.) Cement panels and planks were produced for use in residential and commercial construction. Tilebacker 10 boards used for ceramic tile underlayment were also produced. All of these products exhibited excellent strength characteristics.

Abstract

A pulp product that has a low COD is comprised of an unbleached pulp that is soaked and washed in alkaline water for a sufficient time so that the COD after soaking and washing is less than or equal to 3.0 kg/1000 kg of dry pulp. The pulp is produced by repetitively soaking and washing an unbleached pulp in alkaline water that is never allowed to drop below pH 7.0. The pulp is soaked and washed for a total of at least 400 minutes at an elevated temperature to produce the pulp product that has a low COD.

Description

    FIELD OF THE INVENTION
  • The present invention relates to cellulosic pulps, and more particularly, to unbleached cellulosic pulps having a low COD that are useful in cementitious products. [0001]
  • BACKGROUND OF THE INVENTION
  • The internal structures of houses and other buildings are commonly protected from environmental elements by exterior siding materials. These siding materials are typically planks or panels composed of wood, concrete, brick, aluminum, stucco, wood composites, or fiber-cement composites. A common fiber-cement composite is fiber-cement siding, which is generally composed of cement, silica sand, unbleached wood pulp, and various additives. Fiber-cement siding offers several advantages over other types of siding materials, such as wood siding: it is weatherproof, relatively inexpensive to manufacture, fire-resistant, and invulnerable to rotting or insect damage. [0002]
  • Commercial fiber-reinforced cement siding planks or panels are made using the Hatcheck process. The Hatsheck process was initially developed for the production of asbestos composites, but it is now used for the manufacture of non-asbestos, cellulose fiber reinforced cement composites. In this process, unbleached cellulose fibers are re-pulped in warm water at an alkaline pH of [0003] 11 to 12.5; the re-pulped fibers are refined and then mixed with cement, silica sand, and other additives to form a mixture. The fiber-cement mixture, is deposited on a felt band substrate, vacuum dewatered, and cured to form a fiber reinforced cement matrix in sheet form.
  • The curing of the cement matrix is hindered by the presence of sugars or other organic materials. These materials retard the hydration reaction of cement and thereby retard the setting or hardening of a mortar or concrete. Cement is purposely retarded in ready-mix concrete during long hours of transportation, for mitigation of stress due to temperature (heat) when used in a large-sized concrete structures, and for decorated washing finishes. When these organic materials are measured, the manufacturers of fiber-cement siding have observed an inverse relationship between the amount of these materials in an unbleached pulp and the strength properties of the final product. The amount of these materials is commonly measured using the chemical oxygen demand (COD) test. When considering the detrimental effect of these materials on strength properties, it is apparent that there are a needs in the art for very low COD unbleached pulp. The present invention fulfills these needs and provides further related advantages. [0004]
  • SUMMARY OF THE INVENTION
  • The present invention provides a pulp product comprising an unbleached pulp that is soaked and washed only in alkaline water, and after soaking and washing, it has a COD less than or equal to 3.0 kg/1000 kg of dry pulp, and preferably 1.7 to 2.8 kg/1000 kg. This pulp is produced by repetitively soaking unbleached pulp in alkaline water that is at an elevated temperature so that organics will diffuse out of the fiber and into the water. Subsequently, the repetitively soaked and washed pulp is then preferably dewatered and dried.[0005]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description and the accompanying drawings, wherein: [0006]
  • FIG. 1 illustrates the steps of the caustic washing process for the present invention.[0007]
  • DETALED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention provides a low chemical oxygen demand (COD) pulp that is particularly useful for reinforcing fiber cement products. The low COD cellulosic pulp that is useful in the present invention is most preferably an unbleached pulp from a kraft pulping process. However, a wide variety of pulped cellulosic fibers can be used, which are derived from wood and non-wood sources. Of all the pulp sources, wood pulp is the most commonly employed because of its availability and price. [0008]
  • To obtain suitable wood pulp fibers, the sulfate pulping process is the most preferred method. Using this process and considering the desired composite properties, the preferred wood fiber source is long-fibered coniferous wood species. Examples of these species include the following: Southern pine, Douglas fir, spruce, hemlock, and Radiata pine. In addition to these wood fiber sources, other chemical pulps can be used that include pulps made from short or long fibered wood species or recycled, wood pulp fibers. Short wood fibers, which are typically produced from hardwood species such as eucalyptus, can also be used. The processes to produce these wood pulp fibers are well-known to those skilled in the art of pulp manufacturing. These fibers are commercially available from a number of companies, including the Weyerhaeuser Company. In contrast to wood pulp fiber sources, there are other natural cellulosic fiber sources which include straw, flax, kenaf, hemp, or similar materials. Like wood-based fibers, these non-wood fibers may also be pulped and subsequently used in fiber cement-based composites. [0009]
