CN1223544C - 用于油井等的低密度和低孔隙度的灌注泥浆 - Google Patents

用于油井等的低密度和低孔隙度的灌注泥浆 Download PDF

Info

Publication number
CN1223544C
CN1223544C CNB008108803A CN00810880A CN1223544C CN 1223544 C CN1223544 C CN 1223544C CN B008108803 A CNB008108803 A CN B008108803A CN 00810880 A CN00810880 A CN 00810880A CN 1223544 C CN1223544 C CN 1223544C
Authority
CN
China
Prior art keywords
grout
volume
density
cement
light granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008108803A
Other languages
English (en)
Other versions
CN1367768A (zh
Inventor
布鲁诺·德罗乔恩
安德烈·加尼尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sofitech NV
Original Assignee
Sofitech NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sofitech NV filed Critical Sofitech NV
Publication of CN1367768A publication Critical patent/CN1367768A/zh
Application granted granted Critical
Publication of CN1223544C publication Critical patent/CN1223544C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/473Density reducing additives, e.g. for obtaining foamed cement compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0027Standardised cement types
    • C04B2103/0028Standardised cement types according to API
    • C04B2103/0035Type G
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density

Abstract

本发明涉及灌注油井等的水泥浆,该水泥浆具有0.9~1.3g/cm3的密度,并且由固体部分和液体部分组成,具有38~50%的孔隙度(液体部分与固体部分的体积比)。尽管具有非常低的密度,但这种水泥因其非常低的孔隙度而具有显著的机械性能。

Description

用于油井等的低密度和低孔隙度的灌注泥浆
本发明涉及油井、气井、水井、地热井等的钻井技术。更精确地,本发明涉及低密度和低孔隙度的灌注泥浆。
油井等钻完之后,将套管或挠性油管下到钻孔中,并在其整个或部分高度灌注水泥。灌注水泥的具体作用是消除钻孔通过的各构造层之间的流体交换,防止气体通过套管周围的环形间隙上升,它甚至还具有限制水进入生产井的作用。当然,灌注水泥的另一主要目的是加固钻孔和保护套管。
由于是制备后即注入井中以便放置在需要加注水泥的区段,所以灌注泥浆必须具有较低的粘度,而且它必须具有实际上恒定的流变学特性。然而,一旦处于适当的位置,理想的水泥应迅速产生高的抗压强度,以便使在建井的其他工作迅速重新开始,特别是使钻井继续进行。
水泥的密度必须调整,以便井底的压力至少补偿井通过的地质层组中的钻孔压力,以避免坍塌的危险。除了密度下限外,还存在密度上限。该上限即水泥柱所产生的静压力加上因泵送的流体循环所产生的压头损失,必须保持低于灌注段中岩层的破裂压力。某些地质层组是非常容易碎裂的,并且要求其密度接近于水的密度甚至更低。
坍塌的危险随着柱高而减小,因此补偿钻孔压力所需的密度就更低。另外,灌注大高度柱是有利的,因为这能使灌注区段的数目降低。待区段灌注完毕,钻井必须以更小的直径重新开始,所以具有大量的区段需要在大直径区段的表面附近钻孔,从而导致额外的成本,因为大量的岩石需要钻孔,还因为套管区段需要更多的直径更大的钢材。
所有这些因素均支持使用密度非常低的水泥浆。
使用最广泛的水泥浆具有约1900kg/m3的密度,该密度约为某些矿层所需密度的2倍。为了降低密度,最简单的技术是增加水的数量,同时向泥浆中加入稳定剂(称作“增量剂”),以避免颗粒沉淀和/或在泥浆表面形成游离水。显然,该技术不能使密度下降至接近1000kg/m3。而且,由这种泥浆形成的硬化水泥具有大大降低了的抗压强度、高度的渗透性和差的粘附能力。由于这些原因,该技术不能用来将密度降低至约1300kg/m3以下,同时又保持地质层之间的良好隔离性并为套管提供充分的加强。
另一技术包括在水泥浆凝固之前向其中注入气体(一般为空气或氮气)而使该水泥浆轻质化。加入的空气或氮气的数量使达到所需的密度。其可以例如形成水泥泡沫。该技术提供的性能稍好于前面的技术,因为气体的密度低于水的密度,所以需要加入的更少。然而,在石油工业的应用中,即使是以已经用水轻质化的泥浆开始时,实际密度也保持大于1100kg/m3。在一定“泡沫品质”即一定的气体体积与泡沫化泥浆体积之比以上,泡沫的稳定性迅速衰退,泡沫凝固后的抗压强度变得太低,而且其渗透性变得太高,从而危及在包含离子的热的含水介质中的耐久性,所述的离子可一定程度地侵蚀水泥。
US 3,804,058和GB 2,027,687A说明中空玻璃微球或陶瓷微球在生产用于石油和天然气工业中的低密度水泥浆的用途。
本发明的目的是提供灌注水泥浆,该水泥浆更适用于灌注油井等,具有低密度和低孔隙度,而且不须混入气体就可以得到。
根据本发明,该目的是通过一种灌注油井等的水泥浆来实现的,该水泥浆具有0.9~1.3g/cm3、特别是0.9~1.1g/cm3的密度,并且是由固体部分和液体部分构成的,具有38~50%,优选小于45%的孔隙度(液体部分与固体部分的体积比)。
该固体部分优选由包含下列组分的混合物组成:
-60~90%(按体积计)平均尺寸为20~350μm的轻质颗粒;
-10~30%(按体积计)平均颗粒直径为0.5~5μm的微细水泥;
-0~20%(按体积计)平均颗粒直径为20~50μm的波特兰水泥;和
-0~30%(按体积计)石膏。
所取得的低孔隙度能使机械性能和渗透性最优化。由于具有比常规的轻质化体系好得多的机械性能及更低的渗透性,因此,超轻质水泥的防漏与粘结特性以及这种制剂的抗化学侵袭性均优于目前使用的低密度体系,即使本发明能够达到格外低的、甚至比水的密度还低的密度。此外,本发明的水泥浆不需要气体,因此可以避免制备泡沫水泥将会需要的后勤供应。
本发明方法的特征在于将颗粒添加剂混入水泥浆,致使互相混合并与泥浆的其他颗粒组分混合,特别是与微细水泥(或相容的水凝胶结剂)颗粒混合,它们导至粒径分布显著地改变了泥浆的性质。所述的颗粒添加剂是有机或无机的并且因其低密度而选取。
低密度是通过混合轻质颗粒与水泥(或相容的水凝胶结剂)混合而实现的。然而,流变学和机械性能只有在颗粒尺寸及其体积分布按固体混合物致密性最大化的方式选取时才是令人满意的。
对于具有两组分(轻质颗粒和微细水泥)的固体混合物,这种最大化的致密性通常是通过轻质颗粒与微细水泥的体积比来实现的,该体积比为70∶30~85∶15,优选75∶25~80∶20,所选取的轻质颗粒在尺寸上至少为微细水泥颗粒尺寸的大约100倍,即一般选取尺寸大于100μm的颗粒。这些值是可以变化的,特别是作为轻质颗粒的粒径分布中较大离差或较小离差的函数。也可以使用平均尺寸大于20μm的颗粒,但是性能不太好。因为要灌注的环形间隙的尺寸窄,一般不使用大于350μm的颗粒。
优选具有三种或更多种组分的混合物,因为它们能够获得更大的致密性,只要各组分的平均尺寸显著不同。例如,可以使用平均尺寸150μm的轻质颗粒、平均尺寸30μm的轻质颗粒与微细水泥的体积比接近55∶35∶10的混合物,或者体积比较此最佳比例偏离一些,即由50~60%(按体积计)平均直径100~400μm的第一轻质颗粒、30~45%平均直径20~40μm的第二轻质颗粒和5~20%微细水泥构成的混合物。根据应用,中间尺寸的轻质颗粒部分可以用普通尺寸的波特兰水泥,特别是G级的波特兰水泥代替。
本发明中所使用的术语“微细水泥”是指由平均尺寸约3μm的颗粒构成的任何水凝胶结剂,其中不包含或者至少没有显著数量的尺寸大于10μm的颗粒。它们具有如通过空气渗透试验测定的每单位重量的比表面积,该比表面积一般约为0.8m2/g。
微细水泥基本上可以由波特兰水泥,特别是通常包含约65%石灰、25%硅石、4%矾土、4%氧化铁和小于1%氧化锰的G级波特兰水泥来构成,或者等同于波特兰微细水泥与微细炉渣的混合物,即基本上由包含45%石灰、30%硅石、10%矾土、1%氧化铁和5~6%氧化锰的渣块组合物制成的混合物(这里只提到了主要的氧化物;而且这些浓度可自然地随供应商不同而略微地变化)。对于极低温度(<30℃)下的应用,因其反应活性而优选微细波特兰水泥而不优选微细水泥与炉渣的混合物。如果需要在直角下凝固,可以用石膏作为全部或部分的中等大小的颗粒。
轻质颗粒通常具有小于2g/cm3的密度,而且一般小于0.8g/cm3。举例来说,可以使用中空微球体,特别是硅铝酸盐的中空微球体,称作煤胞(cenospheres),由燃烧煤得到的平均直径约150μm的剩余物。也可以使用合成材料,如中空的玻璃珠,特别优选具有高抗压强度的硼硅酸钠钙玻璃珠甚至陶瓷微球体,如硅石-矾土型的陶瓷微球体。这些轻质颗粒还可以是塑料材料的颗粒,如聚丙烯珠。
一般而言,所述泥浆的密度基本上随着所选取的轻质颗粒的功能而进行调整,但也可以改变水与固体(保持其体积为38~50%)的比例、微细水泥或水凝胶结剂的数量(10~30%),并加入普通尺寸的波特兰水泥代替部分的轻质颗粒。
当然,所述泥浆还可以包括一种或多种如下类型的添加剂:分散剂、防冻剂、保水剂、水泥凝固加速剂或减速剂和/或泡沫稳定剂,这些添加剂通常加到液相中或者适当地混合在固相中。
根据本发明的制剂所具有的机械性能显著地优于具有相同密度的泡沫水泥的机械性能。抗压强度非常高而且孔隙度非常低。结果,渗透性比具有相同密度的泡沫水泥低若干个数量级,因而赋予该体系以显著的硬度特性。
本发明的方法大大地简化了灌注操作,因为它避免了发泡类型所需的任何后勤供应。
根据本发明制备的泥浆还具有这样的优点,即可以在泥浆加入井之前测定其全部特性(流变学特性、凝固时间、抗压强度等),不象泡沫泥浆那样,其中的某些参数只有在引入气体(凝固时间)之前才可以对泥浆进行测量。
下面的实施例是对本发明的解释而不是对本发明的范围的限制。
实施例1
只要摇实体积分数(PVF)最优化,就可以由两种或三种(甚至多种)不同尺寸颗粒的混合物得到低密度和低孔隙度的水泥浆。
下面描述根据本发明制备的三种水泥浆的性质,并与常规的低密度稀释水泥浆的性质以及泡沫体系的性质进行比较。
水泥浆A:制备粉末混合物。它包含55%体积的中空球,取自平均尺寸150μm的煤胞(比重0.75);35%体积的平均尺寸为30μm的玻璃微球体;及10%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
所使用的微球体由3MTM出售,名称为Scotchlite S60/10000;这种微球体具有0.6g/cm3的密度和这样的粒径分布,即10%的颗粒(按体积计)具有小于15μm的尺寸,50%的颗粒具有小于30μm的尺寸,90%的颗粒具有小于70μm的尺寸;选取这些颗粒的特别原因是它们具有高的抗压强度(90%的颗粒可以承受68.9MPa或10000psi的均衡压力)。
将水和下列添加剂与该粉末混合以确保水泥浆中液体的体积百分数为42%:0.2%(粉末,即放在一起的所有固体颗粒(用于泥浆A的微细水泥、微球体和煤胞)的重量百分比))的基于2-丙烯酰基氨基2-甲基丙烷磺酸(AMPS)保水剂;每袋粉末0.03加仑的消泡剂;以及每袋粉末0.07加仑的基于聚萘磺酸盐的超级增塑剂。应当注意,一袋粉末是类比水泥袋来定义的,每袋包含45.359kg的混合物,换言之,1gpb=0.03834升添加剂/1kg混合物。
水泥浆B:制备粉末混合物。它包含78%体积的中空球,取自平均尺寸150μm和密度0.63g/cm3的煤胞;及22%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使水泥浆中液体的体积百分数为42%:粉末重量0.2%的基于AMPS聚合物的保水剂;每袋粉末0.03加仑的消泡剂;以及每袋粉末0.1加仑的基于聚萘磺酸盐的超级增塑剂。
水泥浆C:制备粉末混合物。它包含78%体积的平均尺寸30μm的scotchlite玻璃微球体;及22%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使水泥浆中液体的体积百分数为45%:粉末重量0.2%的基于AMPS聚合物的保水剂;每袋粉末0.03加仑的消泡剂;以及每袋粉末0.145加仑的基于聚萘磺酸盐的超级增塑剂。
水泥浆D:制备粉末混合物。它包含78.4%体积的来源于平均尺寸150μm(密度0.72g/cm3)煤胞的中空微球及21.6%体积的G级波特兰水泥。
将水和下列添加剂与该粉末混合致使水泥浆中液体的体积百分数为57%:每袋粉末0.03加仑的消泡剂。
水泥浆E:基于G级波特兰水泥制备密度1900kg/m3的常规水泥浆。
用50%的泡沫数量将该水泥浆泡沫化,以便得到最终密度为950kg/m3的水泥浆。
Figure C0081088000071
密度以kg/m3(括号中每加仑的磅数)来表示。流变学特性以流动阈值Ty来表示,单位为帕斯卡(括号中为每100平方英尺的磅数),并且利用Bingham流体模型以塑性粘度PV来表示,单位为mPa·s或厘泊。这些参数是在环境温度下测定的。CS是指水泥在60℃(140°F)及6.9MPa(1000psi)压力下硬化24小时之后的抗压强度,并且以MPa来表示(括号中为每平方英寸的磅数)。
★这种情况下,孔隙度是按气体加上水的体积除以水泥浆总体积来计算的。
可以看出,对于根据本发明制备的水泥浆,在密度如此低的情况下具有极高的抗压强度,而且这些水泥浆除低孔隙度之外还具有优异的流变学特性。
实施例2
对于密度大于每加仑8磅(ppg)的水泥浆,部分轻质颗粒可以用G级波特兰水泥来代替。
水泥浆A:制备粉末混合物。它包含55%体积的中空球,该中空球来源于平均尺寸150μm的煤胞;35%体积的平均尺寸为30μm的Scotchlite玻璃微球体;及10%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使水泥浆中液体的体积百分数为42%:粉末重量0.2%的基于AMPS聚合物的保水剂;每袋粉末0.03加仑的消泡剂;以及每袋粉末0.07加仑的基于聚萘磺酸盐的超级增塑剂。
水泥浆B:制备粉末混合物。它包含55%体积的中空球,该中空球来源于平均尺寸150μm的煤胞;25%体积的平均尺寸为30μm的Scotchlite玻璃微球体;10%体积的G级波特兰水泥;及10%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使水泥浆中液体的体积百分数为42%:粉末重量0.2%的基于AMPS聚合物的保水剂;每袋粉末0.03加仑的消泡剂;以及每袋粉末0.01加仑的基于聚萘磺酸盐的超级增塑剂。
水泥浆C:制备粉末混合物。它包含55%体积的中空球,该中空球来源于平均尺寸150μm的煤胞;20%体积的平均尺寸为30μm的Scotchlite玻璃微球体;15%体积的G级波特兰水泥;及10%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使水泥浆中液体的体积百分数为42%:粉末重量0.2%的基于AMPS聚合物的保水剂;每袋粉末0.03加仑的消泡剂;以及每袋粉末0.01加仑的基于聚萘磺酸盐的超级增塑剂。
水泥浆D:制备粉末混合物。它包含55%体积的中空球,该中空球来源于平均尺寸150μm的煤胞;15%体积的平均尺寸为30μm的Scotchlite玻璃微球体;20%体积的G级波特兰水泥;及10%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使泥浆中液体的体积百分数为42%:粉末重量0.2%的基于AMPS聚合物的保水剂;每袋粉末0.03加仑的消泡剂;以及每袋粉末0.01加仑的基于聚萘磺酸盐的超级增塑剂。
    水泥浆     A     B     C     D
    密度     924(7.7)     1068(8.9)     1040(9.5)     1218(10.15)
    孔隙度     42%     42%     42%     42%
    PV     87     90     100     109
    Ty     7.7     8.8     9.0     11.2
    CS(24小时)     7.58(1100)     18.3(2650)     19.7(2850)     20.7(3000)
    CS(48小时)     9.0(1300)     19.0(2750)     29.7(4300)     28.3(4100)
密度以kg/m3(括号中每加仑的磅数)来表示。流变学特性以流动阈值Ty来表示,单位为帕斯卡(括号中为每100平方英尺的磅数),并且利用Bingham流体模型以塑性粘度PV来表示,单位为mPa·s或厘泊。这些参数是在环境温度下测定的。CS是指水泥在60℃及6.9MPa(1000psi)压力下硬化24小时和48小时之后的抗压强度,并且以MPa来表示(括号中为每平方英寸的磅数)。
加入波特兰水泥作为部分“中等尺寸”颗粒可以覆盖从8ppg至11ppg的整个密度范围,并且显著地提高抗压强度。无论如何这种加入不妨碍良好的流变学特性。
实施例3
对于密度大于8ppg的水泥浆,部分轻质颗粒可以用微细波特兰水泥或用微细波特兰水泥与炉渣的混合物来代替。
水泥浆A:制备粉末混合物。它包含55%体积的中空球,该中空球来源于平均尺寸150μm的煤胞;30%体积的平均尺寸为30μm的Scotchlite玻璃微球体;及15%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使水泥浆中液体的体积百分数为42%:粉末重量0.2%的基于AMPS聚合物的保水剂;每袋粉末0.03加仑的消泡剂;以及每袋粉末0.07加仑的基于聚萘磺酸盐的超级增塑剂。
水泥浆B:制备粉末混合物。它包含55%体积的中空球,该中空球来源于平均尺寸150μm的煤胞;25%体积的平均尺寸为30μm的Scotchlite玻璃微球体;及20%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使泥浆中液体的体积百分数为42%:粉末重量0.2%的基于AMPS聚合物的保水剂;每袋粉末0.03加仑的消泡剂;以及每袋粉末0.07加仑的基于聚萘磺酸盐的超级增塑剂。
    水泥浆     A     B
    密度     990(8.25)     1056(8.8)
    孔隙度     42%     42%
    CS(24小时)     11.2(1630)     21.4(3100)
    CS(48小时)     11.7(1700)     22.1(3200)
密度以kg/m3(括号中每加仑的磅数)来表示。CS是指水泥在60℃及6.9MPa(1000psi)压力下硬化24小时和48小时之后的抗压强度,并且以MPa来表示(括号中为每平方英寸的磅数)。
增加微细水泥与炉渣混合物的含量,使9ppg时的抗压强度性能异常。
实施例4
依据所需的机械性能(挠曲性、耐高压能力),可以使用不同的轻质颗粒,只要PVF是最优化的。
水泥浆A:制备粉末混合物。它包含55%体积的中空球,该中空球来源于平均尺寸150μm的煤胞;30%体积的中空球,该中空球来源于平均尺寸45μm的煤胞;及15%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使水泥浆中液体的体积百分数为42%:粉末重量0.2%的基于AMPS聚合物的保水剂;每袋粉末0.03加仑的消泡剂;以及每袋粉末0.07加仑的基于聚萘磺酸盐的超级增塑剂。
水泥浆B:制备粉末混合物。它包含55%体积的平均尺寸300μm的聚丙烯颗粒;30%体积的平均尺寸30μm的scotchlite玻璃微球;及15%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使水泥浆中液体的体积百分数为42%:粉末重量0.22%的基于纯化的木质素磺酸盐的减速剂;粉末重量0.2%的基于AMPS聚合物的保水剂;以及每袋粉末0.05加仑的基于聚萘磺酸盐的超级增塑剂。
密度以kg/m3(括号中每加仑的磅数)来表示。流变学特性以流动阈值Ty来表示,单位为帕斯卡(括号中为每100平方英尺的磅数),并且利用Bingham流体模型以塑性粘度PV来表示,单位为mPa·s或厘泊。这些参数是在环境温度下测定的。CS是指水泥在60℃及6.9MPa(1000psi)压力下硬化24小时和48小时之后的抗压强度,并且以Mpa来表示(括号中为每平方英寸的磅数)。
★在104℃(220°F)及20.7MPa(3000psi)压力下硬化24小时的水泥抗压强度,以MPa来表示,括号中以psi来表示。
实施例5
对于低温应用,可以用纯的微细水泥代替微细水泥与炉渣的混合物,或者可以加入石膏以代替中等尺寸的颗粒。
我们已经比较了本发明的制剂与发泡的石膏制剂。
水泥浆A:制备粉末混合物。它包含42.7%体积的中空球,该中空球来源于平均尺寸150μm的煤胞;20%体积的中空球,该中空球来源于平均尺寸45μm的煤胞;27.3%体积的石膏;及10%体积的波特兰微细水泥与平均尺寸约3μm的炉渣的混合物。
将水和下列添加剂与该粉末混合致使泥浆中液体的体积百分数为42%:每袋粉末0.05加仑的基于纯化的木质素磺酸盐的减速剂;及每袋粉末0.03加仑的消泡剂。
水泥浆B(参照):该泥浆与现有技术相当。制备粉末混合物。它包含40%体积的G级水泥和60%体积的石膏。将水和添加剂与该粉末混合,致使该水泥浆的密度为1900kg/m3(15.8ppg)。
为使该水泥浆发泡,加入全部常规的润湿剂:1∶1的D138与F052.1。加入的数量取决于泡沫的质量。对其进行调整,以便获得密度为1320kg/m3(每加仑11磅)的泥浆。
密度   1320(11) 1218(10.15)
水泥浆A(本发明)  Q 0
 PV 112
 Ty 6.7
 CS(4℃和6.9MPa下水泥硬化12小时) 2.41(350)
 CS(25℃和6.9MPa下水泥硬化24小时) 14.8(2150)
水泥浆B(对照)  Q   30%
CS(18℃和大气压下水泥硬化24小时)   2.96(430)
CS(18℃和大气压下水泥硬化48小时)   4.55(660)
密度以kg/m3(括号中每加仑的磅数)来表示。流变学特性以流动阈值Ty来表示,单位为帕斯卡(括号中为每100平方英尺的磅数),并且利用Binghanm流体模型以塑性粘度PV来表示,单位为mPa·s或厘泊。这些参数是在环境温度下测定的。CS代表表中所述条件下的抗压强度,以MPa来表示(括号中为每平方英寸的磅数)。

Claims (14)

1.用于灌注油井的水泥浆,该水泥浆具有0.9~1.3g/cm3的密度;由固体部分和液体部分组成,孔隙度为38~50%;其中所述固体部分包括:
-60~90%体积的平均尺寸为20~350μm的轻质颗粒;
-10~30%体积的平均颗粒直径为0.5~5μm的微细水泥;
-0~20%体积的平均颗粒直径为20~50μm的波特兰水泥;和
-0~30%体积的石膏。
2.权利要求1的水泥浆,其中该水泥浆的孔隙度小于45%。
3.权利要求1的水泥浆,其中所述轻质颗粒的密度小于2g/cm3
4.权利要求3的水泥浆,其中所述轻质颗粒的密度小于0.8g/cm3
5.权利要求1的水泥浆,其中所述轻质颗粒选自中空微球体,合成材料,陶瓷微球体,及塑料材料的颗粒。
6.权利要求5的水泥浆,其中所述中空微球体是硅铝酸盐中空微球体。
7.权利要求5的水泥浆,其中所述合成材料是中空玻璃珠。
8.权利要求7的水泥浆,其中所述中空玻璃珠为硼硅酸钠钙玻璃珠。
9.权利要求5的水泥浆,其中所述陶瓷微球体是硅石-矾土型陶瓷微球体。
10.权利要求5的水泥浆。其中所述塑料材料的颗粒是聚丙烯珠。
11.权利要求1的水泥浆,进一步包含一种或多种下述类型的添加剂:分散剂、防冻剂、保水剂、水泥凝固加速剂或减速剂以及泡沫稳定剂。
12.权利要求1的水泥浆,其该水泥浆的固体部分是由直径100~350μm的轻质颗粒和微细水泥颗粒构成的,该轻质颗粒与该微细水泥的比例为70∶30~85∶15。
13.权利要求1的水泥浆,其该水泥浆的固体部分是由50~60%体积的平均直径为100~400μm的第一轻质颗粒,30~35%体积的平均直径为20~40μm的第二轻质颗粒,及10~20%的微细水泥构成的。
14.前述权利要求中任一项的水泥浆在灌注油、气井中的应用。
CNB008108803A 1999-07-29 2000-07-06 用于油井等的低密度和低孔隙度的灌注泥浆 Expired - Fee Related CN1223544C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/09847 1999-07-29
FR9909847A FR2796935B1 (fr) 1999-07-29 1999-07-29 Coulis de cimentation des puits petroliers ou analogues a basse densite et basse porosite

Publications (2)

Publication Number Publication Date
CN1367768A CN1367768A (zh) 2002-09-04
CN1223544C true CN1223544C (zh) 2005-10-19

Family

ID=9548657

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008108803A Expired - Fee Related CN1223544C (zh) 1999-07-29 2000-07-06 用于油井等的低密度和低孔隙度的灌注泥浆

Country Status (18)

Country Link
US (1) US6626991B1 (zh)
EP (1) EP1204616B1 (zh)
JP (1) JP4731773B2 (zh)
CN (1) CN1223544C (zh)
AT (1) ATE276213T1 (zh)
AU (1) AU772997B2 (zh)
BR (1) BR0012504B1 (zh)
CA (1) CA2380095C (zh)
DE (1) DE60013854T2 (zh)
DK (1) DK1204616T3 (zh)
EA (1) EA003917B1 (zh)
FR (1) FR2796935B1 (zh)
GB (1) GB2366562B (zh)
GC (1) GC0000135A (zh)
MX (1) MXPA02000959A (zh)
NO (1) NO335505B1 (zh)
OA (1) OA12001A (zh)
WO (1) WO2001009056A1 (zh)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040107875A1 (en) * 1999-07-29 2004-06-10 Bruno Drochon Low-density cementing slurry
NZ521491A (en) 2000-03-14 2004-06-25 James Hardie Res Pty Ltd Fiber cement building materials with low density additives and cellulose fibers
EP1260491A1 (en) * 2001-05-04 2002-11-27 Services Petroliers Schlumberger Permeable cements
US7063738B2 (en) * 2000-05-15 2006-06-20 Schlumberger Technology Corporation Permeable cements
FR2808794B1 (fr) * 2000-05-15 2002-06-28 Dowell Schlumberger Services Ciment permeable, son procede d'obtention et application dudit ciment dans des puits petroliers ou analogues
FR2810661B1 (fr) * 2000-06-21 2003-06-06 Rhodia Chimie Sa Ciment comprenant des particules anisotropes de polymere, pate cimentaire, materiau consolide, preparation et utilisations
US6562122B2 (en) 2000-09-18 2003-05-13 Halliburton Energy Services, Inc. Lightweight well cement compositions and methods
EP1236701A1 (en) * 2001-02-15 2002-09-04 Schlumberger Technology B.V. Very low-density cement slurry
DE60135322D1 (de) * 2001-08-06 2008-09-25 Schlumberger Technology Bv Faserverstärkte Zementzusammensetzung mit niedriger Dichte
DK1483220T3 (da) * 2002-03-06 2006-10-09 Halliburton Energy Serv Inc Lette bröndcementsammensætninger og fremgangsmåder
US6644405B2 (en) * 2002-03-21 2003-11-11 Halliburton Energy Services, Inc. Storable water-microsphere suspensions for use in well cements and methods
US6906009B2 (en) 2002-08-14 2005-06-14 3M Innovative Properties Company Drilling fluid containing microspheres and use thereof
US7767629B2 (en) 2002-08-14 2010-08-03 3M Innovative Properties Company Drilling fluid containing microspheres and use thereof
US7455798B2 (en) * 2002-08-23 2008-11-25 James Hardie International Finance B.V. Methods for producing low density products
CA2495696C (en) * 2002-08-23 2012-01-31 James Hardie International Finance B.V. Synthetic hollow microspheres
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US6989057B2 (en) * 2002-12-10 2006-01-24 Halliburton Energy Services, Inc. Zeolite-containing cement composition
US7482309B2 (en) * 2003-11-24 2009-01-27 Halliburton Energy Services, Inc. Methods of drilling wellbores using variable density fluids comprising coated elastic particles
US7543642B2 (en) * 2003-01-24 2009-06-09 Halliburton Energy Services, Inc. Cement compositions containing flexible, compressible beads and methods of cementing in subterranean formations
US20040171499A1 (en) * 2003-01-24 2004-09-02 Halliburton Energy Services, Inc. Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
FR2850647B1 (fr) * 2003-01-30 2007-03-02 Rhodia Chimie Sa Composition comprenant un liant hydraulique et un latex possedant un groupement foncitonnel sulfonate, sulfonique ou sulfobetaine
US20100192808A1 (en) * 2003-08-25 2010-08-05 Amlan Datta Synthetic Microspheres and Methods of Making Same
GB2407317B (en) * 2003-10-20 2006-04-12 Schlumberger Holdings Cementing composition
GB2407567A (en) 2003-10-27 2005-05-04 Schlumberger Holdings High temperature resistant cement
US20090156385A1 (en) 2003-10-29 2009-06-18 Giang Biscan Manufacture and use of engineered carbide and nitride composites
US7073584B2 (en) * 2003-11-12 2006-07-11 Halliburton Energy Services, Inc. Processes for incorporating inert gas in a cement composition containing spherical beads
US7376148B1 (en) * 2004-01-26 2008-05-20 Cisco Technology, Inc. Method and apparatus for improving voice quality in a packet based network
US20050241545A1 (en) * 2004-04-28 2005-11-03 Vargo Richard F Jr Methods of extending the shelf life of and revitalizing lightweight beads for use in cement compositions
US20050241538A1 (en) * 2004-04-28 2005-11-03 Vargo Richard F Jr Methods of making cement compositions using liquid additives containing lightweight beads
JP5237634B2 (ja) * 2004-06-15 2013-07-17 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー ドライキャストセメント状混合物の耐凍結融解性の改善
CA2570175C (en) * 2004-06-15 2012-09-11 Construction Research & Technology Gmbh Providing freezing and thawing resistance to cementitious compositions
NZ551564A (en) * 2004-06-15 2010-08-27 Constr Res & Tech Gmbh Providing freezing and thawing resistance to cementitious compositions
US8088716B2 (en) 2004-06-17 2012-01-03 Exxonmobil Upstream Research Company Compressible objects having a predetermined internal pressure combined with a drilling fluid to form a variable density drilling mud
WO2007145734A2 (en) 2006-06-07 2007-12-21 Exxonmobil Upstream Research Company Compressible objects having partial foam interiors combined with a drilling fluid to form a variable density drilling mud
WO2007145735A2 (en) 2006-06-07 2007-12-21 Exxonmobil Upstream Research Company Method for fabricating compressible objects for a variable density drilling mud
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US7373981B2 (en) * 2005-02-14 2008-05-20 Halliburton Energy Services, Inc. Methods of cementing with lightweight cement compositions
NZ560872A (en) 2005-02-24 2010-08-27 Hardie James Technology Ltd Alkali resistant glass compositions
US7398827B2 (en) * 2005-03-11 2008-07-15 Halliburton Energy Services, Inc. Methods for high temperature lightweight cementing
US7390356B2 (en) * 2005-03-11 2008-06-24 Halliburton Energy Services, Inc. Compositions for high temperature lightweight cementing
CN101198563A (zh) * 2005-06-14 2008-06-11 建筑研究及技术有限责任公司 将冻结和解冻抗性提供给粘结性组合物
JP5279490B2 (ja) * 2005-06-14 2013-09-04 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー セメント質組成物に耐凍結融解性をもたらす作用剤の供給方法
DK1770073T3 (da) 2005-09-29 2009-12-14 Schlumberger Technology Bv Cementsammensætning til superkritiske carbondioxidomgivelser
CA2632760C (en) 2005-12-08 2017-11-28 James Hardie International Finance B.V. Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles
US8240385B2 (en) * 2006-03-21 2012-08-14 Halliburton Energy Services Inc. Low heat of hydration cement compositions and methods of using same
NZ571874A (en) 2006-04-12 2010-11-26 Hardie James Technology Ltd A surface sealed reinforced building element
EP2041235B1 (en) 2006-06-07 2013-02-13 ExxonMobil Upstream Research Company Compressible objects combined with a drilling fluid to form a variable density drilling mud
US7967909B2 (en) * 2007-02-26 2011-06-28 Baker Hughes Incorporated Method of cementing within a gas or oil well
US9040468B2 (en) 2007-07-25 2015-05-26 Schlumberger Technology Corporation Hydrolyzable particle compositions, treatment fluids and methods
US10011763B2 (en) 2007-07-25 2018-07-03 Schlumberger Technology Corporation Methods to deliver fluids on a well site with variable solids concentration from solid slurries
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
CA2797342C (en) * 2010-04-26 2018-11-06 Construction Research & Technology Gmbh Alkali-activated aluminosilicate binder containing glass beads
US8511381B2 (en) 2010-06-30 2013-08-20 Schlumberger Technology Corporation High solids content slurry methods and systems
US20160257872A9 (en) 2010-09-17 2016-09-08 Schlumberger Technology Corporation Solid state dispersion
RU2472835C1 (ru) * 2011-07-01 2013-01-20 Государственное образовательное учреждение высшего профессионального образования Московский государственный строительный университет (МГСУ) Сырьевая смесь для получения облегченного тампонажного раствора
US8910712B2 (en) * 2011-10-31 2014-12-16 Chevron U.S.A. Inc. System and method for converting class II hydrate reservoirs
RU2497861C1 (ru) * 2012-05-04 2013-11-10 Общество с ограниченной ответственностью "ЛУКОЙЛ-Инжиниринг" (ООО "ЛУКОЙЛ-Инжиниринг") Облегченный газоблокирующий тампонажный материал для цементирования надпродуктивных интервалов (варианты)
US20140151043A1 (en) 2012-12-03 2014-06-05 Schlumberger Technology Corporation Stabilized fluids in well treatment
US10202833B2 (en) 2013-03-15 2019-02-12 Schlumberger Technology Corporation Hydraulic fracturing with exothermic reaction
US9546534B2 (en) 2013-08-15 2017-01-17 Schlumberger Technology Corporation Technique and apparatus to form a downhole fluid barrier
CN103467016B (zh) * 2013-09-02 2015-06-17 山东理工大学 二硼化锆-氧化铝复合陶瓷微珠制备低密度油井固井水泥试块的制备方法
CN103467019B (zh) * 2013-09-02 2015-06-17 山东理工大学 一种用碳化钒微珠制备低密度油井固井水泥试块的方法
CN103435307B (zh) * 2013-09-02 2015-05-06 山东理工大学 一种用碳化铪微珠制备低密度油井固井水泥试块的方法
CN103408263B (zh) * 2013-09-02 2014-11-26 山东理工大学 微晶玻璃微珠制备低密度油井固井水泥试块的制备方法
US9796622B2 (en) 2013-09-09 2017-10-24 Saudi Arabian Oil Company Development of high temperature low density cement
CN103803891B (zh) * 2014-03-11 2015-08-19 山东理工大学 氮化硼碳氮化钛陶瓷复合微珠制备油井固井水泥试块方法
CN103803890B (zh) * 2014-03-11 2015-10-07 山东理工大学 陶瓷复合微珠制备低密度油井固井水泥试块的方法
RU2553807C1 (ru) * 2014-03-19 2015-06-20 Общество с ограниченной ответственностью "ЛУКОЙЛ-ПЕРМЬ" Газоблокирующий тампонажный материал для цементирования горизонтальных скважин с малыми кольцевыми зазорами
CN103880362B (zh) * 2014-04-10 2015-06-10 山东理工大学 一种氮化硅陶瓷微珠制备低密度油井固井水泥试块的方法
AU2016392217B2 (en) * 2016-02-09 2021-01-07 Halliburton Energy Services, Inc. Surfactants for use in liquid suspensions of lightweight beads
MX2016005644A (es) * 2016-04-29 2017-10-30 Josawa S A De C V Formulacion a base de cemento hidraulico adicionado con vidrios amorfos y microesferas para productos de reparacion, mantenimiento o rehabilitacion de estructuras de concreto.
US10954771B2 (en) 2017-11-20 2021-03-23 Schlumberger Technology Corporation Systems and methods of initiating energetic reactions for reservoir stimulation
CN108059401A (zh) * 2018-01-26 2018-05-22 毕言铎 一种低密度油井水泥
CN112408911A (zh) * 2020-11-20 2021-02-26 上海浦盈混凝土有限公司 一种抗冻混凝土拌合物及其制备方法
CN113621355B (zh) * 2021-08-09 2022-12-09 中海油田服务股份有限公司 一种液体减轻剂及其制备和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804058A (en) * 1972-05-01 1974-04-16 Mobil Oil Corp Process of treating a well using a lightweight cement
RO78647A (ro) * 1978-08-08 1982-03-24 Standard Oil Co,Us Procedeu de cimentare a puturilor de sonda
JPS6090860A (ja) * 1983-10-25 1985-05-22 宇部興産株式会社 高温度用低比重セメントの品質劣化を防止する方法
JPH0699171B2 (ja) * 1986-07-08 1994-12-07 宇部興産株式会社 地熱井用セメント組成物
US5121795A (en) * 1991-01-08 1992-06-16 Halliburton Company Squeeze cementing
US5125455A (en) * 1991-01-08 1992-06-30 Halliburton Services Primary cementing
US5346012A (en) * 1993-02-01 1994-09-13 Halliburton Company Fine particle size cement compositions and methods
FR2704218B1 (fr) 1993-04-21 1995-06-09 Schlumberger Cie Dowell Laitiers de ciments pétroliers, leur préparation et leur utilisation à la cimentation de puits.
FR2735465B1 (fr) * 1995-06-13 1997-08-29 Schlumberger Cie Dowell Compositions de cimentation et application de ces compositions pour la cimentation des puits petroliers ou analogues
US5571318A (en) * 1995-08-31 1996-11-05 Halliburton Company Well cementing methods and compositions for use in cold environments
MY119906A (en) * 1996-06-18 2005-08-30 Sofitech Nv Cementing compositions and applications of such compositions to cementing oil (or similar) wells.
FR2749844B1 (fr) * 1996-06-18 1998-10-30 Schlumberger Cie Dowell Compositions de cimentation et application de ces compositions pour la cimentation des puits petroliers ou analogues
AU1241999A (en) * 1998-11-13 2000-06-05 Sofitech N.V. Cementation product and use for cementing oil wells or the like
FR2790258B1 (fr) * 1999-02-25 2001-05-04 Dowell Schlumberger Services Procede de cimentation et application de ce procede a des cimentations de reparation
EP1236701A1 (en) * 2001-02-15 2002-09-04 Schlumberger Technology B.V. Very low-density cement slurry

Also Published As

Publication number Publication date
US6626991B1 (en) 2003-09-30
EP1204616A1 (en) 2002-05-15
EA200200215A1 (ru) 2002-06-27
GB2366562A (en) 2002-03-13
AU772997B2 (en) 2004-05-13
BR0012504A (pt) 2002-05-28
DE60013854D1 (de) 2004-10-21
GC0000135A (en) 2005-06-29
BR0012504B1 (pt) 2009-08-11
CN1367768A (zh) 2002-09-04
FR2796935B1 (fr) 2001-09-21
EP1204616B1 (en) 2004-09-15
WO2001009056A1 (en) 2001-02-08
NO20020432L (no) 2002-01-28
CA2380095A1 (en) 2001-02-08
CA2380095C (en) 2009-11-24
GB2366562B (en) 2004-01-07
DK1204616T3 (da) 2005-01-31
JP4731773B2 (ja) 2011-07-27
NO335505B1 (no) 2014-12-22
JP2003506527A (ja) 2003-02-18
FR2796935A1 (fr) 2001-02-02
DE60013854T2 (de) 2005-09-22
OA12001A (en) 2006-04-18
MXPA02000959A (es) 2002-09-18
ATE276213T1 (de) 2004-10-15
EA003917B1 (ru) 2003-10-30
NO20020432D0 (no) 2002-01-28
AU6270200A (en) 2001-02-19

Similar Documents

Publication Publication Date Title
CN1223544C (zh) 用于油井等的低密度和低孔隙度的灌注泥浆
CN1500071A (zh) 特低密度的水泥浆
EP1159234B1 (en) Cementing compositions and application of such compositions to cementing oil wells or the like
RU2656266C2 (ru) Способ обработки подземного пласта суспензией цементного раствора с возможностью образования проницаемого отвердевшего цементного раствора
WO2012174251A2 (en) Foamed cement compositions containing metal silicides usable in subterranean well operations
CN1834195A (zh) 油田固井用防气窜水泥浆
CN102491667A (zh) 一种水泥基材料收缩补偿用塑性膨胀剂及其制备和应用
US11597863B2 (en) Methods of cementing a wellbore
US20040107875A1 (en) Low-density cementing slurry
CA2635925C (en) Cement blend
CN101696095B (zh) 沿空留巷支护专用水泥砼外加剂
JP2005097413A (ja) 懸濁型地盤改良材の調製法
Galiyev et al. Cement-polymer materials for well casing
JPH06183798A (ja) 掘削用セメントおよびそのスラリーの調製方法
AU2002235782A1 (en) Very low-density cement slurry
RU2033519C1 (ru) Пластификатор тампонажных растворов
MXPA01008495A (en) Cementing compositions and application of such compositions to cementing oil wells or the like

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051019

Termination date: 20170706