  • Referring to FIG. 1, unbleached pulp, preferably unbleached kraft pulp, is first passed through conventional brown stock washers [0010] 10 and a brown stock decker 20 at a consistency of approximately 10% when it exits from the decker. Prior to washing, the unbleached pulp that is used in the present invention must have a relatively low Kappa number. Preferably the Kappa number is less than or equal to 30, but it is more preferably less than or equal to 25±3. The unbleached pulp from the decker is at an alkaline condition and must be maintained at an alkaline condition (pH equal to or greater than 7.0) while it is processed in accordance with the present invention. The unbleached pulp from the decker, which is at a consistency of approximately 10%, is initially soaked in the first diffusion tower 30 at an alkaline condition for a predetermined length of time and a predetermined elevated temperature. This first soaking step is preferably conducted at a temperature of at least 60° C., and more preferably at approximately 65° C. or higher. The pulp is soaked in tower 30 preferably for at least 120 minutes. After tower 30, the pulp is washed and dewatered in press 40. However, this dewatering step is optional, but if it is employed, then the pulp may preferably be dewatered to a consistency of approximately 30%.
  • After the initial step in which the pulp in [0011] tower 30 has been soaked and dewatered, the pulp is again diluted to a 10% consistency it is then sent to a set of successive diffusion and washing steps. Optionally, the pulp can be placed in a high density storage tank 50 in which it can reside anywhere from 0 to 430 minutes. However, if the high density storage tank is employed during normal operation, the pulp will reside in the tank for approximately 100 minutes. The purpose of the high density storage tank is to prevent diffusion tower flow variations from passing to the downstream processes that are after the storage tank.
  • After the high density storage tank, the pulp is then introduced into the first of a series [0012] 60 n of diffusion tanks at a consistency of approximately 10%. Hot water and steam or only steam are added to the pulp in a second of the series 60 n of diffusion tanks to raise the temperature to a value that is preferably equal to or greater than 80° C. The pulp is then repetitively soaked in the remaining series 60 n of diffusion towers. After soaking in each tower 60 n, the pulp is subjected to washing in successive washers 70 n. Preferably the pulp is soaked and washed five times in towers 60 n and washers 70 n before it is forwarded to a storage tank 80. Each of the successive soaking and diffusion steps may take a minimum of 30 minutes but may take up to 100 or more minutes. These time periods include the washing steps that follow each soaking step. It is preferred that the repetitive soaking steps in diffusion towers 60 n occur for a total of at least 280 minutes but preferably 335 minutes and in either case at the elevated temperature of at least 80° C. It is preferred that the total soaking time in diffusion tower 30, storage vessel 50, and diffusion towers 60 n ranges from a minimum of 400 minutes (120 minutes in diffusion tower 30, 0 minutes in vessel 50, 280 minutes in diffusion towers 60 n) to a maximum of approximately 1,050 minutes (120 minutes in diffusion tower 30, 430 minutes in vessel 50, 500 minutes in diffusion towers 60 n). Conventionally, however, the soak will occur for approximately 555 minutes (120 minutes in diffusion tower 30, 100 minutes in vessel 50, 335 minutes in diffusion towers 60 n).
  • After the pulp has been repetitively soaked and washed, it is forwarded to the storage tank [0013] 80. In this storage tank, the pulp remains at a consistency of about 10%. Thereafter, the pulp is fed in a conventional manner to a conventional pulp machine 100 and dryer 110. After the pulp is dried into sheets, it is cut to size, sent to storage 120, and ultimately shipped to a customer.
  • The unbleached and washed pulp produced by the process of the present invention has a COD of less than or equal to 3.0 kg per metric ton (1,000 kg), and preferably less than 1.7 to 2.8 kg/1000 kg. This level of COD is well below that achieved in ordinary pulp mills and particularly in kraft pulp mills. [0014]
  • A critical feature of the present invention is that the pulp must be maintained at alkaline conditions from the time it begins the initial soaking in [0015] tower 30 until the pulp is dried. It is preferred that the pH be maintained at or above 7.0 throughout the entire process, from the soaking in the initial diffusion tower 30 through the repetitive soaks in towers 60 n. Preferably in these steps, the pH is maintained in the range of from 10.0 to 11.0. The pulp is then run through the pulp machine 100 and the dryer 110. In these steps, the pH may be reduced, e.g., to 8.0 to 8.5, but can be run lower. Under certain circumstances, it may be necessary to add caustic solution (20% by weight aqueous sodium hydroxide) to the first diffusion tower 30. It has been found that the addition of caustic at the rate of at least 2 kg per metric ton, and more preferably 3 kg per metric ton, will be sufficient to maintain the alkalinity of the pulp above pH 7.0 throughout the process. It is only necessary to add caustic during the initial portion of the run of the process. For example, at a throughput of about 40 to 50 tons per hour, the caustic needs to be added at the rate of 3 kg per metric ton for the initial 24 to 48 hour period that the pulp is run through the initial tower 30. This will assure that the alkalinity will be maintained above pH 7.0 throughout the entire process, which includes the drying stage.
  • In the most preferred embodiment, the present invention is carried out in a converted oxygen delignification and bleaching plant that is normally associated with a Kraft pulp mill, which is used to convert unbleached pulp to bleached pulp. A typical bleach plant comprises an oxygen delignification reactor that is followed by a series, typically five, of bleach reactors, in which various bleaching agents such as chlorine dioxide are added. In accordance with the present invention, the bleach plant is converted to use with the present invention by first cutting off the supply of oxygen to the oxygen reactor, and thereafter, the supply of bleaching agents to the bleach reactors is sequentially shut off as the pulp (with no oxygen added) sequentially enters the bleach reactors. [0016]
  • In this preferred embodiment, the oxygen reactor becomes the [0017] first diffusion tower 30. At the same time that oxygen is cut off from the diffusion tower, caustic is introduced into the pulp via line 32 at the rates set forth above. In the preferred mode of operation, the pulp is resident in the oxygen reactor (tower 30) for approximately 120 minutes. The pulp is then run through the press that is typically associated with the oxygen reactor (tower 30) to increase the consistency from approximately 10% to approximately 30%. The pulp is then diluted to 10% consistency and introduced into a high density storage vessel (vessel 50). The vessel is normally operated at a partial capacity so that the pulp residence time in the storage vessel is approximately 100 minutes.
  • The pulp is then introduced into the first bleach reactor vessel (towers [0018] 60 n) that is one of five total. Steam and hot water are added to the pulp when the pulp enters the second of the series 60 n of reactor vessels to raise the temperature of the pulp to 80° C. or higher. Depending on the size of the vessel, the residence time for the pulp will vary. In one particular plant, the residence time in the five bleach reaction vessels was on the order of 60 minutes, 30 minutes, 45 minutes, 100 minutes, and 100 minutes, respectively. This residence time is dependent on the size of the successive reactors. It is very important in this cycle that the temperature be maintained at or above 80° C. This is accomplished by adding steam to the vessels, as necessary, to maintain temperatures. After soaking in each bleach reactor vessel, the pulp is run through conventional washing unit (washers 70 n) that normally following each of the bleach reactors. Preferably, fresh water is used to wash the pulp; however, white water from the associated pulp plant may be used, if necessary.
  • After the pulp from the fifth bleach reaction vessel is washed, it is placed into the vessel that is normally used for bleached pulp storage (vessel [0019] 80). It is thereafter diluted in successive steps to a consistency of about 1.5% and fed into a pulp head box on the pulp machine 100. The dewatered sheet produced on the pulp machine is then run through the pulp dryer 110, for example, a Flakt dryer. After drying, the sheet is subsequently cut, stacked, stored, and, thereafter sent to shipping operations.
  • If desired, the pulp machine and pulp dryer can be eliminated and the pulp can be introduced directly into a jet dryer. The jet dryer produces a dried singulated fiber, particularly useful in some cementitious products. One suitable jet dryer for use in the present invention is a fluid energy Aljet Model Thermajet, X0870L, manufactured by Fluid Energy Processing and Equipment Company. It is also possible to completely skip the drying stage and use the pulp in a never-dried state. [0020]
  • EXAMPLE
  • The following example is intended for illustrative purposes only and is not intended to in any way delimit the invention. Chemical oxygen demand (COD) is determined by the following method. Pulp sheets produced in accordance with the preferred embodiment of the present invention just described are torn or cut into small pieces (approximately 4 cm square). The small pieces are mixed and the moisture is measured in accordance with Tappi procedure T412 om-94. Forty grams of pulp, oven dried weight, are then carefully weighed. A 2,000 ml solution of 0.01 N sodium hydroxide solution is prepared using distilled or deionized water and analytical grade sodium hydroxide. Thereafter, the pulp is placed in 2,000 ml of the 0.01 N sodium hydroxide solution and placed in a disintegrater and disintegrated for 15 minutes at 3,000 rpm in a British Pulp Evaluation Apparatus (or British disintegrater) described in Tappi 505 sp-95. The pulp slurry is then vacuum filtered immediately after disintegration using a Whatman No. 3 filter paper. The filtration time is long enough so that a majority of the filtrate is passed through the filter. Two hundred and fifty ml of filtrate is separated for COD analysis. A sample is preserved with 2.5 ml of 50% sulfuric acid. Thereafter, the COD of the filtrate is measured using the titration method described in [0021] Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998, Method #5220C, “Closed Reflux, Titrimetric Method”. The COD content is then calculated as kilograms per metric ton of pulp based on the oven dried weight of the pulp.
  • The pulp samples were randomly selected from several production runs through the converted oxygen delignification and bleach plant described above. Unbleached pulp was run at the rate of 45 tons per hour through the converted oxygen delignification and bleach plant. Residence time in the oxygen reactor vessel was on the order of 120 minutes. Residence times in the successive bleach vessels was 60, 35, 45, 100, and 100 minutes respectively. Pulp samples were taken during production runs downstream from the Flakt pulp dryer and tested for COD as set forth above. Samples A, B, C, D, and E were taken over a three-day treatment period. Samples C5, C7, C9, C11, and C13 were taken over a nine-day treatment period. The results are set forth below. [0022]
    SAMPLE ID COD (kg/metric ton)
    E 2.34
    C13 2.36
    C 2.53
    B 2.54
    C11 2.55
    A 2.63
    D 2.73
    C7 2.75
    C5 2.78
    C9 2.85
  • The pulp produced in accordance with the foregoing example was incorporated into cementitious products at about 8% by weight pulp using the Hatsheck process. (The pulp content may be varied from 6% to 10% by weight if desired.) Cement panels and planks were produced for use in residential and commercial construction. Tilebacker [0023] 10 boards used for ceramic tile underlayment were also produced. All of these products exhibited excellent strength characteristics.
  • While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention. [0024]

Claims (6)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A pulp product, comprising unbleached pulp that is soaked and washed in water that is always at alkaline conditions, wherein the pulp product has a COD that is less than or equal to 3.0 kg per 1000 kg dry pulp.
2. The product of claim 1, wherein said pulp is repetitively soaked and washed for at least 400 minutes at an elevated temperature.
3. The product of claim 2, wherein said pulp is maintained at a temperature of at least 80° C. for at least a portion of said 400 minutes.
4. The product of claim 1, wherein said unbleached pulp before washing has a Kappa number of ≦30.
5. The product of claim 4, wherein said Kappa number is 25±3.
6. A cementitious product containing the pulp of any one of claims 1 through 5.
US10/209,497 2002-05-15 2002-05-15 Very low COD unbleached pulp Abandoned US20030213572A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/209,497 US20030213572A1 (en) 2002-05-15 2002-05-15 Very low COD unbleached pulp
PCT/US2002/015521 WO2003097929A1 (en) 2002-05-15 2002-05-15 Very low cod unbleached pulp
US10/330,725 US7081184B2 (en) 2002-05-15 2002-12-26 Process for making a very low COD unbleached pulp
US10/330,529 US20030213569A1 (en) 2002-05-15 2002-12-26 Very low COD unbleached pulp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/209,497 US20030213572A1 (en) 2002-05-15 2002-05-15 Very low COD unbleached pulp
PCT/US2002/015521 WO2003097929A1 (en) 2002-05-15 2002-05-15 Very low cod unbleached pulp

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/015522 Continuation WO2003097930A1 (en) 2002-05-15 2002-05-15 Process for producing very low cod unbleached pulp

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/330,725 Continuation-In-Part US7081184B2 (en) 2002-05-15 2002-12-26 Process for making a very low COD unbleached pulp
US10/330,529 Continuation-In-Part US20030213569A1 (en) 2002-05-15 2002-12-26 Very low COD unbleached pulp

Publications (1)

Publication Number Publication Date
US20030213572A1 true US20030213572A1 (en) 2003-11-20

Family

ID=32044785

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/209,497 Abandoned US20030213572A1 (en) 2002-05-15 2002-05-15 Very low COD unbleached pulp

Country Status (2)

Country Link
US (1) US20030213572A1 (en)
WO (1) WO2003097929A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050235883A1 (en) * 2000-10-04 2005-10-27 Merkley Donald J Fiber cement composite materials using cellulose fibers loaded with inorganic and/or organic substances
US7658794B2 (en) 2000-03-14 2010-02-09 James Hardie Technology Limited Fiber cement building materials with low density additives
US7815841B2 (en) 2000-10-04 2010-10-19 James Hardie Technology Limited Fiber cement composite materials using sized cellulose fibers
US7857906B2 (en) 2001-03-09 2010-12-28 James Hardie Technology Limited Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility
US7942964B2 (en) 2003-01-09 2011-05-17 James Hardie Technology Limited Fiber cement composite materials using bleached cellulose fibers
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
EP2302133A3 (en) * 2009-06-08 2017-03-15 Weyerhaeuser NR Company Meterable fibrous material
US9809928B2 (en) 2007-01-25 2017-11-07 International Paper Company Product to promote fluid flow

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030213569A1 (en) * 2002-05-15 2003-11-20 Brian Wester Very low COD unbleached pulp
US20040081828A1 (en) 2002-10-25 2004-04-29 Dezutter Ramon C. Flowable and meterable densified fiber particle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020112827A1 (en) * 2000-10-17 2002-08-22 Merkley Donald J. Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE349525A (en) * 1928-02-15
US3264125A (en) * 1962-12-04 1966-08-02 Versicrete Ind Manufacture of lightweight concrete products
US3148106A (en) * 1964-01-29 1964-09-08 Rayonier Inc Pulp refining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020112827A1 (en) * 2000-10-17 2002-08-22 Merkley Donald J. Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182606B2 (en) 2000-03-14 2012-05-22 James Hardie Technology Limited Fiber cement building materials with low density additives
US7658794B2 (en) 2000-03-14 2010-02-09 James Hardie Technology Limited Fiber cement building materials with low density additives
US7727329B2 (en) 2000-03-14 2010-06-01 James Hardie Technology Limited Fiber cement building materials with low density additives
US8603239B2 (en) 2000-03-14 2013-12-10 James Hardie Technology Limited Fiber cement building materials with low density additives
US7815841B2 (en) 2000-10-04 2010-10-19 James Hardie Technology Limited Fiber cement composite materials using sized cellulose fibers
US20050235883A1 (en) * 2000-10-04 2005-10-27 Merkley Donald J Fiber cement composite materials using cellulose fibers loaded with inorganic and/or organic substances
US7857906B2 (en) 2001-03-09 2010-12-28 James Hardie Technology Limited Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US8333836B2 (en) 2003-01-09 2012-12-18 James Hardie Technology Limited Fiber cement composite materials using bleached cellulose fibers
US7942964B2 (en) 2003-01-09 2011-05-17 James Hardie Technology Limited Fiber cement composite materials using bleached cellulose fibers
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
US9809928B2 (en) 2007-01-25 2017-11-07 International Paper Company Product to promote fluid flow
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
EP2302133A3 (en) * 2009-06-08 2017-03-15 Weyerhaeuser NR Company Meterable fibrous material
US9617687B2 (en) 2009-06-08 2017-04-11 International Paper Company Meterable fibrous material

Also Published As

Publication number Publication date
WO2003097929A1 (en) 2003-11-27

Similar Documents

Publication Publication Date Title
US7081184B2 (en) Process for making a very low COD unbleached pulp
US7226525B2 (en) Process for producing very low COD unbleached pulp
US8268119B2 (en) Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials
US20030213572A1 (en) Very low COD unbleached pulp
AU2001296904A1 (en) Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials
US20050257904A1 (en) Method for producing cellulose fiber having improved biostability and the resulting products
MXPA03003355A (en) Gaming device and method.
AU2003262433B2 (en) Very low COD unbleached pulp
CA2608137A1 (en) Modified kraft fibers
AU2002309874B2 (en) Very low COD unbleached pulp
CA2482556C (en) Process for producing very low cod unbleached pulp
NZ536094A (en) A pulp product comprising unbleached pulp, wherein the pulp product has a COD that is between 2.0 kg per 1000 kg dry pulp and 3.0 kg per 100 kg dry pulp
NZ536097A (en) Process for producing very low COD unbleached pulp
ZA200408621B (en) Process for producing very low COD unbleached pulp
NZ529817A (en) Process for making very low COD unbleached pulp
EP1574614B1 (en) Method for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials

Legal Events

Date Code Title Description
AS Assignment

Owner name: WEYERHAEUSER COMPANY, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VRBANAC, MICHAEL D.;DENNIS, BRIAN E.;LAU, PETER K.;AND OTHERS;REEL/FRAME:013482/0157;SIGNING DATES FROM 20020920 TO 20021104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION